
Better Trigger Inversion Optimization in Backdoor Scanning

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu
Shiqing Ma†, Pan Li, Xiangyu Zhang

Purdue University, †Rutgers University
{taog, shen447, liu1751, an93, xu1230, panli, xyzhang}@cs.purdue.edu

†sm2283@cs.rutgers.edu

Abstract

Backdoor attacks aim to cause misclassification of a sub-

ject model by stamping a trigger to inputs. Backdoors could

be injected through malicious training and naturally exist.

Deriving backdoor trigger for a subject model is critical to

both attack and defense. A popular trigger inversion method

is by optimization. Existing methods are based on finding a

smallest trigger that can uniformly flip a set of input sam-

ples by minimizing a mask. The mask defines the set of

pixels that ought to be perturbed. We develop a new op-

timization method that directly minimizes individual pixel

changes, without using a mask. Our experiments show that

compared to existing methods, the new one can generate

triggers that require a smaller number of input pixels to be

perturbed, have a higher attack success rate, and are more

robust. They are hence more desirable when used in real-

world attacks and more effective when used in defense. Our

method is also more cost-effective.

1. Introduction

Backdoor attacks aim to induce model misclassification
of arbitrary input samples to a target label by stamping a
special input pattern called trigger. Backdoors could be
injected by various methods, such as data poisoning [17,
35, 40] and neuron hijacking [39], and also naturally exist
in normally trained models, called natural backdoors [41].
The latter is caused by distribution bias of low level features
and can be exploited just like injected backdoors. For ex-
ample, if a person always wears a unique pair of glasses in
a clean face recognition dataset, the glasses may become a
trigger to induce misclassification to the person.

Due to the prominent threat of backdoors, researchers
have proposed a large body of defense solutions (see Sec-
tion 2). Among them, backdoor scanning [21, 22, 68, 76] is
an important type of defense. Many scanners [38,41,59,65,
75] rely on trigger inversion, which leverages optimization

(a) NC (b) Ours

Figure 1. Loss landscapes of NC and our method. The x-axis and
y-axis show the coefficients on two random directions. The z-axis
denotes the loss value.

to derive a small input pattern that can flip clean samples
(of a victim class) to the target label. A model is consid-
ered having backdoor if an exceptionally small trigger can
be found.

Most existing trigger inversion methods (e.g., ABS [38],
K-arm [59], and Tabor [19]) are built on Neural Cleanse
(NC) [65], which decouples a trigger into a perturbation
vector and a mask. The perturbation vector denotes the
perturbations applied to an input and the mask determines
which part of the perturbation vector should be applied. NC
minimizes the mask and the perturbation vector together to
produce a small trigger (details in Section 3.1). Due to the
multiplication correlation between the mask and the pertur-
bation vector during optimization, NC can fall into local
optima and fail to reach the optimal trigger, i.e., the small-
est trigger with a high attack success rate. Figure 1a shows
the loss landscape of NC using the contour plot with two
random directions [16,24,31] with (x = 0, y = 0) the opti-
mum. Observe that there are multiple dips (local optima) on
the loss surface, which prevent NC from reaching the opti-
mum. In addition, triggers by NC are often not robust and
may become ineffective when undertaking transformations
(see Section 5.3).

Figure 2 shows the results of various techniques for gen-
erating a natural backdoor pattern for a normally trained

13368



2k, 0% 50k, 2% 27k, 28% 822, 70%
CW (1080m) UAP (23m) NC (9m) Ours (4m)

1950, 0% 822, 22%

CW UAP NC OursInput Target

Figure 2. Comparison of generated backdoors. In the first row, the texts below backdoor images denote the number of perturbed pixels
and the ASR on all the samples of loggerhead turtle from the validation set. The value shown together with the method name denotes the
trigger generation time cost in minutes. The bottom two rows show example images stamped with backdoors by different methods, where
the first column gives the victim class images and the last column the target class images.

model on ImageNet downloaded from [25]. Stamping each
of these backdoors on sea turtle images can flip them to
the kangaroo class. The first row shows the backdoor pat-
terns by various inversion techniques. From left to right, the
second and third rows show samples from the victim class
(column 1), samples stamped with the backdoor patterns
(columns 2-5), and the target class samples (last column).
The fourth and fifth images in the first row denote the trig-
ger generated by NC and its reduced version, respectively.
Observe that the NC trigger requires perturbing 27k pixels
and has only 28% ASR. When we reduce the NC trigger by
removing the smallest perturbations to size 822 (which is
the same as our trigger), the ASR degrades to 22%. This
is because of the large number of local minima, as those on
the loss surface of NC in Figure 1a. Our results in Section 5
show that on average, when NC triggers are reduced to the
same size of ours, their ASRs on average degrade by 26%.
Problem Statement. In the context of backdoor attack and
defense, a good optimization method (for trigger genera-
tion) is critical. In this paper, we say a method is good if
it produces triggers that are (1) small (i.e., having a small
number of perturbed pixels), (2) having a high attack suc-

cess rate (ASR) (the percentage of unseen clean samples
that can be flipped by the trigger), (3) robust (against input
transformations), and (4) has low computation overhead. A
good trigger generation method serves both attack and de-
fense. If it is used in attack, e.g., generating natural triggers
for normally trained models to induce intended misclassifi-

cation, a small and robust trigger makes the attack easy to
launch and effective in the physical world. If it is used in
defense, smaller triggers can help scanners more effectively
determine if a model is trojaned, as an exceptionally small
trigger is a good indicator of injected backdoor [38, 59, 65],
and have better effectiveness in model hardening. ⇤

