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Abstract

3D semantic segmentation is a fundamental building
block for several scene understanding applications such as
autonomous driving, robotics and AR/VR. Several state-of-
the-art semantic segmentation models suffer from the part-
misclassification problem, wherein parts of the same object
are labelled incorrectly. Previous methods have utilized hi-
erarchical, iterative methods to fuse semantic and instance
information, but they lack learnability in context fusion, and
are computationally complex and heuristic driven. This
paper presents Segment-Fusion, a novel attention-based
method for hierarchical fusion of semantic and instance in-
formation to address the part misclassifications. The pre-
sented method includes a graph segmentation algorithm for
grouping points into segments that pools point-wise features
into segment-wise features, a learnable attention-based net-
work to fuse these segments based on their semantic and
instance features, and followed by a simple yet effective
connected component labelling algorithm to convert seg-
ment features to instance labels. Segment-Fusion can be
flexibly employed with any network architecture for seman-
tic/instance segmentation. It improves the qualitative and
quantitative performance of several semantic segmentation
backbones by upto 5% on the ScanNet and S3DIS datasets.

1. Introduction

The growing resolution and availability of 3D visual sen-
sors in recent years (e.g. Kinect, RealSense, Xtion) have en-
abled high fidelity representation of real world scenes using
3D data, allowing machines to understand 3D scenes with
higher accuracy. One of the most important tasks in scene
understanding includes 3D semantic segmentation, which
aims to recognize the object class that each point in the
scene belongs to. 3D semantic segmentation is fundamental
to various applications, such as autonomous driving, robotic
navigation and AR/VR [11, 28, 31, 38].
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Figure 1. Semantic labels with baseline [37] and our Segment-
Fusion approach on a sample point cloud from ScanNet Validation
set [5]. The circled regions highlight how well Segment-Fusion
addresses the part misclassification problem prevailing in many
state-of-the-art semantic segmentation methods.

Recent advancements in 3D scene understanding have
been greatly influenced by deep neural networks achieving
state-of-the-art results [3,9,10,15–17,20,23,34,37] on mul-
tiple benchmarks and wide range of datasets [1, 5]. How-
ever, many of these methods are often plagued by the part-
misclassification problem, where parts of the same object
are labelled incorrectly as shown in Figure 1. This problem
can be better addressed if object instance boundaries can be
correctly estimated, which includes annotating points with
object instance identifiers. This helps to group all points
associated with an object instance and utilize consensus to
rectify semantic mispredictions.

Jointly solving semantic and instance segmentation has
been explored by several previous works [2, 7, 12, 13, 18,
22, 24, 35, 36]. Many of these methods [13, 18, 24, 35, 36]
focus on employing models for instance and semantic seg-
mentation, before fusing pointwise features. However, they
require higher compute resources as they fuse at a fine-
grained level and do not exploit local continuities in scene
structure. Methods such as [2, 7, 12, 22] include hierarchi-
cal pooling of features over a spatial region addressing the
part misclassification problem by fusing these regions, with
an assumption that these regions do not stretch over object
boundaries. Such hierarchical methods are more efficient
since they work with regions and not directly with points.
While such methods are more efficient, they employ itera-
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Figure 2. Overview of the Segment-Fusion approach. The Graph Segmentation module (GS) groups points into segments and enables
pooling pointwise semantic and instance features S, I into segment-wise features S̄, Ī. The Segment Fusion Network maps these features
to a common feature space F̄ which is then used in the connected component labelling algorithm (CCL) to create the final set of segments.

tive clustering and aggregation techniques that are known to
be heuristic-driven, non-learnable and specific to the back-
bone models used for extracting semantic and instance fea-
tures. They also use complex post-processing [6, 27] to
transform instance features to labels. Thus, there is a need
for hierarchical, learnable methods for fusing such regions
with simple post-processing.

Our prime objective is to improve semantic segmentation
performance of a generic semantic segmentation model by
using a hierarchical fusion of semantic and instance infor-
mation. We use a graph segmentation algorithm to group
points into regions and pool region-wise semantic and in-
stance features but downstream, we propose a learnable
clustering algorithm. It is desirable that the method should
be learnable and agnostic to dataset specific heuristics.

