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Abstract

Synthesizing high-quality realistic images from text de-
scriptions is a challenging task. Existing text-to-image Gen-
erative Adversarial Networks generally employ a stacked
architecture as the backbone yet still remain three flaws.
First, the stacked architecture introduces the entanglements
between generators of different image scales. Second, ex-
isting studies prefer to apply and fix extra networks in
adversarial learning for text-image semantic consistency,
which limits the supervision capability of these networks.
Third, the cross-modal attention-based text-image fusion
that widely adopted by previous works is limited on several
special image scales because of the computational cost. To
these ends, we propose a simpler but more effective Deep
Fusion Generative Adversarial Networks (DF-GAN). To be
specific, we propose: (i) a novel one-stage text-to-image
backbone that directly synthesizes high-resolution images
without entanglements between different generators, (ii) a
novel Target-Aware Discriminator composed of Matching-
Aware Gradient Penalty and One-Way Output, which en-
hances the text-image semantic consistency without intro-
ducing extra networks, (iii) a novel deep text-image fu-
sion block, which deepens the fusion process to make a
full fusion between text and visual features. Compared
with current state-of-the-art methods, our proposed DF-
GAN is simpler but more efficient to synthesize realistic
and text-matching images and achieves better performance
on widely used datasets. Code is available at https:
//github.com/tobran/DF-GAN .

1. Introduction
The last few years have witnessed the great success of

Generative Adversarial Networks (GANs) [8] for a variety
of applications [4,27,48]. Among them, text-to-image syn-
thesis is one of the most important applications of GANs.

*Corresponding Author

Figure 1. (a) Existing text-to-image models stack multiple gener-
ators to generate high-resolution images. (b) Our proposed DF-
GAN generates high-quality images directly and fuses the text and
image features deeply by our deep text-image fusion blocks.

It aims to generate realistic and text-consistent images from
the given natural language descriptions. Due to its prac-
tical value, text-to-image synthesis has become an active
research area recently [3,9,13,19–21,32,33,35,51,53,60].

Two major challenges for text-to-image synthesis are the
authenticity of the generated image, and the semantic con-
sistency between the given text and the generated image.
Due to the instability of the GAN model, most recent mod-
els adopt the stacked architecture [56,57] as the backbone to
generate high-resolution images. They employ cross-modal
attention to fuse text and image features [37, 50, 56, 57, 60]
and then introduce DAMSM network [50], cycle consis-
tency [33], or Siamese network [51] to ensure the text-
image semantic consistency by extra networks.

Although impressive results have been presented by pre-
vious works [9,19,21,32,33,51,60], there still remain three
problems. First, the stacked architecture [56] introduces en-
tanglements between different generators, and this makes
the final refined images look like a simple combination of
fuzzy shape and some details. As shown in Figure 1(a),
the final refined image has a fuzzy shape synthesized by
G0, coarse attributes (e.g., eye and beak) synthesized by
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G1, and fine-grained details (e.g., eye reflection) added by
G2. The final synthesized image looks like a simple combi-
nation of visual features from different image scales. Sec-
ond, existing studies usually fix the extra networks [33, 50]
during the adversarial training, making these networks eas-
ily fooled by the generator to synthesize adversarial fea-
tures [30, 52], thereby weakening their supervision power
on semantic consistency. Third, cross-modal attention [50]
can not make full use of text information. They can only be
applied two times on 64×64 and 128×128 image features
due to its high computational cost. It limits the effectiveness
of the text-image fusion process and makes the model hard
to extend to higher-resolution image synthesis.

To address the above issues, we propose a novel text-
to-image generation method named Deep Fusion Genera-
tive Adversarial Network (DF-GAN). For the first issue,
we replace the stacked backbone with a one-stage back-
bone. It is composed of hinge loss [54] and residual net-
works [11] which stabilizes the GAN training process to
synthesize high-resolution images directly. Since there is
only one generator in the one-stage backbone, it avoids the
entanglements between different generators.

For the second issue, we design a Target-Aware Dis-
criminator composed of Matching-Aware Gradient Penalty
(MA-GP) and One-Way Output to enhance the text-image
semantic consistency. MA-GP is a regularization strategy
on the discriminator. It pursues the gradient of discrimina-
tor on target data (real and text-matching image) to be zero.
Thereby, the MA-GP constructs a smooth loss surface at
real and matching data points which further promotes the
generator to synthesize text-matching images. Moreover,
considering that the previous Two-Way Output slows down
the convergence process of the generator under MA-GP, we
replace it with a more effective One-Way Output.