We propose a novel optimization method. Instead of
optimizing the product of the perturbation vector and the
mask, our method only optimizes a perturbation vector.
Specifically, we leverage the long-tail effects of tanh func-
tion to represent the binary nature of perturbations, with one
end modeling the maximum perturbation and the other end
no perturbation. We introduce two tanh functions for each
pixel, one denoting positive perturbation and the other neg-
ative. Our optimization method has a much smoother loss
surface than NC as shown in Figure 1b. Observe that the
loss values all descend along the valley towards the optimal
point at the bottom. On the ImageNet dataset, our gener-
ated triggers are two orders of magnitude smaller than those
of NC, 2.73 times more robust, and have 20% higher ASR
on average. Our method is 2.15 times faster than NC. The
last image in the first row of Figure 2 shows our trigger. It
has the smallest number of perturbed pixels (822) with the
highest ASR (70%) on the unseen validation set. We also
compare with UAP [58] and CW [4] (another two trigger
generation methods adapted from adversarial attacks). Ours
is one or more orders of magnitude faster. The implementa-
tion of our method is publicly available [1].

13369



2. Related Work

Backdoor Attack. Existing backdoor attacks poison the
training set using intentionally crafted samples with in-
jected backdoor patterns together with the target label such
as patch attacks [7, 17]. To achieve stealthiness, a dif-
ferent type of backdoor attacks applies imperceptible per-
turbations on poisoned data with the original label like
clean label attacks [55, 57, 78]. Another type of back-
door attacks crafts different backdoors for different in-
puts [35,49,56]. Other than poisoning the training set, back-
doors also naturally exist in clean models [41]. Backdoor
attacks can be launched on models with various applica-
tions, such as natural language processing [28, 77], transfer
learning [53, 66, 73], and federated learning [3, 67, 71].

Backdoor Defense. To detect poisoned models [19, 22, 26,
52,72], existing works reverse-engineer backdoors [38,65],
and leverage the difference between poisoned and clean
models when reacting to input perturbations [21, 68, 76].
Existing techniques also detect and reject inputs stamped
with backdoors [5, 6, 8, 10, 12, 13, 34, 42, 43, 60, 62, 63].
Verification methods aim to provide guarantees that mod-
els are not vulnerable to certain types of backdoors [23, 30,
64,69]. There are also works focusing on eliminating back-
doors [33] by pruning out compromised neurons [37] or re-
training leveraging data augmentation technique [74].

Optimization Methods for Trigger Generation. NC [65]
is a state-of-the-art and we have detailed discussion and
comparison throughout the paper. Existing adversarial at-
tack methods were proposed to generate per-instance per-
turbations, such as fast gradient sign method (FGSM) [15],
projected gradient descent (PGD) [44], JSMA [51], CW [4],
and SLIDE [61], etc. Universal adversarial perturbation
(UAP) [46] aims to generate a global perturbation that can
cause a set of inputs to misclassify. We extend some of them
to generate triggers (see the following section).

3. Existing Optimization Methods for Back-
door Trigger Generation and Their Limi-
tations

In this section, we discuss in detail NC’s optimization
in trigger generation and two other optimizations that are
popular in adversarial attack and hence adapted to trigger
generation (i.e., CW and UAP). We focus on studying their
limitations in trigger generation.

3.1. Optimization of Neural Cleanse (NC)

As mentioned earlier, the optimization method in NC
is the most popular in trigger generation. Specifically, it

(a) The distribution of mask values
for 10 runs of NC

(b) The relation between ASR and
perturbed pixels

Figure 3. Characteristics of generated backdoors on all the test
samples of a victim class from the CIFAR-10 dataset

solves the following optimization problem.

min
m,p

LNC = L
�
M(x0), yt

�
+ � · kmk1, 8x 2 X, (1)

where x0 = (1�m) � x+m � p. (2)

Variables m and p denote the mask and the perturbation
vector, respectively; L(·, ·) denotes the cross entropy loss
function of the subject model M; yt is the target label. In-
tuitively, the optimization aims to flip the classification re-
sult (the first term in the loss function) and reduce the trig-
ger size (the second term). The introduction of the mask
enables using optimization to reduce the trigger size. How-
ever, it also has some undesirable effects. NC has to opti-
mize both m and p that are correlated by the � operation
in Equation 2, which is difficult and leads to low ASRs and
large sizes. NC tends to produce many small values in the
mask, indicating the corresponding input pixels need to be
slightly perturbed. Although these values are small, many
of them cannot be set to zero. Otherwise, the ASR degrades.
These small and pervasive perturbations make attack in the
physical world difficult and the backdoor not robust against
input transformations (see results in Section 5.3).

Figure 3a shows the distribution of mask values for 10
random runs of NC for generating a natural trigger that flips
plane to dog in a ResNet20 model on CIFAR-10. Observe
that a large portion of mask values fall in the range from 0 to
0.1, which is equivalent to keeping 90% of the original pixel
values. In Figure 3b, we start from the generated triggers,
gradually set the smallest mask values to 0, which is equiv-
alent to gradually reducing the number of perturbed pixels,
and show the changes of ASR with the number of perturbed
pixels. The number of perturbed pixels of the NC trigger is
725 with the ASR of 0.66. According to Figure 3a, most of
them have small values. However, when the number of per-
turbed pixels is gradually reduced to 150, the ASR starts to
degrade quickly, indicating the perturbations on these pix-
els need to be retained, even though they are still small. In
contrast, our trigger has 0.83 ASR with only 39 perturbed
pixels. Besides making physical attack difficult and not ro-
bust, the larger triggers by NC are less effective in expos-

13370



ing injected pervasive backdoors and model hardening (see
Section 5.4 and Section 5.5).

