
WarpingGAN: Warping Multiple Uniform Priors for Adversarial 3D Point Cloud Generation

Yingzhi Tang1* Yue Qian1* Qijian Zhang1 Yiming Zeng1 Junhui Hou1 Xuefei Zhe2
1City University of Hong Kong 2Tencent AI lab

{yztang4- c, yueqian4- c, qijizhang3- c, ym.zeng}@my.cityu.edu.hk, jh.hou@cityu.edu.hk

ShapeGF DPMPDGNTreeGAN WarpingGANSP-GAN
Figure 1. Visual comparisons of generated shapes with state-of-the-art 3D point cloud generation methods. TreeGAN [20], PDGN [10]
and SP-GAN [15] are GAN-based, while ShapeGF [5] and DPM [17] are probabilistic-based.

Abstract

We propose WarpingGAN, an effective and efficient 3D
point cloud generation network. Unlike existing methods
that generate point clouds by directly learning the mapping
functions between latent codes and 3D shapes, Warping-
GAN learns a unified local- warping function to warp multi-
ple identical pre- defined priors (i.e., sets of points uniformly
distributed on regular 3D grids) into 3D shapes driven by
local structure- aware semantics. In addition, we also in-
geniously utilize the principle of the discriminator and tai-
lor a stitching loss to eliminate the gaps between differ-
ent partitions of a generated shape corresponding to dif-
ferent priors for boosting quality. Owing to the novel gen-
erating mechanism, WarpingGAN, a single lightweight net-
work after one- time training, is capable of efficiently gen-
erating uniformly distributed 3D point clouds with vari-
ous resolutions. Extensive experimental results demonstrate
the superiority of our WarpingGAN over state- of- the- art
methods in terms of quantitative metrics, visual quality,
and efficiency. The source code is publicly available at
https://github.com/yztang4/WarpingGAN.git.

1. Introduction
3D point clouds have been employed in various ap-

plications, such as computer-aided design [11, 13], aug-
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mented/virtual reality [16], animation [9, 27], and immer-
sive telepresence [21]. However, obtaining 3D point cloud
data is still costly and time-consuming in realistic scenarios,
especially the shapes with complex geometry and topology.
Besides, the acquired point clouds with 3D sensing devices
are usually incomplete and sparse due to occlusions, dis-
tances, and surface materials. The great success of gener-
ative adversarial network (GAN)-based 2D image genera-
tion [4,6,31] makes synthesizing realistic-looking 3D point
clouds promising, i.e., generating point clouds whose sta-
tistical distribution is similar to real point clouds. However,
the essentially different data modality as well as the unique
characteristics of 3D point clouds, i.e., the irregular struc-
ture and unorderness, makes it non-trivial to extend GAN-
based methods for generating 2D images to 3D point cloud
generation.

Recently, several works on 3D point cloud generation
have been proposed [1, 10, 12, 15, 20, 22, 26, 28]. For ex-
ample, GAN-based methods [1, 10, 20, 22, 26] usually use
multi-layer perceptrons (MLPs) as generators to directly
learn mapping functions between latent codes and 3D point
clouds, which require a large number of parameters to fit.
Moreover, as the adversarial learning mechanism cannot
impose strong constraints on global shapes and local ge-
ometric details, these approaches tend to generate non-
uniformly distributed point clouds, as illustrated in Fig. 2.
Yang et al. [28] and Luo et al. [17] considered 3D point
cloud generation as probabilistic problems, which first sam-
ple points from a Gaussian space and then move them to the
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(a) TreeGAN (b) PDGN (c) SP-GAN (d) WarpingGAN

Figure 2. Visual comparisons of the point clouds generated by
different GAN-based methods.

target position by learning the distribution transformation.
However, these methods generate blurry point clouds with-
out clear global shapes and local details, since they tend to
estimate the average distribution of training data. In addi-
tion to the limited quality, existing methods also suffer from
low efficiency because time-consuming k nearest neighbor
(kNN) search is adopted in PDGN [10] and SP-GAN [15], a
progressive generation process is utilized in TreeGAN [20]
and PDGN [10], and a two-stage training strategy is re-
quired in ShapeGF [5], which also prohibits the end-to-end
optimization.

