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Abstract

Backdoor attacks aim to cause misclassification of a sub-

ject model by stamping a trigger to inputs. Backdoors could

be injected through malicious training and naturally exist.

Deriving backdoor trigger for a subject model is critical to

both attack and defense. A popular trigger inversion method

is by optimization. Existing methods are based on finding a

smallest trigger that can uniformly flip a set of input sam-

ples by minimizing a mask. The mask defines the set of

pixels that ought to be perturbed. We develop a new op-

timization method that directly minimizes individual pixel

changes, without using a mask. Our experiments show that

compared to existing methods, the new one can generate

triggers that require a smaller number of input pixels to be

perturbed, have a higher attack success rate, and are more

robust. They are hence more desirable when used in real-

world attacks and more effective when used in defense. Our

method is also more cost-effective.

1. Introduction

Backdoor attacks aim to induce model misclassification
of arbitrary input samples to a target label by stamping a
special input pattern called trigger. Backdoors could be
injected by various methods, such as data poisoning [17,
35, 40] and neuron hijacking [39], and also naturally exist
in normally trained models, called natural backdoors [41].
The latter is caused by distribution bias of low level features
and can be exploited just like injected backdoors. For ex-
ample, if a person always wears a unique pair of glasses in
a clean face recognition dataset, the glasses may become a
trigger to induce misclassification to the person.

Due to the prominent threat of backdoors, researchers
have proposed a large body of defense solutions (see Sec-
tion 2). Among them, backdoor scanning [21, 22, 68, 76] is
an important type of defense. Many scanners [38,41,59,65,
75] rely on trigger inversion, which leverages optimization

(a) NC (b) Ours

Figure 1. Loss landscapes of NC and our method. The x-axis and
y-axis show the coefficients on two random directions. The z-axis
denotes the loss value.

to derive a small input pattern that can flip clean samples
(of a victim class) to the target label. A model is consid-
ered having backdoor if an exceptionally small trigger can
be found.

Most existing trigger inversion methods (e.g., ABS [38],
K-arm [59], and Tabor [19]) are built on Neural Cleanse
(NC) [65], which decouples a trigger into a perturbation
vector and a mask. The perturbation vector denotes the
perturbations applied to an input and the mask determines
which part of the perturbation vector should be applied. NC
minimizes the mask and the perturbation vector together to
produce a small trigger (details in Section 3.1). Due to the
multiplication correlation between the mask and the pertur-
bation vector during optimization, NC can fall into local
optima and fail to reach the optimal trigger, i.e., the small-
est trigger with a high attack success rate. Figure 1a shows
the loss landscape of NC using the contour plot with two
random directions [16,24,31] with (x = 0, y = 0) the opti-
mum. Observe that there are multiple dips (local optima) on
the loss surface, which prevent NC from reaching the opti-
mum. In addition, triggers by NC are often not robust and
may become ineffective when undertaking transformations
(see Section 5.3).

Figure 2 shows the results of various techniques for gen-
erating a natural backdoor pattern for a normally trained
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Figure 2. Comparison of generated backdoors. In the first row, the texts below backdoor images denote the number of perturbed pixels
and the ASR on all the samples of loggerhead turtle from the validation set. The value shown together with the method name denotes the
trigger generation time cost in minutes. The bottom two rows show example images stamped with backdoors by different methods, where
the first column gives the victim class images and the last column the target class images.

model on ImageNet downloaded from [25]. Stamping each
of these backdoors on sea turtle images can flip them to
the kangaroo class. The first row shows the backdoor pat-
terns by various inversion techniques. From left to right, the
second and third rows show samples from the victim class
(column 1), samples stamped with the backdoor patterns
(columns 2-5), and the target class samples (last column).
The fourth and fifth images in the first row denote the trig-
ger generated by NC and its reduced version, respectively.
Observe that the NC trigger requires perturbing 27k pixels
and has only 28% ASR. When we reduce the NC trigger by
removing the smallest perturbations to size 822 (which is
the same as our trigger), the ASR degrades to 22%. This
is because of the large number of local minima, as those on
the loss surface of NC in Figure 1a. Our results in Section 5
show that on average, when NC triggers are reduced to the
same size of ours, their ASRs on average degrade by 26%.
Problem Statement. In the context of backdoor attack and
defense, a good optimization method (for trigger genera-
tion) is critical. In this paper, we say a method is good if
it produces triggers that are (1) small (i.e., having a small
number of perturbed pixels), (2) having a high attack suc-