For the third issue, we propose a Deep text-image Fusion
Block (DFBlock) to fuse the text information into image
features more effectively. The DFBlock consists of several
Affine Transformations [31]. The Affine Transformation
is a lightweight module that manipulates the visual feature
maps through channel-wise scaling and shifting operation.
Stacking multiple DFBlocks at all image scales deepens the
text-image fusion process and makes a full fusion between
text and visual features.

Overall, our contributions can be summarized as follows:

• We propose a novel one-stage text-to-image backbone
that can synthesize high-resolution images directly
without entanglements between different generators.

• We propose a novel Target-Aware Discriminator com-
posed of Matching-Aware Gradient Penalty (MA-GP)
and One-Way Output. It significantly enhances the
text-image semantic consistency without introducing
extra networks.

• We propose a novel Deep text-image Fusion Block
(DFBlock), which fully fuses text and visual features
more effectively and deeply.

• Extensive qualitative and quantitative experiments on
two challenging datasets demonstrate that the pro-
posed DF-GAN outperforms existing state-of-the-art
text-to-image models.

2. Related Work

Generative Adversarial Networks (GANs) [8] are an at-
tractive framework that can be used to mimic complex
real-world distributions by solving a min-max optimiza-
tion problem between a generator and discriminator [16,17,
43, 54]. For instance, Reed et al. first applied the condi-
tional GAN to generate plausible images from text descrip-
tions [37,38]. StackGAN [56,57] generates high-resolution
images by stacking multiple generators and discriminators
and provides the text information to the generator by con-
catenating text vectors as well as the input noises. Next,
AttnGAN [50] introduces the cross-modal attention mech-
anism to help the generator synthesize images with more
details. MirrorGAN [33] regenerates text descriptions from
generated images for text-image semantic consistency [59].
SD-GAN [51] employs the Siamese structure [45, 46] to
distill the semantic commons from texts for image gener-
ation consistency. DM-GAN [60] introduces the Memory
Network [10, 49] to refine fuzzy image contents when the
initial images are not well generated in stacked architec-
ture. Recently, some large transformer-based text-to-image
methods [7,24,35] show excellent performance on complex
image synthesis. They tokenize the images and take the im-
age tokens and word tokens to make auto-regressive training
by a unidirectional Transformer [2, 34].

Our DF-GAN is much different from previous methods.
First, it generates high-resolution images directly by a one-
stage backbone. Second, it adopts a Target-Aware Discrim-
inator to enhance text-image semantic consistency without
introducing extra networks. Third, it fuses text and image
features more deeply and effectively through a sequence of
DFBlocks. Compared with previous models, our DF-GAN
is much simpler but more effective in synthesizing realistic
and text-matching images.

3. The Proposed DF-GAN

In this paper, we propose a simple model for text-to-
image synthesis named Deep Fusion GAN (DF-GAN).To
synthesize more realistic and text-matching images, we pro-
pose: (i) a novel one-stage text-to-image backbone that
can synthesize high-resolution images directly without vi-
sual feature entanglements. (ii) a novel Target-Aware Dis-
criminator composed of Matching-Aware Gradient Penalty
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Figure 2. The architecture of the proposed DF-GAN for text-to-image synthesis. DF-GAN generates high-resolution images directly by
one pair of generator and discriminator and fuses the text information and visual feature maps through multiple Deep text-image Fusion
Blocks (DFBlock) in UPBlocks. Armed with Matching-Aware Gradient Penalty (MA-GP) and One-Way Output, our model can synthesize
more realistic and text-matching images.

(MA-GP) and One-Way Output, which enhances the text-
image semantic consistency without introducing extra net-
works. (iii) a novel Deep text-image Fusion Block (DF-
Block), which more fully fuses text and visual features.

3.1. Model Overview

The proposed DF-GAN is composed of a generator, a
discriminator, and a pre-trained text encoder as shown in
Figure 2. The generator has two inputs, a sentence vector
encoded by text encoder and a noise vector sampled from
the Gaussian distribution to ensure the diversity of the gen-
erated images. The noise vector is first fed into a fully con-
nected layer and reshaped.We then apply a series of UP-
Blocks to upsample the image features. The UPBlock is
composed of an upsample layer, a residual block, and DF-
Blocks to fuse the text and image features during the image
generation process. Finally, a convolution layer converts
image features into images.