To address the above-mentioned issues, we propose
WarpingGAN, which introduces a novel mechanism for
GAN-based 3D point cloud generation. By taking advan-
tage of multiple 3D uniform priors, i.e., sets of points uni-
formly located on a unit 3D cube, WarpingGAN formu-
lates the generation process as the learning of a function
that warps multiple 3D priors into different local regions
of a 3D shape under the guidance of local structure-aware
semantics, which is fundamentally different from existing
methods that directly learn the process of producing a fixed
number of points from the latent code. Meanwhile, we
tailor a stitching loss, which minimizes the local differ-
ence between generated and real point clouds, to shrink the
gaps between different partitions. Such a new mechanism
makes WarpingGAN featured with compactness and high
efficiency. Also, it enables WarpingGAN to generate point
clouds with various numbers of points after one-time train-
ing. Besides, the uniformity of the 3D priors can implic-
itly regularize WarpingGAN to some extent to promote the
generation of uniformly distributed point clouds, as shown
in Fig. 2.

In summary, we make the following contributions:
• we investigate the GAN-based 3D point cloud genera-

tion from the new perspective of unified local- warping,
leading to WarpingGAN featured with lightweight,
high efficiency, and flexible output; and

• by taking advantage of the inherent design of the dis-
criminator without introducing additional complex op-
erations, we propose a stitching loss tailored to Warp-
ingGAN to boost the generator; and

• we conduct extensive experiments and analysis to
demonstrate the superiority of WarpingGAN over
state-of-the-art methods.

2. Related Work
Existing 3D point cloud generation methods can be

roughly classified into two categories, i.e., GAN-based
methods and Probabilistic-based.

GAN-based approaches. As the first work, Achlioptas
et al. [1] proposed rGAN, whose generator consists of sev-
eral fully connected layers. However, both the generator
and discriminator of rGAN cannot well utilize the local in-
formation and tends to generate defective parts. Valsesia et
al. [22] utilized a graph convolution network to learn local
dependencies between a point and its neighbors by design-
ing a localized operation. Shu et al. proposed [20] Tree-
GAN, where a tree structure is introduced to preserve an-
cestor information instead of neighbor information to gen-
erate new points. Hui et al. [10] proposed a progressive
learning strategy to generate multi-resolution point clouds,
and a learning-based bilateral interpolation is utilized to ex-
ploit local geometric structure. The above methods em-
ploy MLPs on the global feature to directly generate point
clouds, which can be hard to optimize and inflexible in
terms of the number of points. To simplify the learning pro-
cess, TreeGAN and PDGN adopt the inefficient progressive
architecture in the generator.

Recently, Li et al. [15] proposed SP-GAN for point cloud
generation and manipulation. They introduce a pre-defined
sphere to perform deformation. By contrast, our method
adopts multiple uniform 3D priors to warp each shape par-
tition, enabling higher-quality point clouds. Furthermore,
unlike SP-GAN, our architecture does not employ the time-
consuming kNN operation in the generator. The experiment
findings show that our proposed WarpingGAN is more ef-
fective and efficient than SP-GAN.

It is worth noting that Wang et al. [24] experimen-
tally found that the current GAN-based frameworks can
only adopt PointNet as the discriminator. Other more ad-
vanced point cloud frameworks such as PointNet++ [19]
and DGCNN [25] are unable to be optimized as discrimina-
tors. However, PointNet learns point-wise features and uses
the max-pooling symmetric function to select critical points
to determine the global shape feature. Thus, only a small
portion of critical points guide the global shape, and local
geometric information is lost. Therefore, a well-designed
generator is crucial for the GAN-based method.