cess rate (ASR) (the percentage of unseen clean samples
that can be flipped by the trigger), (3) robust (against input
transformations), and (4) has low computation overhead. A
good trigger generation method serves both attack and de-
fense. If it is used in attack, e.g., generating natural triggers
for normally trained models to induce intended misclassifi-

cation, a small and robust trigger makes the attack easy to
launch and effective in the physical world. If it is used in
defense, smaller triggers can help scanners more effectively
determine if a model is trojaned, as an exceptionally small
trigger is a good indicator of injected backdoor [38, 59, 65],
and have better effectiveness in model hardening. ⇤

We propose a novel optimization method. Instead of
optimizing the product of the perturbation vector and the
mask, our method only optimizes a perturbation vector.
Specifically, we leverage the long-tail effects of tanh func-
tion to represent the binary nature of perturbations, with one
end modeling the maximum perturbation and the other end
no perturbation. We introduce two tanh functions for each
pixel, one denoting positive perturbation and the other neg-
ative. Our optimization method has a much smoother loss
surface than NC as shown in Figure 1b. Observe that the
loss values all descend along the valley towards the optimal
point at the bottom. On the ImageNet dataset, our gener-
ated triggers are two orders of magnitude smaller than those
of NC, 2.73 times more robust, and have 20% higher ASR
on average. Our method is 2.15 times faster than NC. The
last image in the first row of Figure 2 shows our trigger. It
has the smallest number of perturbed pixels (822) with the
highest ASR (70%) on the unseen validation set. We also
compare with UAP [58] and CW [4] (another two trigger
generation methods adapted from adversarial attacks). Ours
is one or more orders of magnitude faster. The implementa-
tion of our method is publicly available [1].
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2. Related Work

Backdoor Attack. Existing backdoor attacks poison the
training set using intentionally crafted samples with in-
jected backdoor patterns together with the target label such
as patch attacks [7, 17]. To achieve stealthiness, a dif-
ferent type of backdoor attacks applies imperceptible per-
turbations on poisoned data with the original label like
clean label attacks [55, 57, 78]. Another type of back-
door attacks crafts different backdoors for different in-
puts [35,49,56]. Other than poisoning the training set, back-
doors also naturally exist in clean models [41]. Backdoor
attacks can be launched on models with various applica-
tions, such as natural language processing [28, 77], transfer
learning [53, 66, 73], and federated learning [3, 67, 71].

Backdoor Defense. To detect poisoned models [19, 22, 26,
52,72], existing works reverse-engineer backdoors [38,65],
and leverage the difference between poisoned and clean
models when reacting to input perturbations [21, 68, 76].
Existing techniques also detect and reject inputs stamped
with backdoors [5, 6, 8, 10, 12, 13, 34, 42, 43, 60, 62, 63].
Verification methods aim to provide guarantees that mod-
els are not vulnerable to certain types of backdoors [23, 30,
64,69]. There are also works focusing on eliminating back-
doors [33] by pruning out compromised neurons [37] or re-
training leveraging data augmentation technique [74].

Optimization Methods for Trigger Generation. NC [65]
is a state-of-the-art and we have detailed discussion and
comparison throughout the paper. Existing adversarial at-
tack methods were proposed to generate per-instance per-
turbations, such as fast gradient sign method (FGSM) [15],
projected gradient descent (PGD) [44], JSMA [51], CW [4],
and SLIDE [61], etc. Universal adversarial perturbation
(UAP) [46] aims to generate a global perturbation that can
cause a set of inputs to misclassify. We extend some of them
to generate triggers (see the following section).