3.2. Optimization of CW
There are existing optimization methods in adversarial

attack that can be adapted for trigger generation, such as
JSMA [51] and CW [4], with the later the state-of-the-art.
The CW L0 attack first searches for perturbations on all
pixels that can cause misclassification using the L2 norm.
It then uses a processing step external to the optimization
to remove the perturbations that are the least important af-
ter each optimization epoch. The algorithm can be easily
adapted to generate backdoor: instead of optimizing one in-
put, we optimize a set of inputs. Details of the optimization
can be found in Appendix A.

The adapted CW optimization has a few limitations in
trigger generation. First, it is very expensive. To deter-
mine the unimportant perturbations, it has to perform gra-
dient back-propagation to each pixel of each input and sort
the importance values for all pixels. As a result, it is often
two to three orders of magnitude slower than our technique
and NC (see Section 5). Second, its trigger size reduction
is by an external step instead of optimization, and the re-
duction is monotonic. As such, if some step of reduction
is not towards a global minimal, it cannot be reverted. As
a result, CW’s optimization yields 28.28% lower ASRs and
17.25% larger trigger sizes on average compared to ours on
CIFAR-10 (see Section 5). The first image in the first row
of Figure 2 shows a CW backdoor. Its number of perturbed
pixels (2k) is smaller than NC (27k) but larger than ours
(822). However, its ASR is close to 0. It also takes 1,080
minutes to generate, compared to 4 minutes in our method.

3.3. Optimization of Universal Adversarial Pertur-
bation (UAP)

UAP [46, 58] generates a global perturbation that can
cause a set of inputs to misclassify. It has a similar goal
as ours and can be adapted for trigger generation. Details
can be found in Appendix B.

4. Our Method
According to our problem statement in the introduction

section, having a small number of perturbed pixels is criti-
cal for backdoor trigger generation. NC uses a mask vector
to denote which parts of an input are subject to perturbation.
However, it requires optimizing the product of the mask and
the perturbation vector, which is difficult. We propose to di-
rectly optimize a perturbation vector, without using a mask
like that in NC and CW. We use tanh functions to denote
perturbations of individual pixels and use optimization to
minimize the sum of all these functions. The long-tail ef-
fects of the tanh function allow us to nicely model the two
ends for a pixel’s value change, namely, a pixel is either not

(a) (b)

(c)

Figure 4. Illustration of using different tanh functions for the per-
turbation of a pixel. In (a), we denote positive change by adding
1
2 (tanh(x) + 1) to the original pixel value (red line). In (b), we
denote both positive and negative changes by adding tanh(x) to
the pixel value. In (c), we use two tanh functions to denote posi-
tive and negative changes, respectively.

changed at all or has change of arbitrarily large magnitude
(within bound). Figure 4a illustrates the concept. The y axis
denotes pixel value and the x axis perturbation. The former
is normalized to [�1, 1] and the latter is in (�1,+1). The
red horizontal line denotes an original pixel value. The blue
curve denotes how the pixel value changes with x. The pixel
is changed by adding 1

2 (tanh(x) + 1). Note that although
x is unbounded, the tanh function bounds the pixel value
change in (0, 1). Observe that the long left tail of the blue
curve means that a large number of x values on the left cor-
respond to close-to-0 changes to the pixel, whereas the long
right tail means that those x values on the right correspond
to the maximum change. The shape and the continuity of
the curve on one hand encourage achieving tail values (in
order to have a small loss value), and on the other hand,
allow perturbations to recover from tail values if needed.

However, using one tanh for each pixel only allows de-
noting changes along one direction, positive or negative. A
naı̈ve design is to use one tail to denote maximum posi-
tive change and the other tail to denote maximum negative
change. That is, the pixel is changed by tanh(x). How-
ever, it loses the key benefit of encouraging as many pixels
to have 0 value change as possible. Figure 4b illustrates the
concept. Observe that the blue curve tends to go to either
the maximum positive or the maximum negative. The part
denotes 0 change (i.e., the interaction of the blue curve and
the red line) has a steep slope such that it is unlikely for the
optimization to stabilize at this point. Our solution is hence
to use two tanh functions for a pixel, one denoting posi-
tive change and the other negative. Figure 4c illustrates the
concept. In addition to the blue curve going upward, there
is also the green curve that goes downward, denoting the
negative changes. The key difference from the above naı̈ve
method is that both curves have a long tail on zero change,

13371



which enables the optimization to stabilize. If the optimiza-
tion desires positive change, it just needs to go up along the
blue curve and stay on the left tail along the green curve,
and vice versa. Formally, we have the following optimiza-
tion objectives.

min
bp,bn

Lours = L
�
M(x0), yt

�
+ ↵ · Lpixel, (3)

where x0 = clip
⇣
x+

1

2

�
tanh(bp) + 1

�
·maxp

� 1

2

�
tanh(bn) + 1

�
·maxp

⌘
, (4)

and Lpixel =
X

h,w

✓
maxc

⇣1
2

�
tanh(

bp
�
) + 1

�⌘◆

+
X

h,w

✓
maxc

⇣1
2

�
tanh(

bn
�
) + 1

�⌘◆
. (5)