Probabilistic-based approaches regard point clouds
as samples from a distribution, and then move the sam-
pled points to the target positions during the generative
phase. PointFlow [28] uses the continuous normalizing
flow framework to transform the parameters of the distribu-
tions of shapes and the distribution of points given a shape.
ShapeGF [5] generates point clouds by learning the gradi-
ent field of its log-density and moves points gradually in the
gradient direction. DPM [17] simulates the generation pro-
cess as non-equilibrium thermodynamics by converting the
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noise distribution into the shape distribution with a Markov
chain. Some of them [17,28] can accomplish flexible gener-
ation because they treat each point independently. However,
due to the absence of association between the points, they
cannot properly settle the non-uniform and noisy problems
for generated shapes. Moreover, many probabilistic-based
methods [5] adopt a two-stage training process, which re-
quires additional training for auto-encoders. It’s worth not-
ing that ShapeGF uses the GAN structure as well, not only
the auto-encoder.

Point cloud auto-encoders aim to reconstruct the input
point cloud with a narrow bottleneck layer. For example,
FoldingNet [29] introduces a folding-style operation to re-
construct 3D shapes by learning a mapping function from a
2D grid to a 3D point cloud. AtlasNet [7] utilizes a series
of 2D grids via multiple independent MLPs to reconstruct
surfaces patch-wisely. Bednarik et al. [2] addressed patch
collapse and overlap problems of AtlasNet by computing
the differential properties of reconstructed surface with first
and second derivatives.

Remark. We argue that such folding-style decoders are
potentially suitable for the GAN-based point cloud genera-
tion task, which have been ignored in previous frameworks.
In this work, we take a step forward in this direction by
investigating a more powerful point cloud generator. Note
that directly adopting the decoders of FoldingNet and Atlas-
Net as the generator of a GAN-base point cloud generation
framework fail to generate satisfied point clouds. See the
analysis in Section 3.1 and experimental demonstration in
Section 4.3.

3. Proposed Method

3.1. Problem Analysis and Formulation

Given a latent code z ∈ RC following a Gaussian distri-
bution, the generator denoted as F(·) attempts to produce
a point cloud P ∈ RN×3 which shares the same statistical
distribution as a real dataset {P̃}. Most of existing GAN-
based methods directly learn the mapping function between
z and P, i.e., F(z;Θ) = P with Θ being the network
parameters to be learned. However, due to the weak su-
pervision ability of the discriminator, it is difficult to learn
F(·), especially for the dataset with complex shapes, thus
limiting the quality of generated point clouds. More specif-
ically, Wang et al. [24] analyzed that as the only feasible
discriminator, the PointNet architecture [18], which applies
the max-pooling operator to sample the feature space, can
only perceive the distribution of a small number of critical
points rather than the whole point cloud.

Motivated by the the folding-style design mentioned ear-
lier, we consider warping a uniform 3D prior (i.e., a set of
3D points uniformly located in a regular 3D grid) denoted as
U ∈ [0, 1]N×3 into a 3D shape. Accordingly, we reformu-

late the generation process point-wisely as F(ui, z;Θ) =
pi ∀i ∈ [1, N ], where ui and pi are the i-th point of U and
P, respectively. We expect that the pre-defined uniformity
of the 3D prior could regularize the distribution of all of
the generated points to mitigate the limitation of the max-
pooling-based discriminator mentioned earlier. However, a
single prior may fail to generate complex shapes well due
to the essential difference between the topology of the prior
and the 3D objects. Thus, we plan to use multiple uniform
3D priors denoted as

{
Uj ∈ [0, 1]n×3

}M

j=1
and warp each

of them to capture the local region (i.e., Pj ∈ Rn×3) of a
generated point cloud P =

⋃M
j=1 P

j , where N = M × n.
To achieve this, like AtlasNet [7], one intuitive way is to
learn a warping process for each pair of Uj and Pj indepen-
dently, i.e., pj

i = F(uj
i , z;Θ

j), where uj
i and pj

i are the i-
th points of Uj and Pj , respectively. However, this manner
significantly increases network parameters {Θj}Mj=1, mak-
ing the network difficult to train.