3. Existing Optimization Methods for Back-
door Trigger Generation and Their Limi-
tations

In this section, we discuss in detail NC’s optimization
in trigger generation and two other optimizations that are
popular in adversarial attack and hence adapted to trigger
generation (i.e., CW and UAP). We focus on studying their
limitations in trigger generation.

3.1. Optimization of Neural Cleanse (NC)

As mentioned earlier, the optimization method in NC
is the most popular in trigger generation. Specifically, it

(a) The distribution of mask values
for 10 runs of NC

(b) The relation between ASR and
perturbed pixels

Figure 3. Characteristics of generated backdoors on all the test
samples of a victim class from the CIFAR-10 dataset

solves the following optimization problem.

min
m,p

LNC = L
�
M(x0), yt

�
+ � · kmk1, 8x 2 X, (1)

where x0 = (1�m) � x+m � p. (2)

Variables m and p denote the mask and the perturbation
vector, respectively; L(·, ·) denotes the cross entropy loss
function of the subject model M; yt is the target label. In-
tuitively, the optimization aims to flip the classification re-
sult (the first term in the loss function) and reduce the trig-
ger size (the second term). The introduction of the mask
enables using optimization to reduce the trigger size. How-
ever, it also has some undesirable effects. NC has to opti-
mize both m and p that are correlated by the � operation
in Equation 2, which is difficult and leads to low ASRs and
large sizes. NC tends to produce many small values in the
mask, indicating the corresponding input pixels need to be
slightly perturbed. Although these values are small, many
of them cannot be set to zero. Otherwise, the ASR degrades.
These small and pervasive perturbations make attack in the
physical world difficult and the backdoor not robust against
input transformations (see results in Section 5.3).

Figure 3a shows the distribution of mask values for 10
random runs of NC for generating a natural trigger that flips
plane to dog in a ResNet20 model on CIFAR-10. Observe
that a large portion of mask values fall in the range from 0 to
0.1, which is equivalent to keeping 90% of the original pixel
values. In Figure 3b, we start from the generated triggers,
gradually set the smallest mask values to 0, which is equiv-
alent to gradually reducing the number of perturbed pixels,
and show the changes of ASR with the number of perturbed
pixels. The number of perturbed pixels of the NC trigger is
725 with the ASR of 0.66. According to Figure 3a, most of
them have small values. However, when the number of per-
turbed pixels is gradually reduced to 150, the ASR starts to
degrade quickly, indicating the perturbations on these pix-
els need to be retained, even though they are still small. In
contrast, our trigger has 0.83 ASR with only 39 perturbed
pixels. Besides making physical attack difficult and not ro-
bust, the larger triggers by NC are less effective in expos-
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ing injected pervasive backdoors and model hardening (see
Section 5.4 and Section 5.5).

3.2. Optimization of CW
There are existing optimization methods in adversarial

attack that can be adapted for trigger generation, such as
JSMA [51] and CW [4], with the later the state-of-the-art.
The CW L0 attack first searches for perturbations on all
pixels that can cause misclassification using the L2 norm.
It then uses a processing step external to the optimization
to remove the perturbations that are the least important af-
ter each optimization epoch. The algorithm can be easily
adapted to generate backdoor: instead of optimizing one in-
put, we optimize a set of inputs. Details of the optimization
can be found in Appendix A.

The adapted CW optimization has a few limitations in
trigger generation. First, it is very expensive. To deter-
mine the unimportant perturbations, it has to perform gra-
dient back-propagation to each pixel of each input and sort
the importance values for all pixels. As a result, it is often
two to three orders of magnitude slower than our technique
and NC (see Section 5). Second, its trigger size reduction
is by an external step instead of optimization, and the re-
duction is monotonic. As such, if some step of reduction
is not towards a global minimal, it cannot be reverted. As
a result, CW’s optimization yields 28.28% lower ASRs and
17.25% larger trigger sizes on average compared to ours on
CIFAR-10 (see Section 5). The first image in the first row
of Figure 2 shows a CW backdoor. Its number of perturbed
pixels (2k) is smaller than NC (27k) but larger than ours
(822). However, its ASR is close to 0. It also takes 1,080
minutes to generate, compared to 4 minutes in our method.