The discriminator converts images into image features
through a series of DownBlocks. Then the sentence vector
will be replicated and concatenated with image features. An
adversarial loss will be predicted to evaluate the visual real-
ism and semantic consistency of inputs. By distinguishing
generated images from real samples, the discriminator pro-
motes the generator to synthesize images with higher qual-
ity and text-image semantic consistency.

The text encoder is a bi-directional Long Short-Term
Memory (LSTM) [41] that extracts semantic vectors from
the text description. We directly use the pre-trained model
provided by AttnGAN [50].

3.2. One-Stage Text-to-Image Backbone

Since the instability of the GAN model, previous text-to-
image GANs usually employ stacked architecture [56,57] to
generate high-resolution images from low-resolution ones.
However, the stacked architecture introduces entanglements
between different generators, and it makes the final refined
images look like a simple combination of fuzzy shape and
some details (see Figure 1(a)).

Inspired by recent studies on unconditional image gener-
ation [23, 54], we propose a one-stage text-to-image back-
bone that can synthesize high-resolution images directly by
a single pair of generator and discriminator. We employ the
hinge loss [23] to stabilize the adversarial training process.
Since there is only one generator in the one-stage backbone,
it avoids the entanglements between different generators.
As the single generator in our one-stage framework needs
to synthesize high-resolution images from noise vectors di-
rectly, it must contain more layers than previous generators
in stacked architecture. To train these layers effectively, we
introduce residual networks [11] to stabilize the training of
deeper networks. The formulation of our one-stage method
with hinge loss [23] is as follows:

LD =− Ex∼Pr [min(0,−1 +D(x, e))]

− (1/2)EG(z)∼Pg
[min(0,−1−D(G(z), e))]

− (1/2)Ex∼Pmis
[min(0,−1−D(x, e))]

LG =− EG(z)∼Pg
[D(G(z), e)]

(1)

where z is the noise vector sampled from Gaussian distri-
bution; e is the sentence vector; Pg , Pr, Pmis denote the
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Figure 3. (a) A comparison of loss landscape before and after applying gradient penalty. The gradient penalty smooths the discriminator
loss surface which is helpful for generator convergence. (b) A diagram of MA-GP. The data point (real, match) should be applied MA-GP.

synthetic data distribution, real data distribution, and mis-
matching data distribution, respectively.

3.3. Target-Aware Discriminator

In this section, we detailed the proposed Target-Aware
Discriminator, which is composed of Matching-Aware Gra-
dient Penalty (MA-GP) and One-Way Output. The Target-
Aware Discriminator promotes the generator to synthesize
more realistic and text-image semantic-consistent images.

3.3.1 Matching-Aware Gradient Penalty

The Matching-Aware zero-centered Gradient Penalty (MA-
GP) is our newly designed strategy to enhance text-image
semantic consistency. In this subsection, we first show the
unconditional gradient penalty [28] from a novel and clear
perspective, then extend it to our MA-GP for the text-to-
image generation task.

As shown in Figure 3(a), in unconditional image gen-
eration, the target data (real images) correspond to a low
discriminator loss. Correspondingly, the synthetic images
correspond to a high discriminator loss. The hinge loss lim-
its the range of discriminator loss between -1 and 1. The
gradient penalty on real data will reduce the gradient of the
real data point and its vicinity. The surface of the loss func-
tion around the real data point is then smoothed which is
helpful for the synthetic data point to converge to the real
data point.

Based on the above analysis, we find that the gradi-
ent penalty on target data constructs a better loss land-
scape to help the generator converge. By leveraging the
view into the text-to-image generation. As shown in Fig-
ure 3(b), in text-to-image generation, the discriminator ob-

serves four kinds of inputs: synthetic images with match-
ing text (fake, match), synthetic images with mismatched
text (fake, mismatch), real images with matching text (real,
match), real images with mismatched text (real, mismatch).
For text-visual semantic consistency, we tend to apply gra-
dient penalty on the text-matching real data, the target of
text-to-image synthesis. Therefore, in MA-GP, the gradi-
ent penalty should be applied on real images with matching
text. The whole formulation of our model with MA-GP is
as follows:

LD =− Ex∼Pr
[min(0,−1 +D(x, e))]

− (1/2)EG(z)∼Pg
[min(0,−1−D(G(z), e))]

− (1/2)Ex∼Pmis
[min(0,−1−D(x, e))]

+ kEx∼Pr
[(∥∇xD(x, e)∥+ ∥∇eD(x, e)∥)p]

LG =− EG(z)∼Pg
[D(G(z), e)]

(2)

where k and p are two hyper-parameters to balance the ef-
fectiveness of gradient penalty.