To achieve the generation in an efficient and effective
manner, we finally formulate it as a unified local-warping
process. That is, we use M different global-correlated local
codes {zj}Mj=1 (see Section 3.2 for details), each of which
is expected to embed the semantic of a typical local region.
Thus, a local code can drive the warping of a prior to the cor-
responding structure via an identical MLPs. Accordingly,
the process is generally written as

pj
i = F(uj

i , z
j ;Θ),∀j ∈ [1,M ] and ∀i ∈ [1, n]. (1)

Compared with the AtlasNet-based idea, our warping pro-
cess only requires unified parameters Θ to be optimized,
which is more compact and easier. Moreover, although we
expect to use multiple priors rather than a single one im-
prove generation quality, the weak supervision ability of the
discriminator may not realize our objective, i.e., the super-
vision is insufficient to drive the local regions warped from
different priors to tightly fit to each other, resulting in gaps
between them. To handle this issue, we further tailor a sim-
ple yet effective stitching loss to supervise the training of
the generator.

3.2. Warping-based Generator

Fig. 3 illustrates the overall architecture of the gener-
ator of our WarpingGAN, which consists of two modules,
i.e., code enhancement and unified local warping. Specifi-
cally, taking a latent code z as input, the code enhancement
module first enhances its representation ability to 3D shapes
by changing its distribution. Conditioned on the enhanced
code, the unified local-warping module is then successively
performed twice to warp multiple pre-defined uniform 3D
priors to different local regions, which are finally assem-
bled into a 3D shape. Owing to the warping-style mech-
anism, WarpingGAN is featured with highly compact and
efficient. Besides, WarpingGAN is able to generate point
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Figure 3. Illustration of the architecture of the generator of WarpingGAN, which consists of a code enhancement module and a unified
local-warping module. During training, it takes a latent code and M pre-defined uniform 3D priors as input. The unified local-warping
module is performed twice to generate a 3D shape.

clouds with various numbers of points by changing the size
of Uj (i.e., the value of n), after one-time training.

Code enhancement. As aforementioned, WarpingGAN
aims to learn a warping function under the guidance of the
latent code z. However, z is randomly drawn from a Gaus-
sian distribution and thus lacks the implicit semantic infor-
mation to represent the shape faithfully. To fill this knowl-
edge gap, we propose a code enhancement module shown in
Fig. 3(a), composed of five fully-connected layers to trans-
form z to z̃ ∈ RD of a higher dimension (D > C). In Sec-
tion 4.3, we illustrate that after the data-driven training pro-
cess, such a module can transform the Gaussian distribution
to a distribution that is comparable to that of the features ex-
tracted from real datasets that encode shape semantics.

Unified local-warping. Guided by the enhanced latent
code z̃, the unified local-warping module in Fig. 3(b) can
generate from multiple 3D priors various local regions that
are further assembled into a point cloud with complex topol-
ogy. Specifically, we first partition z̃ into M local codes
of an equal length denoted as {z̃j ∈ RD/M}Mj=1 and then
concatenate each of the local codes with the global shape
information, leading to zj = [z̃j z̃] ∈ RD(M+1)/M . Fi-
nally, we concatenate zj with each coordinate of Uj , which
is then fed into an MLPs to regress the points of the j-th
local region in point-wise. Moreover, we perform such a
warping process twice in a row, Therefore, such a unified
local-warping process is written as

pj
i = F

(
F(uj

i , z
j ;Θ1), z

j ;Θ2

)
, (2)

∀j ∈ [1,M ] and ∀i ∈ [1, n],

where Θ1 and Θ2 are the network parameters of the two
consecutive warping processes. Note that it is crucial to
concatenate z̃ in the local codes since z̃ provides the essen-
tial global shape information to coordinate different local
codes (see the demonstration in Section 4.3).

Max
pool

Real/Fake?MLPs

Global Feature
Max

Global Feature

Critical Points

Stitching Loss

Real/Generated 
Point Cloud

Figure 4. The architecture of the discriminator of WarpingGAN. It
takes real point clouds or generated point clouds as input and pro-
duces the confidence value and the critical points (i.e., red points)
that are used by the stitching loss.