Variables bp, bn 2 (�1,+1) denote positive and nega-
tive perturbations, respectively; L(·, ·) denotes the cross en-
tropy loss function of the subject model M; yt is the target
label; ↵ controls the weight of the second objective. We dy-
namically adjust ↵ according to the attack success rate dur-
ing optimization to better balance the two objectives. Op-
eration clip(·) constrains the values to the valid pixel value
range. In Equation 4, 1

2 (tanh(bp) + 1) ·maxp denotes the
positive value change and 1

2 (tanh(bn)+1) ·maxp the neg-
ative change, with maxp the upper bound of pixel values
(i.e., 255). The function

P
h,w sums perturbations at all

pixels with maxc the maximum among the three R, G, B
channels. Parameter � is used to alter the slope of tanh
such that the optimization is smoother. We empirically set
� = 10.
A Simplified Version. Empirically we find that when using
tanh in perturbing pixel values (in Equation 4), the opti-
mizer continues to have gradient descents from the cross-
entropy loss term in Equation 3, which is much more com-
plex than the Lpixel term, to variables bp and bn, even when
the pixel value changes (e.g., 1

2 (tanh(bp) + 1) ·maxp) are
already close to 0. This unnecessarily slows down the opti-
mization. We hence replace Equation 4 with the following.

x0 = clip
�
x+ clip(bp ·maxp)� clip(bn ·maxp)

�
, (6)

Specifically, we remove the tanh functions on bp and bn.
Instead, we directly scale them with maxp and then clip
them to the valid range. This is equivalent to using a linear
function in the cross-entropy loss term in Equation 3 instead
of tanh, while keeping the tanh functions in the Lpixel loss
term. Intuitively, the shape of clip(bp · maxp) is similar
to that of a tanh function. That is, the values on the two
sides are zero and maximum, and there is a slope within a
small range in the center. As such, Equation 6 approximates

Equation 4. Empirically, we find that it makes our method
faster and does not degrade the quality of generated triggers
when it is used to generate natural triggers. It is faster be-
cause the clip operations prevent unnecessary gradient de-
scents. However, we also find that Equation 4 is necessary
in generating injected triggers for trojaned models during
backdoor scanning (see Section 5.5). We speculate trojaned
models have more non-linear behaviors than clean models
due to data poisoning, which requires a smoother loss func-
tion. Specifically, trojaned models need to learn not only
the relations between normal features and correct labels,
but also the relations between poisoned data and the target
label. This requires them to have more complex decision
boundaries than benign models, and hence more non-linear
behaviors. Smoother functions help escaping local optima
with the increased non-linearity of trojaned models. More-
over, our ablation study in Appendix K shows that the tanh
in Equation 5 is always beneficial.

5. Evaluation
The evaluation is conducted on four datasets including

ImageNet. For backdoor scanning, we leverage pre-trained
models from the TrojAI competition [50] with a variety
of classification tasks and model types. We also conduct
an ablation study to understand the effects of different de-
sign choices (see Appendix K). Most experiments are con-
ducted on a server equipped with two Intel Xeon Silver
4214 2.20GHz 12-core processors, 256 GB of RAM, and
eight NVIDIA Quadro RTX 6000 GPUs.

5.1. Experiment Setup
Datasets and Models. We use four datasets: CIFAR-
10 [27], SVHN [47], LISA [45] and ImageNet [54]. We
also conduct experiments on 300 pre-trained models (in-
cluding clean and poisoned models) from rounds 2-4 of Tro-
jAI competition [50]. Details are in Appendix C.
Baselines. Three existing optimization methods discussed
in Section 3 are employed as the baselines: NC [65],
CW [4], and UAP [58]. We randomly select 100 images
from the validation set as the generation set for CIFAR-10
and SVHN, that is, the set of clean images used for trig-
ger generation. For ImageNet, CW can only be performed
on 50 images given the GPU memory limit. We hence ran-
domly select 50 images from the training set as the gen-
eration set for all the methods. We use 90% ASR as the
threshold on the generation set for CW, NC and ours. Since
UAP may not produce any trigger with a high ASR, we do
not use the threshold for UAP. As UAP is an L1 attack, we
use an L1 bound of 8/255 for CIFAR-10 and ImageNet,
and 0.03 for SVHN. Due to the different natures of these
methods, it is hard to define a uniform criterion (threshold)
of convergence. For fair comparison, we use a conserva-
tive (i.e., fairly large) number of optimization epochs (1000

13372



(a) #Pixels of generated triggers. The last heat map shows how much larger CW triggers are.

(b) ASRs of generated backdoors. The last map shows how much higher our ASRs are

Figure 5. Comparison of CW and ours for all class pairs on CIFAR-10

Figure 6. Comparison of NC and ours on the ASR for all class
pairs on the CIFAR-10 dataset

epochs) for all the methods. Note that both CW and NC
converge slower than ours. Please see the results on SVHN
in Appendix F and the comparison with UAP in Appendix E
due to the page limit.
Metrics. We consider the following criteria. The number
of perturbed pixels (#pixels) measures the size of generated
triggers. The attack success rate (ASR) gauges the percent-
age of unseen clean samples that can be flipped by a trigger.
For evaluating ASR, we use the whole test set for CIFAR-
10 and SVHN, and the whole validation set for ImageNet.
We also measure the time cost.