By using the MA-GP loss as a regularization on the
discriminator, our model can better converge to the text-
matching real data, therefore synthesizing more text-
matching images. Besides, since the discriminator is jointly
trained in our network, it prevents the generator from syn-
thesizing adversarial features of the fixed extra network.
Moreover, since MA-GP does not incorporate any extra net-
works for text-image consistency and the gradients are al-
ready computed by back propagation process, the only com-
putation introduced by our proposed MA-GP is the gradient
summation, which is more computational friendly than ex-
tra networks.
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Figure 4. Comparison between Two-Way Output and our One-
Way Output. (a) The Two-Way Output predicts conditional loss
and unconditional loss and sums them up as the final adversarial
loss. (b) Our One-Way Output predicts the whole adversarial loss
directly.

3.3.2 One-Way Output

In the previous text-to-image GANs [50,56,57], image fea-
tures extracted by discriminator are usually used in two
ways (Figure 4(a)): one determines whether the image
is real or fake, the other concatenates the image feature
and sentence vector to evaluate text-image semantic con-
sistency. Correspondingly, the unconditional loss and the
conditional loss are computed in these models.

However, it is shown that the Two-Way Output weakens
the effectiveness of MA-GP and slows down the conver-
gence of the generator. Concretely, as depicted in Figure
3(b), the conditional loss gives a gradient α pointing to the
real and matching inputs after back propagation, while the
unconditional loss gives a gradient β only pointing to the
real images. However, the direction of the final gradient
which just simply sums up γ and β does not point to the real
and matching data points as we expected. Since the target
of the generator is to synthesize real and text-matching im-
ages, the final gradient with deviation cannot well achieve
text-image semantic consistency and slows down the con-
vergence process of the generator.

Therefore, we propose the One-Way Output for text-to-
image synthesis. As shown in Figure 4(b), our discrimi-
nator concatenates the image feature and sentence vector,
then outputs only one adversarial loss through two convo-
lution layers. Through the One-Way Output, we are able to
make the single gradient γ pointed to the target data points
(real and match) directly, which optimize and accelerate the
convergence of the generator.

By combining the MA-GP and the One-Way Output, our
Target-Aware Discriminator can guide the generator to syn-
thesize more real and text-matching images.

3.4. Efficient Text-Image Fusion

To fuse text and image features efficiently, we propose
a novel Deep text-image Fusion Block (DFBlock). Com-
pared with previous text-image fusion modules, our DF-
Block deepens the text-image fusion process to make a full
text-image fusion.

As shown in Figure 2, the generator of our DF-GAN con-
sists of 7 UPBlocks. A UPBlock contains two Text-Image
Fusion blocks. To fully utilize the text information in fu-
sion, we propose the Deep text-image Fusion Block (DF-
Block) which stacks multiple Affine Transformations and
ReLU layers in Fusion Block. For Affine transformation, as
shown in Figure 5(c), we adopt two MLPs (Multilayer Per-
ceptron) to predict the language-conditioned channel-wise
scaling parameters γ and shifting parameters θ from sen-
tence vector e, respectively:

γ = MLP1(e), θ = MLP2(e). (3)

For a given input feature map X∈RB×C×H×W , we first
conduct the channel-wise scaling operation on X with the
scaling parameter γ, then apply the channel-wise shifting
operation with the shifting parameter θ. Such a process can
be expressed as follows:

AFF (xi|e) = γi · xi + θi, (4)

where AFF denotes the Affine Transformation; xi is the
ith channel of visual feature maps; e is the sentence vector;
γi and θi are scaling parameter and shifting parameter for
the ith channel of visual feature maps.

The Affine layer expands the conditional representation
space of the generator. However, the Affine transformation
is a linear transformation for each channel. It limits the ef-
fectiveness of text-image fusion process. Thereby, we add
a ReLU layer between two Affine layers which brings the
nonlinearity into the fusion process. It enlarges the condi-
tional representation space compared with only one Affine
layer. A larger representation space is helpful for the gen-
erator to map different images to different representations
according to text descriptions.