• We propose a graph segmentation algorithm optimized
for semantic segmentation across datasets, which is
used to compose semantic and instance features at a
coarser level (which we term as segments).

• We propose a learnable attention based network, Seg-
ment Fusion, to hierarchically fuse segments based on
the similarity of their semantic and instance features,
thus understanding the appropriate granularity of con-
text (local to global: points to instance to scene).

• Our approach offers the advantages of adapting to in-
puts from other datasets and other backbones, as well
as offering the possibility to perform end-to-end train-
ing and maintain efficiency (while working on a hi-
erarchically smaller representation, and not working
on individual points). These proposals help ameliorate
the problem of part-misclassification by improving the
performance (mIoU) of multiple semantic backbones
on datasets like ScanNet [5] and S3DIS [1] upto 5%.

We also compare the impact of our proposed method
with the iterative clustering method proposed by Oc-
cuseg [12] and report 1-2% mIoU improvement in se-
mantic segmentation.

2. Related Work
3D Semantic Segmentation. Semantic segmenta-

tion techniques can be broadly classified into 2D projection
based and 3D methods. Methods that use 3D processing are
known to provide superior accuracy because they can natu-
rally overcome occlusion or scale ambiguity [12]. Several
3D methods have been proposed for semantic segmentation,
which can be further categorized into point-based [25, 26]
and volumetric methods [3, 10, 15–17, 34]. Methods from
the PointNet family [25, 26] work on unstructured point
clouds directly, employing pointwise networks to extract
features and using ball queries and hierarchical grouping to
encode spatial locality.

On the other hand, volumetric methods voxelize point
clouds into regular grids and process them with regular
structured computations. SparseConvNet [10] proposed
submanifold sparse convolutions to process only the active
voxels in a scene, while MinkowskiNet [3] generalized this
concept with the help of hybrid kernels to express different
types of local structure. Apart from these classes of meth-
ods, hybrid methods that utilize deformable/parameteric
convolutions [30] on points have been proposed, in addi-
tion to employing graph convolutions [14,33,39] on points.
All the above models apply voxel/point-wise cross entropy
loss to optimize the model weights. Eventhough they em-
ploy network topologies such as U-Nets that are intended to
comprehend scale and local-to-global structure, they exhibit
part-misclassification issues as observed in Figure 3. There-
fore, the model needs additional information about which
instance of the object each point is a part of.
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Figure 3. Illustrations of the part misclassification problem while
using SCN [10] (1st row) and MinkowskiNet [3] (2nd row) as back-
bones for semantic predictions on the ScanNet dataset [5].

Joint Semantic-Instance Segmentation. Instance seg-
mentation techniques aim to predict features for every point
that indicate the object with which it is associated. Several
methods have been proposed to perform semantic and in-
stance segmentation jointly, since there is shared context
between two similar tasks. Methods such as ASIS [36],
SGPN [35] and JSIS3D [24] exercise models to fuse se-
mantic and instance features pointwise, and subsequently
compute the instance labels through clustering algorithms;
ASIS [36] uses mean-shift clustering, SGPN [35] uses NMS
to filter proposals and JSIS3D [24] uses a CRF to cluster in-
stance embeddings into labels. However, these methods are
heuristic driven (eg. mean-shift clustering [6] depends upon
the window size) and are computationally complex (since
they work with the pointwise features).

Works such as Occuseg, 3D-MPA, HAIS and SPG
[2, 7, 21] simplify this complexity by grouping features at
a higher abstractive level of surfaces (than points), thus
proposing hierarchically fusing these features to form in-
stances. Occuseg [12] computes instance and semantic fea-
tures per supervoxel, where supervoxels are composed us-
ing a graph segmentation scheme [8], which are fed to an
iterative clustering algorithm to merge supervoxels into in-
stances. 3D-MPA [7] samples keypoints through a deep vot-
ing scheme, uses a graph convolutional network to refine the
keypoint features, which are fed to DBSCAN [27] to obtain
instance labels. HAIS [2] proposed a hierarchical method
to generate point sets (based on the semantic features) and
employ an iterative set aggregation algorithm to aggregate
these point sets into instances. SST-Net [22] propose a tree
classifier to hierarchically build a subtree of superpoint pro-
posals. SPG [21] propose a graph convolutional network to
learn relationships between abstracted surfaces.