3.3. Optimization of Universal Adversarial Pertur-
bation (UAP)

UAP [46, 58] generates a global perturbation that can
cause a set of inputs to misclassify. It has a similar goal
as ours and can be adapted for trigger generation. Details
can be found in Appendix B.

4. Our Method
According to our problem statement in the introduction

section, having a small number of perturbed pixels is criti-
cal for backdoor trigger generation. NC uses a mask vector
to denote which parts of an input are subject to perturbation.
However, it requires optimizing the product of the mask and
the perturbation vector, which is difficult. We propose to di-
rectly optimize a perturbation vector, without using a mask
like that in NC and CW. We use tanh functions to denote
perturbations of individual pixels and use optimization to
minimize the sum of all these functions. The long-tail ef-
fects of the tanh function allow us to nicely model the two
ends for a pixel’s value change, namely, a pixel is either not

(a) (b)

(c)

Figure 4. Illustration of using different tanh functions for the per-
turbation of a pixel. In (a), we denote positive change by adding
1
2 (tanh(x) + 1) to the original pixel value (red line). In (b), we
denote both positive and negative changes by adding tanh(x) to
the pixel value. In (c), we use two tanh functions to denote posi-
tive and negative changes, respectively.

changed at all or has change of arbitrarily large magnitude
(within bound). Figure 4a illustrates the concept. The y axis
denotes pixel value and the x axis perturbation. The former
is normalized to [�1, 1] and the latter is in (�1,+1). The
red horizontal line denotes an original pixel value. The blue
curve denotes how the pixel value changes with x. The pixel
is changed by adding 1

2 (tanh(x) + 1). Note that although
x is unbounded, the tanh function bounds the pixel value
change in (0, 1). Observe that the long left tail of the blue
curve means that a large number of x values on the left cor-
respond to close-to-0 changes to the pixel, whereas the long
right tail means that those x values on the right correspond
to the maximum change. The shape and the continuity of
the curve on one hand encourage achieving tail values (in
order to have a small loss value), and on the other hand,
allow perturbations to recover from tail values if needed.

However, using one tanh for each pixel only allows de-
noting changes along one direction, positive or negative. A
naı̈ve design is to use one tail to denote maximum posi-
tive change and the other tail to denote maximum negative
change. That is, the pixel is changed by tanh(x). How-
ever, it loses the key benefit of encouraging as many pixels
to have 0 value change as possible. Figure 4b illustrates the
concept. Observe that the blue curve tends to go to either
the maximum positive or the maximum negative. The part
denotes 0 change (i.e., the interaction of the blue curve and
the red line) has a steep slope such that it is unlikely for the
optimization to stabilize at this point. Our solution is hence
to use two tanh functions for a pixel, one denoting posi-
tive change and the other negative. Figure 4c illustrates the
concept. In addition to the blue curve going upward, there
is also the green curve that goes downward, denoting the
negative changes. The key difference from the above naı̈ve
method is that both curves have a long tail on zero change,
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which enables the optimization to stabilize. If the optimiza-
tion desires positive change, it just needs to go up along the
blue curve and stay on the left tail along the green curve,
and vice versa. Formally, we have the following optimiza-
tion objectives.

min
bp,bn

Lours = L
�
M(x0), yt

�
+ ↵ · Lpixel, (3)

where x0 = clip
⇣
x+

1

2

�
tanh(bp) + 1

�
·maxp

� 1

2

�
tanh(bn) + 1

�
·maxp

⌘
, (4)

and Lpixel =
X

h,w

✓
maxc

⇣1
2

�
tanh(

bp
�
) + 1

�⌘◆

+
X

h,w

✓
maxc

⇣1
2

�
tanh(

bn
�
) + 1

�⌘◆
. (5)

Variables bp, bn 2 (�1,+1) denote positive and nega-
tive perturbations, respectively; L(·, ·) denotes the cross en-
tropy loss function of the subject model M; yt is the target
label; ↵ controls the weight of the second objective. We dy-
namically adjust ↵ according to the attack success rate dur-
ing optimization to better balance the two objectives. Op-
eration clip(·) constrains the values to the valid pixel value
range. In Equation 4, 1