Our DFBlock is partly inspired by Conditional Batch
Normalization (CBN) [5] and Adaptive Instance Normal-
ization (AdaIN) [14, 16] which contain the Affine transfor-
mation. However, both CBN and AdaIN employ normal-
ization layers [15,44] which transform the feature maps into
the normal distribution. It generates an opposite effect to the
Affine Transformation which is expected to increase the dis-
tance between different samples. It is then unhelpful for the
conditional generation process. To this end, we remove the
normalization process. Furthermore, our DFBlock deepens
the text-image fusion process. We stack multiple Affine lay-
ers and add a ReLU layer between. It promotes the diversity
of visual features and enlarges the representation spaces to
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Figure 5. (a) A typical UPBlock in the generator network. The UPBlock upsamples the image features and fuses text and image features
by two Fusion Blocks. (b) The DFBlock consists of two Affine layers, two ReLU activation layers, and a Convolution layer. (c) The
illustration of the Affine Transformation. (d) Comparison between (d.1) the generator with cross-modal attention [50, 60] and (d.2) our
generator with DFBlock.

represent different visual features according to different text
descriptions.

With the deepening of the fusion process, the DFBlock
brings two main benefits for text-to-image generation: First,
it makes the generator more fully exploit the text informa-
tion when fusing text and image features. Second, deepen-
ing the fusion process enlargers the representation space of
the fusion module, which is beneficial to generate semantic
consistent images from different text descriptions.

Furthermore, compared with previous text-to-image
GANs [50, 56, 57, 60], the proposed DFBlock makes our
model no longer consider the limitation from image scales
when fusing the text and image features. This is because
existing text-to-image GANs generally employ the cross-
modal attention mechanism which suffers a rapid growth of
computation cost along with the increase of image size.

4. Experiments

In this section, we first introduce the datasets, training
details, and evaluation metrics used in our experiments, then
evaluate DF-GAN and its variants quantitatively and quali-
tatively.
Datasets. We follow previous work [33, 50, 51, 56, 57,
60] and evaluate the proposed model on two challeng-
ing datasets, i.e., CUB bird [47] and COCO [25]. The
CUB dataset contains 11,788 images belonging to 200 bird
species. Each bird image has ten language descriptions.
The COCO dataset contains 80k images for training and
40k images for testing. Each image in this dataset has five
language descriptions.
Training Details. We optimize our network using Adam
[18] with β1=0.0 and β2=0.9. The learning rate is set to
0.0001 for the generator and 0.0004 for the discriminator
according to Two Timescale Update Rule (TTUR) [12].
Evaluation Details. Following previous works [50,60], we
choose the Inception Score (IS) [40] and Fréchet Inception
Distance (FID) [12] to evaluate the performance of our net-

work. Specifically, IS computes the Kullback-Leibler (KL)
divergence between a conditional distribution and marginal
distribution. Higher IS means higher quality of the gener-
ated images, and each image clearly belongs to a specific
class. FID [12] computes the Fréchet distance between the
distribution of the synthetic images and real-world images
in the feature space of a pre-trained Inception v3 network.
Contrary to IS, more realistic images have a lower FID. To
compute both IS and FID, each model generates 30,000 im-
ages (256×256 resolution) from text descriptions randomly
selected from the test dataset.

As stated in the recent works [21,58], the IS cannot eval-
uate the image quality well on the COCO dataset, which
also exists in our proposed method. Moreover, we find
that some GAN-based models [50, 60] achieve significant
higher IS than Transformer-based large text-to-image mod-
els [7, 35] on the COCO dataset, but the visual quality of
synthesized images is obviously lower than Transformer-
based models [7, 35]. Thus, we do not compare IS on the
COCO dataset. In contrast, FID is more robust and aligns
human qualitative evaluation on the COCO dataset.

Moreover, we evaluate the number of parameters (NoP)
to compare the model size with current methods.