5.2. Evaluation on CIFAR-10

Comparison with CW Optimization. In this experiment,
we use CW and our method to generate natural triggers for
all the class pairs for a clean ResNet20 model on CIFAR-10.
Figure 5 shows the comparison. Each cell in heat map de-
notes the result for a natural backdoor flipping all the test

samples from a victim class (row) to a target class (col-
umn). Figure 5a and Figure 5b show the number of per-
turbed pixels and the ASRs for CW (the left heat map) and
ours (the middle heat map), respectively. The right heat
map in Figure 5a shows how much larger the CW triggers
are compared to ours. Observe that there are a few class
pairs where CW and ours have the same trigger size, such as
bird!plane and deer!plane. However, for other pairs, CW
has a significantly larger trigger size than ours. For instance,
for pair plane!bird, the trigger by CW is 131% larger than
ours. Even with a much larger trigger, CW however still has
lower ASR (50% vs 79% for plane!bird). This is because
CW uses an external procedure to reduce the number of per-
turbed pixels (removing unimportant pixels based on gi · �i
as discussed in Appendix A). Our method converges 10.88
times faster than CW on average (see Appendix D).

Comparison with NC. NC tends to generate triggers with
a large number of small perturbations. The generated trig-
gers hence cannot be easily applied in physical attacks. We
conduct two experiments: (1) align the number of perturbed
pixels of the NC triggers and our triggers and then compare
the corresponding ASRs; (2) align the ASRs and compare
the trigger sizes. For the first experiment, we use the sizes of
our triggers as the reference, and align the NC triggers by
gradually removing their smallest perturbations until they
have the same sizes as ours. We then compare the ASRs of
our triggers and the reduced NC triggers. Figure 6 presents
the results. Observe that for most class pairs, the reduced
NC triggers have less than 50% ASR. In the worst case,
NC has only 7.3% ASR (plane!horse). On average, NC

13373



Table 1. Comparison of different methods on a victim class logger-
head turtle (left table) and a victim class Persian cat (right table)
from ImageNet. The first column shows the target classes. The
second column shows the methods. The third/sixth column is the
time cost in minutes and the fourth/seventh column the number of
perturbed pixels (#Pixels). The fifth/eighth column shows ASR on
the samples from validation set.

T Method Time #Pixels ASR

Sn
ow

bi
rd CW 845.57 1849 0.00%

UAP 21.19 50171 0.00%
NC 9.19 26032 60.00%

Ours 4.35 432 72.00%

R
ob

in

CW 1039.72 1674 0.00%
UAP 21.77 50172 0.00%
NC 9.19 26094 34.00%

Ours 4.10 467 60.00%

G
ro

us
e CW 1035.85 2150 0.00%

UAP 22.94 50174 0.00%
NC 9.52 25977 14.00%

Ours 4.02 675 60.00%

K
an

ga
ro

o CW 1079.54 2165 0.00%
UAP 22.69 50173 2.00%
NC 9.02 26583 28.00%

Ours 4.27 822 70.00%

Time #Pixels ASR

850.49 1097 4.00%
22.44 50175 10.00%

9.35 25887 58.00%
4.43 519 66.00%

983.07 1063 2.00%
22.85 50176 14.00%

9.44 26358 46.00%
4.52 433 54.00%

882.65 1340 2.00%
22.10 50174 12.00%

9.10 25688 44.00%
4.35 656 54.00%

1028.50 1503 0.00%
22.52 50176 8.00%

9.10 29165 54.00%
4.35 621 62.00%

has 39.83% ASR for all class pairs, degraded from 65.52%
without reduction. This demonstrates that the large num-
ber of perturbations in NC triggers are important for a good
ASR although they may have small values. In contrast, our
triggers have higher ASRs than NC’s for all class pairs. On
average, ours have 78.22% ASR, even higher than the orig-
inal NC triggers without size reduction. In the second ex-
periment, we use NC’s ASR as the reference and then grad-
ually remove the smallest perturbations in our triggers until
their ASRs drop to the same level as NC’s and then com-
pare the sizes. Figure 10a in Appendix presents the results.
Observe that NC has one order of magnitude larger trigger
sizes than ours for all the class pairs, indicating that our gen-
erated triggers indeed perturb much fewer pixels. We also
study an NC variant, ABS [38], for trigger generation and
have similar observations in Appendix G.

5.3. Evaluation on ImageNet
ImageNet has 1,000 classes. It is hence infeasible to test

on all class pairs, especially for CW, which takes more than
14 hours to generate just one trigger. We hence randomly
select 8 class pairs for experiments (see results on more
class pairs in Table 9 in Appendix). Table 1 presents the
quality of generated triggers. Observe that CW takes more
than 800 minutes to generate a trigger for all the evaluated
class pairs, and the highest ASR it can achieve is 4% for
pair cat!snowbird. The size of generated triggers by CW
is smaller than UAP and NC, but one order of magnitude
larger than ours. UAP is much faster than CW, but is still

Table 2. Comparison of different methods on model hardening.
First two columns denote different training methods and model
accuracy. The third and the fifth columns show the average trigger
size measured by NC and ours, respectively. The fourth and the
sixth columns denote the improvement.