While these methods may be effective for certain
datasets, they propose iterative algorithms, which are not
learnable. This makes it difficult for the algorithm to gen-
eralize for multiple sets of input features and/or datasets.
Eventhough 3D-MPA uses a graph convolutional layer to
refine the higher-level features, (a) they work with a fixed
number of proposals in a scene (due to the deep voting
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Figure 4. Impact of proposed J-GS method on an example S3DIS
point cloud. As observed in 1⃝ [8], graph segmentation purely
based on difference in normals fails to recognise the boundary be-
tween the door and the wall, while augmenting it with color infor-
mation helps in discerning this (J-GS 2⃝).

scheme) which does not scale with scenes, and (b) they
eventually use a heuristic driven classifier (DBSCAN [27])
after the refinement. SPG [21] utilizes only abstracted in-
formation at the level of surfaces and does not incorporate
instance-level information.

Graph Segmentation for hierarchical processing. As
discussed above, graph segmentation algorithms [8] have
been used previously to group points into larger regions
(based on normal-similarity) and work at the abstraction
level of these regions. It is observed that representations
in higher-level abstractions such as these segments offer ge-
ometric continuity, since they ensures that the variation in
point normals in a segment is bounded. Graph segmentation
solely based on normals is effective but in some datasets,
normals across object boundaries are not distinctive enough,
as seen in Figure 4. This problem cannot be solved by
lowering threshold for discriminating normals, because it
leads to a highly over-segmented graph and defeats the pur-
pose of hierarchical processing. Previous work [29] aims to
solve this problem by performing segmentation using dis-
similarity in normals and colors, but does not generalize for
other kinds of features, or propose methods for selecting the
thresholds for normals/colors.

Ideally, a semantic-instance fusion algorithm should
have the following desirable properties:

• Hierarchical. To be efficient, the system should ab-
stract features from the points level to a higher-level
spatial representation (segments: eg. surfaces, groups
of points) and process at this level.

• Learnable. The fusion of features from segments
to instances should incorporate a learnable model to
adapt to a variety of scenarios across datasets and un-
derlying backbones for semantic and instance features.

• Non-heuristic labelling. The task of converting in-
stance features to labels should be done simplistically
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to avoid imparting any heuristic driven processing and
absorb learning to the learnable component.

3. Methods
We present an overview of our method in Figure 2 that

incorporates the desirable properties discussed in Section 2.
The proposed method assumes a (i) semantic model that
emits per-point semantic features S and (ii) an instance
model that emits per-point instance features I. Our method
applies equivocally to those networks as well where these
models could be sharing a common backbone network. For
instance models like Occuseg [12] that emit multiple types
of embeddings (eg. instance embeddings, centroid and oc-
cupancy estimates), I can be thought of as a concatenation
of such features pointwise. In general, if X denotes any
point-wise features, the corresponding segment-wise fea-
tures are denoted by X.

3.1. Joint Graph Segmentation (J-GS)

We propose a hierarchical strategy, segmenting points
into 3D segments (surfaces or super-voxels) using efficient
graph segmentation algorithms such as [8, 19, 29]. The in-
put graph is defined by vertices (points P) joined by edges
(neighbors E), where the goal of the segmentation is to find
a mapping J that assigns the same segment ID to a set of
grouped points. It also records the connections (E) between
the segments, represented by an adjacency matrix A.

To cover a gamut of datasets, we generalize our graph
segmentation algorithm to work across two options:

• Point clouds without mesh information. Datasets
like ScanNet [5] have mesh information available,
which allows us to compute per vertex normals N
from the adjacent polygonal faces. However, for
datasets like S3DIS [1] which do not have such
connectivity information, we propose obtaining nor-
mals using plane-fitting techniques, as obtaining mesh
information would incur additional expensive pre-
processing (Figure 5).