2 (tanh(bp) + 1) ·maxp denotes the
positive value change and 1

2 (tanh(bn)+1) ·maxp the neg-
ative change, with maxp the upper bound of pixel values
(i.e., 255). The function

P
h,w sums perturbations at all

pixels with maxc the maximum among the three R, G, B
channels. Parameter � is used to alter the slope of tanh
such that the optimization is smoother. We empirically set
� = 10.
A Simplified Version. Empirically we find that when using
tanh in perturbing pixel values (in Equation 4), the opti-
mizer continues to have gradient descents from the cross-
entropy loss term in Equation 3, which is much more com-
plex than the Lpixel term, to variables bp and bn, even when
the pixel value changes (e.g., 1

2 (tanh(bp) + 1) ·maxp) are
already close to 0. This unnecessarily slows down the opti-
mization. We hence replace Equation 4 with the following.

x0 = clip
�
x+ clip(bp ·maxp)� clip(bn ·maxp)

�
, (6)

Specifically, we remove the tanh functions on bp and bn.
Instead, we directly scale them with maxp and then clip
them to the valid range. This is equivalent to using a linear
function in the cross-entropy loss term in Equation 3 instead
of tanh, while keeping the tanh functions in the Lpixel loss
term. Intuitively, the shape of clip(bp · maxp) is similar
to that of a tanh function. That is, the values on the two
sides are zero and maximum, and there is a slope within a
small range in the center. As such, Equation 6 approximates

Equation 4. Empirically, we find that it makes our method
faster and does not degrade the quality of generated triggers
when it is used to generate natural triggers. It is faster be-
cause the clip operations prevent unnecessary gradient de-
scents. However, we also find that Equation 4 is necessary
in generating injected triggers for trojaned models during
backdoor scanning (see Section 5.5). We speculate trojaned
models have more non-linear behaviors than clean models
due to data poisoning, which requires a smoother loss func-
tion. Specifically, trojaned models need to learn not only
the relations between normal features and correct labels,
but also the relations between poisoned data and the target
label. This requires them to have more complex decision
boundaries than benign models, and hence more non-linear
behaviors. Smoother functions help escaping local optima
with the increased non-linearity of trojaned models. More-
over, our ablation study in Appendix K shows that the tanh
in Equation 5 is always beneficial.

5. Evaluation
The evaluation is conducted on four datasets including

ImageNet. For backdoor scanning, we leverage pre-trained
models from the TrojAI competition [50] with a variety
of classification tasks and model types. We also conduct
an ablation study to understand the effects of different de-
sign choices (see Appendix K). Most experiments are con-
ducted on a server equipped with two Intel Xeon Silver
4214 2.20GHz 12-core processors, 256 GB of RAM, and
eight NVIDIA Quadro RTX 6000 GPUs.

5.1. Experiment Setup
Datasets and Models. We use four datasets: CIFAR-
10 [27], SVHN [47], LISA [45] and ImageNet [54]. We
also conduct experiments on 300 pre-trained models (in-
cluding clean and poisoned models) from rounds 2-4 of Tro-
jAI competition [50]. Details are in Appendix C.
Baselines. Three existing optimization methods discussed
in Section 3 are employed as the baselines: NC [65],
CW [4], and UAP [58]. We randomly select 100 images
from the validation set as the generation set for CIFAR-10
and SVHN, that is, the set of clean images used for trig-
ger generation. For ImageNet, CW can only be performed
on 50 images given the GPU memory limit. We hence ran-
domly select 50 images from the training set as the gen-
eration set for all the methods. We use 90% ASR as the
threshold on the generation set for CW, NC and ours. Since
UAP may not produce any trigger with a high ASR, we do
not use the threshold for UAP. As UAP is an L1 attack, we
use an L1 bound of 8/255 for CIFAR-10 and ImageNet,
and 0.03 for SVHN. Due to the different natures of these
methods, it is hard to define a uniform criterion (threshold)
of convergence. For fair comparison, we use a conserva-
tive (i.e., fairly large) number of optimization epochs (1000
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(a) #Pixels of generated triggers. The last heat map shows how much larger CW triggers are.