4.1. Quantitative Evaluation

We compare the proposed method with several state-of-
the-art methods, including StackGAN [56], StackGAN++
[57], AttnGAN [50], MirrorGAN [33], SD-GAN [51], and
DM-GAN [60], which have achieved the remarkable suc-
cess of text-to-image synthesis by using stacked structures.
We also compared with more recent models [22,26,39,55].
It should be pointed that recent models always use extra
knowledge or supervisions. For example, CPGAN [22]
uses the extra pretrained YOLO-V3 [36], XMC-GAN [55]
uses the extra pretrained VGG-19 [42] and Bert [6], DAE-
GAN [39] uses extra NLTK POS tagging and manually de-
signs rules for different datasets, and TIME [26] uses extra
2-D positional encoding.
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Figure 6. Examples of images synthesized by AttnGAN [50], DM-GAN [60], and our proposed DF-GAN conditioned on text descriptions
from the test set of COCO and CUB datasets.

Table 1. The results of IS, FID and NoP compared with the state-
of-the-art methods on the test set of CUB and COCO.

Model
CUB COCO

IS ↑ FID ↓ FID ↓ NoP ↓

StackGAN [56] 3.70 - - -
StackGAN++ [57] 3.84 - -
AttnGAN [50] 4.36 23.98 35.49 230M
MirrorGAN [33] 4.56 18.34 34.71 -
SD-GAN [51] 4.67 - - -
DM-GAN [60] 4.75 16.09 32.64 46M
CPGAN [22] - - 55.80 318M
XMC-GAN [55] - - 9.30 166M
DAE-GAN [39] 4.42 15.19 28.12 98M
TIME [26] 4.91 14.30 31.14 120M
DF-GAN (Ours) 5.10 14.81 19.32 19M

As shown in Table 1, compared with other leading mod-
els, our DF-GAN has a significant smaller Number of
Parameters (NoP) but still achieves a competitive perfor-
mance. Compared with AttnGAN [50] which employs
cross-modal attention to fuse text and image features, our
DF-GAN improves the IS metric from 4.36 to 5.10 and de-
creases the FID metric from 23.98 to 14.81 on the CUB
dataset. And our DF-GAN decreases FID from 35.49 to
19.32 on the COCO dataset. Compared with MirrorGAN
[33] and SD-GAN [51] which employ cycle consistency
and Siamese network to ensure text-image semantic con-
sistency, our DF-GAN improves IS from 4.56 and 4.67 to
5.10. respectively on the CUB dataset. Compared with
DM-GAN [60] which introduces Memory Network to refine
fuzzy image contents, our model also improves IS from 4.75
to 5.10 and decreases FID from 16.09 to 14.81 on CUB,

and also decreases FID from 32.64 to 19.32 on the COCO.
Moreover, compared with recent models which introduce
extra knowledge, our DF-GAN still achieves a competitive
performance. The quantitative comparisons prove that our
model is much simpler but more effective.

4.2. Qualitative Evaluation

We also compare the visualization results synthesized by
AttnGAN [50], DM-GAN [60], and the proposed DF-GAN.

It can be seen that images synthesized by AttnGAN [50]
and DM-GAN [60] in Figure 6 look like a simple com-
bination of fuzzy shape and some visual details (1st, 3rd,
5th, 7th, and 8th columns). As shown in the 5th, 7th, and
8th columns, the birds synthesized by AttnGAN [50] and
DM-GAN [60] contain wrong shapes. Moreover, the im-
ages synthesized by our DF-GAN have better object shapes
and realistic fine-grained details (e.g., 1st, 3rd, 7th, and 8th

columns). Besides, the posture of the bird in our DF-GAN
result is also more natural (e.g., 7th and 8th columns).

Comparing the text-image semantic consistency with
other models, we find that our DF-GAN can also capture
more fine-grained details in text descriptions. For example,
as the results shown in 1st, 2th, 6th columns in Figure 6,
other models cannot synthesize the “holding ski poles”,
“train track”, and “a black stripe by its eyes” described
in the text well, but the proposed DF-GAN can synthesize
them more correctly.

4.3. Ablation Study

In this section, we conduct ablation studies on the test-
ing set of the CUB dataset to verify the effectiveness
of each component in the proposed DF-GAN. The com-
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Table 2. The performance of different components of our model
on the test set of CUB.