3.3. Training Objectives

Discriminator. Following previous works [10, 20], we
adopt the PointNet as the discriminator D(·) for training
the generator. As shown in Fig. 4, it takes {P̃} as input
to perform binary classification. More specifically, it first
learns point-wise features via MLPs and then adopts max-
pooling to obtain a global shape feature that is utilized to
determine the confidence value. Meanwhile, owing to the
max-pooling operation, we can retrieve a small number of
critical points from the input cloud, which depict the skele-
ton of the input shape [18].

Stitching loss. As analyzed in Section 3.1, the inher-
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ent design of the discriminator results in a limited super-
vision ability, which is inadequate to force the generated
local regions to fit each other tightly. To tackle this issue,
by taking advantage of critical points without introducing
additional complex operations, we propose a stitching loss,
which minimizes the local difference between P and P̃ .

Let {qi}Qi=1 ⊂ P and {q̃i}Q̃i=1 ⊂ P̃ denote the criti-
cal points retrieved from the input point clouds based on
the max-pooling operation of the discriminator. We first
find out the K nearest neighbors N (qi) = {pk

i }Kk=1 ⊂ P

for each of {qi}Qi=1 and compute the pairwise distance
dki = ∥qi − pk

i ∥2. We also conduct the same operation

for {q̃i}Q̃i=1. With this information, we define the stitching
loss as

Ls =

 1

Q

Q∑
i=1

var(qi,N (qi))−
1

Q̃

Q̃∑
i=1

var(q̃i,N (q̃i))

2

,

(3)
where var(qi,N (qi)) =

∑K
k=1

(dk
i −d̄i)

2

K and d̄i is the mean
value of {dki }

Q
i=1.

Note that the stitching loss requires the kNN operation
over the very small number of critical points only dur-
ing training, and thus, the high efficiency of the proposed
method is still retained during both training and testing. See
Section 4.2.

Joint optimization. To train the proposed Warping-
GAN, we adopt the improved WGAN loss [8], which con-
sists of the loss Lg(·) for the generator and Ld(·) with the
Lipschitz constraint for the discriminator. More precisely,
Lg(·) is written as

Lg = −EP∼PP
[D(P)] + λsLs, (4)

where PP is the distribution of generated shape P and Ls is
the proposed stitching loss which is balanced by the weight
λs > 0. Ld(·) is formulated as

Ld = EP∼PP
[D(P)]− EP∼PP̃

[D(P̃)]

+ λgpEp̂∼PP̂
[(∥▽p̂D(p̂)∥2 − 1)2],

(5)

where PP̃ is the distribution of the real point cloud P̃, and
p̂ is uniformly sampled by interpolating pairs of shapes
sampled from PP and PP̃ to satisfy the 1-Lipschitz con-
straint [8], and λgp > 0 the weight to balance the gradient
penalty term.

4. Experiments

4.1. Experiment Settings

Dataset. Following the settings in [20], we selected
three categories of ShapeNet, i.e., Chair, Airplane and Car
shapes, to train and evaluate WarpingGAN. Each point
cloud contains 2048 points.

Implementation details. WarpingGAN samples latent
codes of dimension C = 128 following a Gaussian distribu-

Table 1. Quantitative comparison of WarpingGAN with five state-
of-the-art methods over two categories. The listed MMD and COV
values were obtained by multiplying the original values with 103

and 102, respectively. ↑ (resp. ↓) means the higher (resp. lower),
the better.

Method
Metric Chair Airplane

MMD↓ COV↑ Uniform↓ MMD↓ COV↑ Uniform↓
TreeGAN [20] 9.6 45.00 0.88 3.8 42.50 0.45
PDGN [10] 9.3 51.25 0.85 3.4 41.25 0.21
SP-GAN [15] 11.5 41.25 0.34 3.5 46.25 0.05
ShapeGF [5] 9.6 50.00 0.64 3.5 47.50 0.09
DPM [17] 9.4 37.50 1.45 3.4 33.75 0.35
WarpingGAN 8.7 53.75 0.29 3.3 48.75 0.02

tion as input to generate point clouds each with N = 2048
points. We set the number of priors M to 16 for all shapes,
K = 40 for computing the stitching loss, and λs = 0.05
and λgp = 10 during the training phase. We adopted
LeakyReLU with a negative slope equal to 0.2 in each
layer. We utilized Adam with the learning rate r = 0.0001,
β1 = 0 and β2 = 0.99 as the optimizer to optimize both the
generator and discriminator, and set the batch size to 32. We
implemented the whole network with PyTorch and trained
it on Nvidia RTX 2080ti GPU with Intel(R) Xeon(R) CPU.