Method Accuracy AdvNC IncreaseNC AdvOurs IncreaseOurs

Natural 95.15% 55.11 - 32.83 -
UAP 93.16% 49.40 -8.86% 23.69 -27.08%

NC 93.45% 75.77 39.10% 45.57 39.69%
Ours 94.18% 122.79 121.07% 83.24 152.02%

one order of magnitude slower than ours. Its ASRs are also
very low, with the highest 14%. Compared to the other two
baselines, NC is faster and has a better ASR (42.25% on
average). However, the triggers by NC have more than 25k
perturbed pixels, which are almost half of the whole im-
age (224 ⇥ 224 ⇡ 50k). Our method has the lowest time
cost, requiring less than 5 minutes to generate a valid trig-
ger with a higher ASR (62.26% on average). Compared
to NC, our triggers are two orders of magnitude smaller
and have 20% higher ASR. We also conduct an experiment
similar to the above on a desktop to demonstrate that our
method can be easily deployed on machines with limited re-
sources (see Appendix H). We further study the robustness
of generated triggers under various image transformations.
Results show that most of NC triggers become ineffective
after 96% rescaling or 2� rotation (nearly 0% ASR). Our
method has a consistently higher ASR than NC (see details
in Appendix I). We also study the robustness of triggers by
applying transformations during trigger generation. The ob-
servations are similar (see Appendix J).

5.4. Model Hardening
As natural backdoors widely exist in clean models. It is

important to harden models against such attacks. We use the
generated triggers by different methods to harden models
and then apply NC and our method to generate triggers for
all class pairs to measure improvement. Table 2 shows the
results on a ResNet32 model for SVHN. Observe that the
improvement on average trigger size by our method is 3x
larger than those by existing methods (i.e., UAP and NC).
We evaluate on two more datasets and five more models,
and the observation is similar. Please see details in Ap-
pendix L.1.

5.5. Backdoor Scanning
We study the performance of existing backdoor scanners

by replacing their trigger inversion method with ours on the
polygon attack and three advanced backdoor attacks.

For polygon backdoors, we evaluate on 300 pre-trained
models from the TrojAI competition. The results show our
method can improve a state-of-the-art scanner K-arm [59]’s
accuracy by 2% via replacing its optimization component

13374



NC (381) Ours (86)Injected NC (616) Ours (351)Injected

Figure 7. Comparison between injected backdoor and reverse engineered backdoor for poisoned models from the TrojAI dataset. Columns
Injected show the original injected backdoors. Columns NC and Ours present backdoors generated by NC and ours, respectively. The
numbers in the brackets denote the number of perturbed pixels of corresponding backdoors.

Table 3. Detecting a new pervasive backdoor attack [48]

Method
Dataset

MNIST CIFAR-10 GTSRB CelebA

NC 1.51 1.74 1.61 1.03
Ours 3.15 2.25 2.59 3.04

(based on NC) with ours. Note that the original scanner al-
ready had a state-of-the-art detection accuracy close to 90%
such that 2% improvement is non-trivial. We also demon-
strate example backdoors generated by NC and our method
in Figure 7. The three images on the left show the injected
trigger, the triggers inverted by NC and by ours, respec-
tively. The three images on the right show another example.
The number beside the method name denotes the trigger
size. Observe that our generated backdoors are significantly
smaller than NC’s. Especially for the left case, ours is one
order of magnitude smaller than that of NC. It is important
to have small inverted triggers as scanners rely on the size
of those triggers to distinguish poisoned models from be-
nign ones. Note that in the TrojAI competition, the location
of injected triggers is randomized to make the triggers more
robust. The location shown in Figure 7 is only one of such
cases. The generated triggers may be at any location.

We also evaluate our method on detecting three ad-
vanced backdoor attacks, namely, WaNet [48], invisible
backdoor [32], and blind backdoor [2]. Compared to sim-
ple patch backdoors, WaNet and invisible backdoor have
triggers that are not fixed. Their triggers are content based
distortions. Blind backdoor uses inverted backdoors by ex-
isting scanners to adversarially train backdoored models,
making the attack robust. We use the same anomaly in-
dex to detect backdoored models as that in the original NC
paper, namely, a model with an anomaly index larger than 2
is considered backdoored. We download all the publicly
available pre-trained models from WaNet [48]. Table 3
shows the anomaly indices for different models using NC
and ours. We can see that NC cannot detect any of the eval-
uated models (consistent with the results reported in [48]),
whereas our method can detect all the backdoored models
(as we can generate a much smaller trigger for the target).
The observation on the other two attacks are the same. Our

inspection shows that although the injected triggers are per-
vasive, the models pick up low level features such as curly
lines during poisoning. NC generates large triggers for the
target class that are not distinguishable from those of be-
nign classes, whereas our triggers are much smaller. Please
see Appendix L.2 for more details. Our method is also con-
sistently superior in detecting invisible backdoor and blind
backdoor. Please see Appendix L.2.

6. Conclusion
We propose a new optimization method for backdoor

trigger generation that minimizes the number of perturbed
pixels. Compared to the state-of-the-art methods, our
method is more cost-effective and can generate triggers with
a smaller size, higher attack success rate, and better robust-
ness. It also improves performance of model hardening and
backdoor scanning.
Limitations of Our Method. Similar to NC and other ex-
isting scanners [19, 38, 59], our technique requires using a
(small) set of clean samples in optimization, trying to flip
their classification results. There are situations in which
clean samples may not be available. It is unclear how our
method can be extended to handle those cases. We will
leave it to our future work.
Potential Negative Societal Impacts. The proposed
method is general, aiming to generate better backdoor trig-
gers. It could serve both attack and defense. Malicious
users could use our method to generate triggers for pre-
trained models and use them in attack. However, just
like adversarial attack techniques are critical to improving
model robustness, the triggers generated by our technique
can be used to scan and mitigate backdoor vulnerabilities.