• Indiscriminative Normals. We propose to generalize
this method across datasets over previous work [29] by
(a) allowing to use arbitrary pointwise features F (not
specifically colors) in addition to normals, and then
performing a joint segmentation over two spaces (F
and N ), as shown in Algorithm 1. An example using
colors as F for the S3DIS dataset is shown in Figure 4.
(b) we generalize sorting orders (s : {norm, feats},
choosing to sort edges along similarity in N or F), and
(c) we employ a voting-based methodology (see Algo-
rithm 2) to decide the optimal similarity threshold for
a generic dataset for the semantic segmentation task.

In Algorithm 1, computeEdgeWeights computes
dissimilarity scores along N (cosine product) and F (ℓ1/ℓ2

norms). updateThresh is similar to previous work [29]
where the threshold slightly increases to accommodate a
growing segment, where it approaches the largest intra-
segment weight.

Though the proposed method (shown in Figure 4) may
lead to over-segmentation of input scene, it ensures that
points belonging to different objects are allotted to differ-
ent segments. It avoids segment boundaries to cross-over
object instance boundaries.

Algorithm 1 Proposed Graph Segmentation
Inputs: NormalsN , Features F , Polygonal edges E, feature and normal

similarity thresholds (fth, nth), sort-flag (s)

1: function SEGMENT GRAPH(N ,F , E, nth, fth, s)
2: Ewn, Ewf ← computeEdgeWeights(N ,F )
3: E← sortEdgesByNormalsOrFeats(s)
4: thf , thn← fth, nth ▷ initialize threshold vectors
5: J ← initUnionFind(E)
6: for eij ∈ E do ▷ edge joining ith and jth points
7: Si←J .find(i)
8: Sj ←J .find(j)
9: ewn, ewf ← Ewn[i, j], Ewf [i, j] ▷ edge weights

10: if (ewn < thn[i], thn[j]) and (ewf < thf [i], thf [j]) then
11: newID←J .join(i, j)
12: updateThresh(ewn, ewf , thn, thf , newID)
13: end if
14: end for
15: return J
16: end function

Algorithm 2 Graph Segmentation based Voting algorithm
Inputs: List of J-GS Params gj = (nth, fth, s), predicted semantic la-

bels S, groundtruth labels G

function J-GSV(GP,S)
init scores
for gj in GP do
Jj ← SEGMENT GRAPH(gj )
Sj,maj ← majorityVoting(Jj ,S)
scores[j]← getIoU(Sj,maj , G)

end for
return argmin(scores)

end function
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Figure 5. Proposed flow for generalizing graph segmentation
across a variety of point cloud datasets.
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To select the right variant for given dataset, we en-
able quantitative comparison across the above options by
proposing the J-GSV score (Joint Graph Segmentation-
based Voting) (Algorithm 2). Across point clouds from the
training set, for the j-th variant, we obtain a list of sets of
points Jj , with the i-th set Jj,i containing points pertaining
to the same segment. We compute the semantic predictions
for the j-th variant by pooling the per-point semantic pre-
dictions S for each segment, and broadcasting the majority
label to all points in the segment. The mean Intersection-
over-Union (mIoU) for the modified semantic predictions
Sj,maj is the score associated with the j-th variant. For
the dataset, we select the variant with the highest score and
denote by J ∗. Consequently, we employ a differentiable
function ϕ, to transform pointwise features to segment-wise
features (X = ϕ(X,J ∗)). To simplify, our implementa-
tion of ϕ(.) is the mean function, average-pooling across
pointwise semantic and instance features (S, I) to obtain
segment-wise features (S̄, Ī), similar to [12]. For pointwise
features X we get the feature for a segment as

Xi =
1

|Ji|
∑
j∈Ji

Xj . (1)

Thus, the proposed joint graph segmentation hierarchi-
cally composes features of a scene at a coarse level to enable
efficient fusion decisions of these segments.

3.2. Segment-Fusion Network

Having formed segments out of the underlying points,
the next goal is to understand how to form objects out of
these segments. To this effect, we train a network to jointly
associate the instance-level and semantic-level information
to essentially form decisions if a pair of segments belong to
the same object (fusable) or not (separable).