Architecture IS ↑ FID ↓ SC ↑

Baseline 3.96 51.34 -
OS-B 4.11 43.45 1.46
OS-B w/ DAMSM 4.28 36.72 1.79
OS-B w/ MA-GP 4.46 32.52 3.55
OS-B w/ MA-GP w/ OW-O 4.57 23.16 4.61

ponents include One-Stage text-to-image Backbone (OS-
B), Matching-Aware Gradient Penalty (MA-GP), One-Way
Output (OW-O), Deep text-image Fusion Block (DFBlock).
We also compare our Target-Aware Discriminator with
Deep Attentional Multimodal Similarity Model (DAMSM)
which is an extra network widely employed in current mod-
els [50, 51, 60]. We first evaluate the effectiveness of OS-B,
MA-GP, and OW-O. We conducted a user study to evaluate
the text-image semantic consistency (SC), and we asked ten
users to score the 100 randomly synthesized images with
text descriptions. The scores range from 1 (worst) to 5
(best). The results on the CUB dataset are shown in Table 2.
Baseline. Our baseline employs stacked framework and
Two-Way Output with the same Adversarial loss as Stack-
GAN [56]. In baseline, the sentence vector is naively con-
catenated to the input noise and intermediate feature maps.
Effect of One-Stage Backbone. Our proposed OS-B im-
proves IS from 3.96 to 4.11 and decreases FID from 43.45
to 32.52. The results demonstrate that our one-stage back-
bone is more effective than stacked architecture.
Effect of MA-GP. Armed with MA-GP, the model further
improves IS to 4.46, SC to 3.55, and decreases FID to 32.52
significantly. It demonstrates that the proposed MA-GP can
promote the generator to synthesize more realistic and text-
image semantic consistent images.
Effect of One-Way Output. The proposed OW-O also im-
proves IS from 4.46 to 4.57, SC from 3.55 to 4.61, and de-
creases FID from 32.52 to 23.16. It also demonstrates that
the One-Way Output is more effective than a Two-Way Out-
put in the text-to-image generation task.
Effect of Target-Aware Discriminator. Compared with
DAMSM, our proposed Target-Aware Discriminator com-
posed of MA-GP and OW-O improves IS from 4.28 to 4.57,
SC from 1.79 to 4.61, and decreases FID from 36.72 to
23.16. The results demonstrate that our Target-Aware Dis-
criminator is superior to extra networks.
Effect of DFBlock. We compare our DFBlock with CBN
[1, 5, 29], AdaIN [16] and AFFBlock. The AFFBlock em-
ploys one Affine Transformation layer to fuse text and im-
age features. MA-GP GAN is the model that employs One-
Stage text-to-image Backbone, Matching-Aware Gradient
Penalty, and One-Way Output. From the results in Ta-
ble 3, we find that, compared with other fusion methods,
concatenation cannot efficiently fuse text and image fea-

Table 3. The performance of MA-GP GAN with different modules
on the test set of CUB.

Architecture IS↑ FID ↓

MA-GP GAN w/ Concat 4.57 23.16
MA-GP GAN w/ CBN 4.81 18.56
MA-GP GAN w/ AdaIN 4.85 17.52
MA-GP GAN w/ AFFBLK 4.87 17.43
MA-GP GAN w/ DFBLK (DF-GAN) 5.10 14.81

tures. The comparison among CBN, AdaIN, and AFFBlock
proves that Normalization is not essential in Fusion Block,
and removing normalization even slightly improves the re-
sults. The comparison between DFBlock and AFFBlock
demonstrates the effectiveness of deepening the text-image
fusion process. In sum, the comparison results prove the
effectiveness of our proposed DFBlock.

4.4. Limitations

Although DF-GAN shows superiority in text-to-image
synthesis, some limitations must be taken into considera-
tion in future studies. First, our model only introduces the
sentence-level text information, which limits the ability of
fine-grained visual feature synthesis. Second, introducing
pre-trained large language models [6, 34] to provide addi-
tional knowledge may further improve the performance. We
will try to address these limitations in our future work.

5. Conclusion and Future Work
In this paper, we propose a novel DF-GAN for the text-

to-image generation tasks. We present a one-stage text-to-
image Backbone that can synthesize high-resolution images
directly without entanglements between different genera-
tors. We also propose a novel Target-Aware Discrimina-
tor composed of Matching-Aware Gradient Penalty (MA-
GP) and One-Way Output. It can further enhance the text-
image semantic consistency without introducing extra net-
works. Besides, we introduce a novel Deep text-image
Fusion Block (DFBlock) which fully fuses text and im-
age features more effectively and deeply. Extensive exper-
iment results demonstrate that our proposed DF-GAN sig-
nificantly outperforms current state-of-the-art models on the
CUB dataset and more challenging COCO dataset.
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