Acknowledgement
We thank the anonymous reviewers for their construc-

tive comments. This research was supported, in part
by IARPA TrojAI W911NF-19-S-0012, NSF 1901242
and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not neces-
sarily reflect the views of our sponsors.

13375



References
[1] PixelBackdoor. https://github.com/Gwinhen/

PixelBackdoor, 2022. 2
[2] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors

in deep learning models. In USENIX Security 21, 2021. 8,
19

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah
Estrin, and Vitaly Shmatikov. How to backdoor federated
learning. In AISTATS 2020, pages 2938–2948. PMLR, 2020.
3

[4] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In SP 2017, pages 39–57.
IEEE, 2017. 2, 3, 4, 5

[5] Alvin Chan and Yew-Soon Ong. Poison as a cure: Detect-
ing & neutralizing variable-sized backdoor attacks in deep
neural networks. arXiv preprint arXiv:1911.08040, 2019. 3

[6] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko
Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and
Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. arXiv preprint

arXiv:1811.03728, 2018. 3
[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn

Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526,
2017. 3

[8] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attack against deep
learning systems. SPW 2020, 2020. 3

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR

20, pages 3213–3223, 2016. 13
[10] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detec-

tion and backdoor attack detection via differential privacy. In
ICLR 19, 2019. 3

[11] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi
Kohno, and Dawn Song. Robust physical-world attacks on
deep learning visual classification. In CVPR 18, pages 1625–
1634, 2018. 12, 13

[12] Hao Fu, Akshaj Kumar Veldanda, Prashanth Krishnamurthy,
Siddharth Garg, and Farshad Khorrami. Detecting backdoors
in neural networks using novel feature-based anomaly detec-
tion. arXiv preprint arXiv:2011.02526, 2020. 3

[13] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In ACSAC

19, pages 113–125, 2019. 3
[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. IJRR,
2013. 13

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. arXiv

preprint arXiv:1412.6572, 2014. 3

[16] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qual-
itatively characterizing neural network optimization prob-
lems. In ICLR 2015, 2015. 1

[17] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Evaluating backdooring attacks on deep neu-
ral networks. IEEE Access, 7:47230–47244, 2019. 1, 3

[18] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. Tabor: A highly accurate approach to inspecting and
restoring trojan backdoors in ai systems. arXiv preprint

arXiv:1908.01763, 2019. 18
[19] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and

Dawn Song. Towards inspecting and eliminating trojan back-
doors in deep neural networks. In ICDM, 2020. 1, 3, 8, 18

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 12, 13

[21] Shanjiaoyang Huang, Weiqi Peng, Zhiwei Jia, and Zhuowen
Tu. One-pixel signature: Characterizing cnn models for
backdoor detection. In ECCV, 2020. 1, 3, 18

[22] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neu-
roninspect: Detecting backdoors in neural networks via out-
put explanations. arXiv preprint arXiv:1911.07399, 2019. 1,
3, 18

[23] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrin-
sic certified robustness of bagging against data poisoning at-
tacks. arXiv preprint arXiv:2008.04495, 2020. 3

[24] Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An
empirical analysis of the optimization of deep network loss
surfaces. arXiv e-prints, pages arXiv–1612, 2016. 1

[25] Keras. Applications. https://keras.io/api/
applications/, 2021. 2, 13

[26] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and
Heiko Hoffmann. Universal litmus patterns: Revealing back-
door attacks in cnns. In CVPR, pages 301–310, 2020. 3, 18

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5, 12

[28] Keita Kurita, Paul Michel, and Graham Neubig. Weight poi-
soning attacks on pre-trained models. In ACL 20, 2020. 3

[29] Fredrik Larsson, Michael Felsberg, and P-E Forssen. Corre-
lating fourier descriptors of local patches for road sign recog-
nition. IET Computer Vision, 5(4):244–254, 2011. 13

[30] Alexander Levine and Soheil Feizi. Deep partition aggre-
gation: Provable defense against general poisoning attacks.
arXiv preprint arXiv:2006.14768, 2020. 3

[31] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the loss landscape of neural nets. In
Proceedings of the 32nd International Conference on Neural

Information Processing Systems, pages 6391–6401, 2018. 1
[32] Shaofeng Li, Minhui Xue, Benjamin Zhao, Haojin Zhu, and

Xinpeng Zhang. Invisible backdoor attacks on deep neural
networks via steganography and regularization. TDSC 20,
2020. 8, 19

[33] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In ICLR 21, 2021.
3

13376



[34] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. Rethinking the trigger of back-
door attack. arXiv preprint arXiv:2004.04692, 2020. 3

[35] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Com-
posite backdoor attack for deep neural network by mixing
existing benign features. In CCS 20, pages 113–131, 2020.
1, 3

[36] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013. 12

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In RAID 18, pages 273–294. Springer,
2018. 3

[38] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma,
Yousra Aafer, and Xiangyu Zhang. Abs: Scanning neural
networks for back-doors by artificial brain stimulation. In
CCS 19, pages 1265–1282, 2019. 1, 2, 3, 7, 8, 15, 18

[39] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
attack on neural networks. In NDSS 18, 2018. 1

[40] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Re-
flection backdoor: A natural backdoor attack on deep neural
networks. In ECCV 20, pages 182–199. Springer, Cham,
2020. 1

[41] Yingqi Liu, Guangyu Shen, Guanhong Tao, Zhenting Wang,
Shiqing Ma, and Xiangyu Zhang. Ex-ray: Distinguishing
injected backdoor from natural features in neural networks
by examining differential feature symmetry. arXiv preprint

arXiv:2103.08820, 2021. 1, 3
[42] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans.