We project the instance and semantic features per seg-
ment {S̄, Ī} to a transformed set of features F̄ in the
joint semantic-instance space using the Segment-Fusion
network. We compose the Segment-Fusion network using a
stack of attention encoder blocks (taking cues from a Trans-
former [32] block). Attention blocks are known to capture
larger contextual information among different segments by
extracting useful intermediate representations using scaled-
dot-product attention. Additionally, in each block, we pro-
pose multiplying the attention-matrix element-wise with the
adjacency matrix A describing the connections between the
segments. This helps to constrain the interactions only be-
tween the segment pairs that are spatially connected. A
more detailed description of the network architecture is pro-
vided in the supplementary material.

To supervise this learning process, we propose two sets
of losses - (i) Instance loss and (ii) Segment Loss:

LSF = Linstance + Lsegment (2)

3.2.1 SF-Instance Loss

We propose attraction and repulsion instance losses at
the segment level. These losses ensure that segments of
the same instance are clustered together (Equation (4)),
whereas the centroids of the instance features are repelled
from each other (Equation (5)). While this appears sim-
ilar to the instance losses employed at the per-point level
[12, 36] in principle, but in our case, the losses are applied
at the segment-level features. Additionally, we parameterise
the thresholds for repulsion and attraction to be ∆D and ∆V

respectively, essentially to unify the thresholds used in the
SF-Segment loss and CCL algorithm.

Linstance = Lattract + Lrepel + Lreg (3)

Lattract =
1

K

K∑
i=1

1

Ni

Ni∑
j=1

H(d(F̄j , µi)−∆V )
2 (4)

Lrepel =
1

K(K − 1)

K∑
i=1

K∑
j=1;i ̸=j

H(∆D − d(µi, µj))
2 (5)

Lreg =
1

K

K∑
i=1

||µi||1 (6)

where K denotes the number of ground truth instances in
the scene; ||.|| is the ℓ1 norm; µi is the average of the seg-
ment features across the segments belonging to the ith in-
stance; d(fi, fj) indicates feature distance using a suitable
norm (ℓ1/ℓ2), and H(..) is the hinge loss; we set the values
of the thresholds ∆V and ∆D to be 0.10 and 1 respectively.

3.2.2 SF-Segment Loss

The SF-instance losses aid in clustering segment features
appropriately, but relying solely on them requires iterative
post-processing clustering algorithms such as DBSCAN
[27], mean-shift clustering [6] etc. In this work, we propose
a much simpler the clustering algorithm for projecting fea-
tures to labels (Section 3.3), by using penalties on pairwise
distances in the segment feature metric space. To this end,
we propose a loss function that focuses on fusable and sep-
arable edges independently (Equations (7), (8) and (9)).
We reuse the same threshold ∆V here to place constraints
along the edges of the graph.

Lsegment = wfuseLfuse + wsepLsep (7)

Lsep =
1

|Esep|
∑

eij∈Esep

H(∆V − d(F̄i, F̄j)) (8)

1240



Table 1. Performance impact (mIoU) of Segment-Fusion on state-of-the-art semantic segmentation backbones on the ScanNet test set.
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SparseConvNet 82.9 95 64.4 76.9 79.5 64.4 55.4 57.7 54.1 78.6 27.6 39.5 54.1 65.6 66.6 79.4 92.7 71 78.1 48 66.6
SparseConvNet + SF 85.4 97.3 67 79.9 86 75.7 60 60.5 61.4 79.6 28.1 44.8 61.9 79.7 70.5 88.7 95.7 79 85.9 51.3 71.9

PointConv 72.6 94.2 51.8 64 77.4 70 51.2 37.1 54 61 20.6 40 46.1 57.3 55.9 58.2 87.8 56.1 70 38.9 58.2
PointConv + SF 75.9 96.8 57 66.5 79.9 73.1 54.1 40.5 55.9 63.5 21.4 45.3 48.7 60.5 59.9 62 92.8 62.7 81.7 41.4 62.0