4.2. Comparison with State-of-the-Art Methods

We compared the proposed WarpingGAN with five state-
of-the-art point cloud generation frameworks, including
three GAN-based methods, i.e., TreeGAN [20], PDGN [10]
and SP-GAN [15], and two probablistic-based methods, i.e.,
ShapeGF [5] and DPM [17].

Quantitative comparison. Following the settings of SP-
GAN [15], we utilized Minimal Matching Distance (MMD)
and Coverage (COV) to quantitatively evaluate the quality
of generated point clouds by different methods. Besides, we
also adopted the uniformity loss* in [14] to quantitatively
measure the uniformity of generated point clouds.

As listed in Table 1, our WarpingGAN outperforms all
the other methods in terms of all metrics. Specifically, the
lower MMD values imply that WarpingGAN can generate
shapes with high fidelity to point clouds in the real dataset,
the high COV values demonstrate that the generated shapes
of WarpingGAN match well with the real shapes in terms of
fraction, and the lower Uniform values indicate our Warp-
ingGAN can generate point clouds with more uniformly
distributed points. Moreover, we want to point out that met-
rics MMD and COV do not necessarily and reliably corre-
late to the quality of generated data, which has also been
discussed in [28, 30]. Thus, we refer readers to examine vi-
sual quality of generated point clouds provided as follows
and in Supplementary Material.

Visual comparison. We visualized the generated 3D

*We measured the normalized point clouds with various percentages
of points, i.e., p ∈ {0.002, 0.004, 0.006, 0.008, 0.012, 0.015}. We re-
ported the average uniformity over all p.
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Figure 5. Visual illustration of the generated Chair, Airplane and Car shapes by our WarpingGAN. These shapes have fine global structures
and present a variety of geometric typology. See Supplementary Material for more visual results.

DPMSP-GAN WarpingGANShapeGFPDGNTreeGAN
Figure 6. Visual comparison of the reconstructed 3D surfaces from the point clouds (shown in 1) generated by different methods via the
ball pivoting algorithm.

point clouds by different methods. Besides, we also recon-
structed 3D meshes from them via the ball pivoting† algo-
rithm [3]. As illustrated in Fig. 1, WarpingGAN gener-
ates shapes with finer global shapes and local details than
the other methods. Particularly, the points of the generated
data by our WarpingGAN are uniformly distributed, thus
avoiding “holes” which appear in the results by compared
methods. Besides, WarpingGAN does not generate outlier
points. From Fig. 6, it can be observed that the recon-
structed 3D meshes from the point clouds generated by our
WarpingGAN have much better quality than those by other
methods, which also validates the higher quality of the point
clouds generated by our WarpingGAN. See Supplementary
Material for more visual results.

Efficiency comparison. We also compared the training
time, inference time and parameter sizes of different meth-
ods. We only reported the inference time of ShapeGF and
DPM. As listed in Table 2, during interface, WarpingGAN

†For a fair comparison, the same hyper-parameters were applied to the
generated point clouds by different methods.

Table 2. Comparison of the training time, inference time and pa-
rameter size of different methods. The training time refers to the
average time of one iteration.

Method Training (s) Inference (s) Params (M)
TreeGAN [20] 0.04 0.014 40.69
PDGN [10] 0.63 0.077 12.71
SP-GAN [15] 0.29 0.031 0.59
ShapeGF [5] - 2.660 4.40
DPM [17] - 0.641 1.58
WarpingGAN 0.08 0.008 0.58

achieves the most compact model size and 4 ∼ 300 faster
than state-of-the-art methods, owing to the exclusion of the
time-consuming kNN and progressive design. Although the
stitching loss of WarpingGAN requires calculating kNN for
subsets with a small size during training, which slightly in-
creases the training time, the training process of Warping-
GAN is still much more efficient than PDGN and SP-GAN.