(b) ASRs of generated backdoors. The last map shows how much higher our ASRs are

Figure 5. Comparison of CW and ours for all class pairs on CIFAR-10

Figure 6. Comparison of NC and ours on the ASR for all class
pairs on the CIFAR-10 dataset

epochs) for all the methods. Note that both CW and NC
converge slower than ours. Please see the results on SVHN
in Appendix F and the comparison with UAP in Appendix E
due to the page limit.
Metrics. We consider the following criteria. The number
of perturbed pixels (#pixels) measures the size of generated
triggers. The attack success rate (ASR) gauges the percent-
age of unseen clean samples that can be flipped by a trigger.
For evaluating ASR, we use the whole test set for CIFAR-
10 and SVHN, and the whole validation set for ImageNet.
We also measure the time cost.

5.2. Evaluation on CIFAR-10

Comparison with CW Optimization. In this experiment,
we use CW and our method to generate natural triggers for
all the class pairs for a clean ResNet20 model on CIFAR-10.
Figure 5 shows the comparison. Each cell in heat map de-
notes the result for a natural backdoor flipping all the test

samples from a victim class (row) to a target class (col-
umn). Figure 5a and Figure 5b show the number of per-
turbed pixels and the ASRs for CW (the left heat map) and
ours (the middle heat map), respectively. The right heat
map in Figure 5a shows how much larger the CW triggers
are compared to ours. Observe that there are a few class
pairs where CW and ours have the same trigger size, such as
bird!plane and deer!plane. However, for other pairs, CW
has a significantly larger trigger size than ours. For instance,
for pair plane!bird, the trigger by CW is 131% larger than
ours. Even with a much larger trigger, CW however still has
lower ASR (50% vs 79% for plane!bird). This is because
CW uses an external procedure to reduce the number of per-
turbed pixels (removing unimportant pixels based on gi · �i
as discussed in Appendix A). Our method converges 10.88
times faster than CW on average (see Appendix D).

Comparison with NC. NC tends to generate triggers with
a large number of small perturbations. The generated trig-
gers hence cannot be easily applied in physical attacks. We
conduct two experiments: (1) align the number of perturbed
pixels of the NC triggers and our triggers and then compare
the corresponding ASRs; (2) align the ASRs and compare
the trigger sizes. For the first experiment, we use the sizes of
our triggers as the reference, and align the NC triggers by
gradually removing their smallest perturbations until they
have the same sizes as ours. We then compare the ASRs of
our triggers and the reduced NC triggers. Figure 6 presents
the results. Observe that for most class pairs, the reduced
NC triggers have less than 50% ASR. In the worst case,
NC has only 7.3% ASR (plane!horse). On average, NC
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Table 1. Comparison of different methods on a victim class logger-
head turtle (left table) and a victim class Persian cat (right table)
from ImageNet. The first column shows the target classes. The
second column shows the methods. The third/sixth column is the
time cost in minutes and the fourth/seventh column the number of
perturbed pixels (#Pixels). The fifth/eighth column shows ASR on
the samples from validation set.