In ICCD 17, pages 45–48. IEEE, 2017. 3
[43] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee,

and Xiangyu Zhang. Nic: Detecting adversarial samples
with neural network invariant checking. In NDSS 19, 2019.
3

[44] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR 18, 2018. 3,
13

[45] Andreas Mogelmose, Mohan Manubhai Trivedi, and
Thomas B Moeslund. Vision-based traffic sign detection and
analysis for intelligent driver assistance systems: Perspec-
tives and survey. T-ITS, 13(4):1484–1497, 2012. 5, 12

[46] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In CVPR 17, pages 1765–1773, 2017. 3, 4

[47] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 5, 12

[48] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-
based backdoor attack. In ICLR 2021, 2021. 8, 19

[49] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic
backdoor attack. NeurIPS 20, 2020. 3

[50] NIST. TrojAI. https://pages.nist.gov/trojai/,
2020. 5, 13, 18

[51] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In Eu-

roS&P 16, pages 372–387. IEEE, 2016. 3, 4
[52] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural

backdoors via generative distribution modeling. In NeurIPS

19, pages 14004–14013, 2019. 3, 18
[53] Shahbaz Rezaei and Xin Liu. A target-agnostic attack on

deep models: Exploiting security vulnerabilities of transfer
learning. In ICLR, 2020. 3

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 115(3):211–252,
2015. 5, 13

[55] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks. In AAAI 20, num-
ber 07, pages 11957–11965, 2020. 3

[56] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and
Yang Zhang. Dynamic backdoor attacks against machine
learning models. arXiv preprint arXiv:2003.03675, 2020.
3

[57] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.
Poison frogs! targeted clean-label poisoning attacks on neu-
ral networks. In NeurIPS 18, pages 6103–6113, 2018. 3

[58] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson,
Larry S Davis, and Tom Goldstein. Universal adversarial
training. In AAAI 20, volume 34, pages 5636–5643, 2020. 2,
4, 5, 12

[59] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An,
Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xiangyu Zhang.
Backdoor scanning for deep neural networks through k-arm
optimization. In ICML, 2021. 1, 2, 7, 8, 18

[60] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang.
Demon in the variant: Statistical analysis of dnns for ro-
bust backdoor contamination detection. In USENIX Security,
2021. 3

[61] Florian Tramèr and Dan Boneh. Adversarial training and
robustness for multiple perturbations. In NeurIPS 19, 2019.
3

[62] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In NeurIPS, pages 8000–
8010, 2018. 3

[63] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,
Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Nnoculation:
broad spectrum and targeted treatment of backdoored dnns.
arXiv preprint arXiv:2002.08313, 2020. 3, 18

[64] Binghui Wang, Xiaoyu Cao, Neil Zhenqiang Gong, et al. On
certifying robustness against backdoor attacks via random-
ized smoothing. arXiv preprint arXiv:2002.11750, 2020. 3

[65] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In S&P 19, pages 707–723. IEEE, 2019. 1, 2,
3, 5, 17, 18, 19

[66] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. With great training comes great

13377



vulnerability: Practical attacks against transfer learning. In
USENIX Security 18, pages 1281–1297, 2018. 3

[67] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit
Vishwakarma, Saurabh Agarwal, Jy-yong Sohn, Kangwook
Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes,
you really can backdoor federated learning. NeurIPS, 33,
2020. 3

[68] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun
Xiong, and Meng Wang. Practical detection of trojan neural
networks: Data-limited and data-free cases. In ECCV, 2020.
1, 3, 18

[69] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and
Bo Li. Rab: Provable robustness against backdoor attacks.
arXiv preprint arXiv:2003.08904, 2020. 3

[70] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than
free: Revisiting adversarial training. In ICLR, 2020. 13

[71] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning. In
ICLR, 2019. 3

[72] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A
Gunter, and Bo Li. Detecting ai trojans using meta neural
analysis. arXiv preprint arXiv:1910.03137, 2019. 3, 18

[73] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Latent backdoor attacks on deep neural networks. In CCS,
pages 2041–2055, 2019. 3

[74] Yi Zeng, Han Qiu, Shangwei Guo, Tianwei Zhang, Meikang
Qiu, and Bhavani Thuraisingham. Deepsweep: An evalu-
ation framework for mitigating dnn backdoor attacks using
data augmentation. arXiv preprint arXiv:2012.07006, 2020.
3

[75] Xinqiao Zhang, Huili Chen, and Farinaz Koushanfar. Tad:
Trigger approximation based black-box trojan detection for
ai. arXiv preprint arXiv:2102.01815, 2021. 1

[76] Xiaoyu Zhang, Ajmal Mian, Rohit Gupta, Nazanin Rah-
navard, and Mubarak Shah. Cassandra: Detecting trojaned
networks from adversarial perturbations. arXiv preprint

arXiv:2007.14433, 2020. 1, 3, 18
[77] Xinyang Zhang, Zheng Zhang, and Ting Wang. Trojaning

language models for fun and profit. In EuroS&P, 2021. 3
[78] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey,

Jingjing Chen, and Yu-Gang Jiang. Clean-label backdoor
attacks on video recognition models. In CVPR 20, pages
14443–14452, 2020. 3

[79] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and
Hongyi Wu. Gangsweep: Sweep out neural backdoors by
gan. In Proceedings of the 28th ACM International Confer-

ence on Multimedia, pages 3173–3181, 2020. 18

13378