Feature comparison. We also employed t-SNE [23] to
visually compare the Airplane shapes generated by different
methods in the feature space. Specifically, we adopted the
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Figure 7. Visual illustration of the t-SNE feature clustering of the
real point clouds of ShapeNet and generated point clouds by dif-
ferent methods.

pre-trained DGCNN with ModelNet40 to extract features of
generated point clouds by different methods and the corre-
sponding Airplane category of ShapeNet. As shown in Fig.
7, compared with other methods, the feature distribution of
WarpingGAN is more compact and closer to that of the real
point cloud set, indicating that the generated point clouds
by our WarpingGAN are more realistic.

(a) 1024 points (b) 2048 points (c) 4096 points

Figure 8. Visual illustration of the flexibility of our WarpingGAN
in generating point clouds with various number of points after one-
time training. Points with the same color correspond to the same
prior.

Flexibility illustration. To demonstrate the flexibility
of our WarpingGAN, we fixed the WarpingGAN trained
with M = 16 and N = 2, 048 and modified the size
of the 3D priors in order to generate point clouds with
N = 1, 024, 2048 and 4, 096 from an identical latent code.
As shown in Fig. 8, the three generated point clouds cor-
respond to the same shape, the warping manners of corre-
sponded priors in different point clouds are the same, and
the point cloud quality potentially improves with the num-
ber of points increasing. However, the compared methods
that directly generate points from the latent code cannot
achieve such a flexibility.

4.3. Ablation Study

The effectiveness of the code enhancement is demon-
strated via the quantitatively and qualitatively in Table 3 and

Table 3. Ablation studies conducted on the Chair category. Exps.
#1 - #8 are the results of our WarpingGAN with various settings.
The result of our final model is highlighted in red. Exps. #9
and #10 are the results of FoldingNet-based and AtlasNet-based
GANs, respectively. “-” means the stitching loss is not applica-
ble, “U” and “NU” mean uniform and non-uniform priors, respec-
tively.

Exp. Code Prior Prior Stitching MMD↓ COV↑ Uniform↓Num. Enhance. Type Num. Loss
1 � 3D+U 1 - 13.4 25.00 1.25
2 � 3D+U 1 - 11.0 43.75 1.47
3 � 3D+U 16 � 9.9 45.00 0.43
4 � 2D+U 16 � 10.0 46.25 0.32
5 � 3D+NU 16 � 10.2 50.00 0.49
6 � 3D+U 4 � 9.6 51.25 0.78
7 � 3D+U 16 � 8.7 53.75 0.29
8 � 3D+U 64 � 8.3 46.25 0.34
9 � 2D+U 1 - 14.4 27.50 1.57

10 � 2D+U 16 � 10.5 36.25 0.90

(a) wo/w code enhancement (b) wo/w global shape code

Figure 9. Visual illustration of the effectiveness of (a) the code
enhancement module and (b) the global shape code, where wo and
w denote “without” and “with”, respectively.

(a) latent code (b) FoldingNet θ (c) enhanced code

Figure 10. Visual comparison of the distribution of (a) the input
latent code, (b) the latent semantic features of FoldingNet, and (c)
the enhanced code of WarpingGAN (M = 1).

Fig. 9, respectively. As listed in Exps. #1 and #2 of Table
3, it can be seen that this module can effectively improve
the generated point cloud quality in terms of all metrics.
Fig. 9 (a) visually demonstrates that the quality of the gen-
erated point cloud degrades dramatically without using this
module. Besides, We also validated the advantage of inte-
grating the global code z̃ into the local code zj in Fig. 9
(b). Moreover, we also investigated the distribution of the
enhanced latent code to understand this module better. As
shown in Fig. 10, it can be seen that this module is able to
transform the initial Gaussian distribution (Fig. 10 (a)) to a
distribution (Fig. 10 (c)) which is very close to the distri-
bution of semantic features extracted from real datasets by
using FoldingNet (Fig. 10 (b)).