T Method Time #Pixels ASR

Sn
ow

bi
rd CW 845.57 1849 0.00%

UAP 21.19 50171 0.00%
NC 9.19 26032 60.00%

Ours 4.35 432 72.00%

R
ob

in

CW 1039.72 1674 0.00%
UAP 21.77 50172 0.00%
NC 9.19 26094 34.00%

Ours 4.10 467 60.00%

G
ro

us
e CW 1035.85 2150 0.00%

UAP 22.94 50174 0.00%
NC 9.52 25977 14.00%

Ours 4.02 675 60.00%

K
an

ga
ro

o CW 1079.54 2165 0.00%
UAP 22.69 50173 2.00%
NC 9.02 26583 28.00%

Ours 4.27 822 70.00%

Time #Pixels ASR

850.49 1097 4.00%
22.44 50175 10.00%

9.35 25887 58.00%
4.43 519 66.00%

983.07 1063 2.00%
22.85 50176 14.00%

9.44 26358 46.00%
4.52 433 54.00%

882.65 1340 2.00%
22.10 50174 12.00%

9.10 25688 44.00%
4.35 656 54.00%

1028.50 1503 0.00%
22.52 50176 8.00%

9.10 29165 54.00%
4.35 621 62.00%

has 39.83% ASR for all class pairs, degraded from 65.52%
without reduction. This demonstrates that the large num-
ber of perturbations in NC triggers are important for a good
ASR although they may have small values. In contrast, our
triggers have higher ASRs than NC’s for all class pairs. On
average, ours have 78.22% ASR, even higher than the orig-
inal NC triggers without size reduction. In the second ex-
periment, we use NC’s ASR as the reference and then grad-
ually remove the smallest perturbations in our triggers until
their ASRs drop to the same level as NC’s and then com-
pare the sizes. Figure 10a in Appendix presents the results.
Observe that NC has one order of magnitude larger trigger
sizes than ours for all the class pairs, indicating that our gen-
erated triggers indeed perturb much fewer pixels. We also
study an NC variant, ABS [38], for trigger generation and
have similar observations in Appendix G.

5.3. Evaluation on ImageNet
ImageNet has 1,000 classes. It is hence infeasible to test

on all class pairs, especially for CW, which takes more than
14 hours to generate just one trigger. We hence randomly
select 8 class pairs for experiments (see results on more
class pairs in Table 9 in Appendix). Table 1 presents the
quality of generated triggers. Observe that CW takes more
than 800 minutes to generate a trigger for all the evaluated
class pairs, and the highest ASR it can achieve is 4% for
pair cat!snowbird. The size of generated triggers by CW
is smaller than UAP and NC, but one order of magnitude
larger than ours. UAP is much faster than CW, but is still

Table 2. Comparison of different methods on model hardening.
First two columns denote different training methods and model
accuracy. The third and the fifth columns show the average trigger
size measured by NC and ours, respectively. The fourth and the
sixth columns denote the improvement.

Method Accuracy AdvNC IncreaseNC AdvOurs IncreaseOurs

Natural 95.15% 55.11 - 32.83 -
UAP 93.16% 49.40 -8.86% 23.69 -27.08%

NC 93.45% 75.77 39.10% 45.57 39.69%
Ours 94.18% 122.79 121.07% 83.24 152.02%

one order of magnitude slower than ours. Its ASRs are also
very low, with the highest 14%. Compared to the other two
baselines, NC is faster and has a better ASR (42.25% on
average). However, the triggers by NC have more than 25k
perturbed pixels, which are almost half of the whole im-
age (224 ⇥ 224 ⇡ 50k). Our method has the lowest time
cost, requiring less than 5 minutes to generate a valid trig-
ger with a higher ASR (62.26% on average). Compared
to NC, our triggers are two orders of magnitude smaller
and have 20% higher ASR. We also conduct an experiment
similar to the above on a desktop to demonstrate that our
method can be easily deployed on machines with limited re-
sources (see Appendix H). We further study the robustness
of generated triggers under various image transformations.
Results show that most of NC triggers become ineffective
after 96% rescaling or 2� rotation (nearly 0% ASR). Our
method has a consistently higher ASR than NC (see details
in Appendix I). We also study the robustness of triggers by
applying transformations during trigger generation. The ob-
servations are similar (see Appendix J).

5.4. Model Hardening
As natural backdoors widely exist in clean models. It is

important to harden models against such attacks. We use the
generated triggers by different methods to harden models
and then apply NC and our method to generate triggers for
all class pairs to measure improvement. Table 2 shows the
results on a ResNet32 model for SVHN. Observe that the
improvement on average trigger size by our method is 3x
larger than those by existing methods (i.e., UAP and NC).
We evaluate on two more datasets and five more models,
and the observation is similar. Please see details in Ap-
pendix L.1.