6403



Figure 11. Visual comparison of our WarpingGAN trained (top
row) without and (bottom row) with the stitching loss.

The effectiveness of the stitching loss is quantitatively
validated by comparing the results of Exps. #3 and #7 listed
in Table 3, where it can be seen that the results of all met-
rics improve when adopting the loss. Besides, as shown in
Fig. 11, the point clouds generated by WarpingGAN trained
without the stitching loss suffer from significant gaps be-
tween different partitions, while WarpingGAN trained with
the stitching loss can greatly alleviate the gaps and increase
the visual quality.

(a) 2D vs. 3D priors (b) non-uni vs. uni priors
Figure 12. Visual comparison of our WarpingGAN equipped with
(a) 2D priors and 3D priors, and (b) 3D non-uniform priors and
3D uniform priors.

The effect of different prior settings. First, we substi-
tuted the 3D uniform priors with 2D uniform priors, while
keeping the remaining settings unchanged. By comparing
the results of Exps. #4 and #7 in Table 3, we can conclude
the advantage of 3D priors over 2D priors. From Fig. 12(a),
it can be seen that the generated point cloud by 3D uniform
priors retain local details better. Besides, to demonstrate
the necessity of the uniformity of the prior, we replaced the
3D uniform priors with 3D non-uniform priors and kept the
remaining settings unchanged. As shown in Fig. 12 (b),
the non-uniform priors cannot lead to uniformly distributed
point clouds, which is consistent with the quantitative re-
sults in Exps. #5 and #7 of Table 3.

The effect of the number of 3D priors. We trained
three WarpingGAN models with 4, 16 and 64 priors, re-
spectively. The quantitative comparisons are listed in Exps.
#6, #7, and #8 of Table 3, where it can be seen that Warp-
ingGAN with 16 priors produces the generally best per-
formance, which is consistent with the visual comparison
shown in Fig. 13. The reason is that a limited number of pri-
ors cannot fit 3D shapes well, while too many priors make
it hard to optimize the stitching loss. In this paper, we set
M = 16.

(a) 4 priors (b) 16 priors (c) 64 priors
Figure 13. Visual comparison of our WarpingGAN equipped with
different numbers of 3D priors. Note that the total size of priors
under different settings are equal for generating point clouds each
with 2,048 points.

(a) Folding-based vs. WarpingGAN (b) Atlas-based vs. WarpingGAN
Figure 14. Visual comparison of WarpingGAN with (a)
FoldingNet-based GAN and (b) AtlasNet-based GAN.

Comparison with FoldingNet-based and AtlasNet-
based GANs. In this experiment, we retained the code en-
hancement module and substituted the prior warping mod-
ule of the proposed generator with the decoders of Fold-
ingNet and AtlasNet. Exps. #9 and #10 of Table 3 provide
the quantitative performance of these two baselines, which
rev eal the limited performance of the direct extensions of
these auto-encoder frameworks. Besides, as shown in Fig.
14, FoldingNet-based GAN fails to generate a chair with a
complex structure correctly and AtlasNet-based GAN loses
much local details even when generating a chair with a sim-
ple structure, while our WarpingGAN can generate chairs
with much better quality.

5. Conclusion
We presented WarpingGAN, a novel point cloud gener-

ation framework that is capable of generating high-quality
point clouds in an effective and efficient manner. In contrast
to existing approaches that usually produce point clouds
by learning the direct mapping between the random latent
codes and 3D shapes, we designed WarpingGAN by inves-
tigating a unified local-warping mechanism, in which mul-
tiple pre-defined 3D priors uniformly distributed in the 3D
Euclidean space are conditionally warped to various local
regions of a shape. Meanwhile, by examining the principle
of the discriminator, we customized a stitching loss to elim-
inate the gaps between different regions. Such a new mech-
anism makes WarpingGAN compact, efficient, and flexi-
ble. We conducted extensive experiments to demonstrate
the significant advantages of WarpingGAN over state-of-
the-art methods in terms of quantitative metrics, visual qual-
ity, and efficiency.
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