5.5. Backdoor Scanning
We study the performance of existing backdoor scanners

by replacing their trigger inversion method with ours on the
polygon attack and three advanced backdoor attacks.

For polygon backdoors, we evaluate on 300 pre-trained
models from the TrojAI competition. The results show our
method can improve a state-of-the-art scanner K-arm [59]’s
accuracy by 2% via replacing its optimization component
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NC (381) Ours (86)Injected NC (616) Ours (351)Injected

Figure 7. Comparison between injected backdoor and reverse engineered backdoor for poisoned models from the TrojAI dataset. Columns
Injected show the original injected backdoors. Columns NC and Ours present backdoors generated by NC and ours, respectively. The
numbers in the brackets denote the number of perturbed pixels of corresponding backdoors.

Table 3. Detecting a new pervasive backdoor attack [48]

Method
Dataset

MNIST CIFAR-10 GTSRB CelebA

NC 1.51 1.74 1.61 1.03
Ours 3.15 2.25 2.59 3.04

(based on NC) with ours. Note that the original scanner al-
ready had a state-of-the-art detection accuracy close to 90%
such that 2% improvement is non-trivial. We also demon-
strate example backdoors generated by NC and our method
in Figure 7. The three images on the left show the injected
trigger, the triggers inverted by NC and by ours, respec-
tively. The three images on the right show another example.
The number beside the method name denotes the trigger
size. Observe that our generated backdoors are significantly
smaller than NC’s. Especially for the left case, ours is one
order of magnitude smaller than that of NC. It is important
to have small inverted triggers as scanners rely on the size
of those triggers to distinguish poisoned models from be-
nign ones. Note that in the TrojAI competition, the location
of injected triggers is randomized to make the triggers more
robust. The location shown in Figure 7 is only one of such
cases. The generated triggers may be at any location.

We also evaluate our method on detecting three ad-
vanced backdoor attacks, namely, WaNet [48], invisible
backdoor [32], and blind backdoor [2]. Compared to sim-
ple patch backdoors, WaNet and invisible backdoor have
triggers that are not fixed. Their triggers are content based
distortions. Blind backdoor uses inverted backdoors by ex-
isting scanners to adversarially train backdoored models,
making the attack robust. We use the same anomaly in-
dex to detect backdoored models as that in the original NC
paper, namely, a model with an anomaly index larger than 2
is considered backdoored. We download all the publicly
available pre-trained models from WaNet [48]. Table 3
shows the anomaly indices for different models using NC
and ours. We can see that NC cannot detect any of the eval-
uated models (consistent with the results reported in [48]),
whereas our method can detect all the backdoored models
(as we can generate a much smaller trigger for the target).
The observation on the other two attacks are the same. Our

inspection shows that although the injected triggers are per-
vasive, the models pick up low level features such as curly
lines during poisoning. NC generates large triggers for the
target class that are not distinguishable from those of be-
nign classes, whereas our triggers are much smaller. Please
see Appendix L.2 for more details. Our method is also con-
sistently superior in detecting invisible backdoor and blind
backdoor. Please see Appendix L.2.

6. Conclusion
We propose a new optimization method for backdoor

trigger generation that minimizes the number of perturbed
pixels. Compared to the state-of-the-art methods, our
method is more cost-effective and can generate triggers with
a smaller size, higher attack success rate, and better robust-
ness. It also improves performance of model hardening and
backdoor scanning.
Limitations of Our Method. Similar to NC and other ex-
isting scanners [19, 38, 59], our technique requires using a
(small) set of clean samples in optimization, trying to flip
their classification results. There are situations in which
clean samples may not be available. It is unclear how our
method can be extended to handle those cases. We will
leave it to our future work.
Potential Negative Societal Impacts. The proposed
method is general, aiming to generate better backdoor trig-
gers. It could serve both attack and defense. Malicious
users could use our method to generate triggers for pre-
trained models and use them in attack. However, just
like adversarial attack techniques are critical to improving
model robustness, the triggers generated by our technique
can be used to scan and mitigate backdoor vulnerabilities.
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