MinkNet42 83.9 95.4 71.1 82.4 84.5 76.1 66 59 66.8 80 19.7 50.5 59.4 82.1 19.7 89.1 88.7 72.8 91.2 54.5 72.4
MinkNet42 + SF 85.6 97.5 72.5 83.2 86.3 77.4 67.4 63 67.7 81.2 22 54.2 59.3 82.9 22 93.4 92.6 77.6 97.4 56.1 74.7

VMNet 85.9 95.4 74.5 82.1 84.2 81.9 61.8 62.3 71.6 83.9 24 49.6 61.4 88.4 74.7 90.3 93.1 78.1 81.8 58 74.2
VMNet + SF 88.3 97.5 77.2 83.3 85.7 83.8 62.5 67.1 72.6 84.9 28 55.1 61.6 89.9 77.1 93.6 96.9 85.2 85.4 59.2 76.7

Lfuse =
1

|Efuse|
∑

eij∈Efuse

H(d(F̄i, F̄j)−∆V ) (9)

where Esep and Efuse denote the set of edges which
should be kept separate and fused respectively, decided us-
ing ground truth instance information.

Since the number of objects in a scene are finite, the
number of edges between dissimilar objects are much lower
than the edges within the same object. This influences the
relative weighing of wfuse and wsep, which we set to be 1
and 0.01 respectively, to counter this imbalance.

3.3. Connected Component Labelling (CCL)

To convert the segment features F̄ to fusion decisions,
we employ a connected component labelling algorithm over
the feature space that F̄ resides in. Pairwise-distances are
computed d(F̄i, F̄j) ∀ eij ∈ E and thresholded using ∆V ,
depicted through a piecewise function as in Equation 10.
Thus, each positive entry of Bij indicates a fusing decision
between segments i and j.

Bij =

{
1 d(F̄i, F̄j) < ∆V ∀ eij ∈ E
0 otherwise

(10)

For every pair of indices for which Bij = 1, we use an effi-
cient disjoint-set forest to implement Union-Find to record
the connectivity information [4]. For every connected com-
ponent composed of a set of segments, we compute the
mean semantic probability vector of the component and
identify the most probable semantic label for the entire com-
ponent, thus forming the final set of predictions SSF . This
procedure enables us to (i) identify and assign a single label
to an entire object, and (ii) allow the Segment-Fusion block
to override erroneous point-wise semantic predictions for
parts of the object by using consensus information across
larger parts of the object.

4. Evaluation
4.1. Training Setup

We apply and evaluate our method with multiple state-
of-the-art backbones of semantic segmentation across Scan-

Net 1 and S3DIS datasets 1 using the mean Intersection-
over-Union (mIoU) metric. To assess qualitative improve-
ments, we also compare results with and without Segment-
Fusion (and show its effect in regions with part misclassifi-
cation).

4.2. ScanNet Dataset

We pick four state-of-the-art semantic segmentation
backbones – SparseConvNet [10], PointConv [37],
MinkNet [3] and VMNet [16]. We augment each of these
semantic backbones with an instance backbone trained with
the losses proposed in Occuseg [12]. On the ScanNet test
set, as shown in Table 1, we observe significant improve-
ments of 5.3%, 3.8%, 2.3% and 2.5% respectively in mIoU
scores. We notice a consistent upswing in IoU scores across
all classes. Qualitative improvements are shown in Fig-
ure 6. Thus, we observe that the improvements provided by
Segment-Fusion do not depend specifically on the choice of
the semantic segmentation backbone used. The improve-
ments in mIoU help move the MinkNet42 + SF and VMNet
+ SF variants to the 5th and 2nd positions on the leaderboard
respectively.

4.3. S3DIS Dataset

To demonstrate the effectiveness of our approach on
datasets that do not have mesh information, we evalu-
ate Segment-Fusion on the Area 5 set from S3DIS. We
choose three semantic backbone networks: MinkNet18 [3],
KPConv [30] and ASIS [36] to show improvements with
Segment-Fusion. Table 2 presents semantic segmentation
results on the S3DIS Area 5 set on a variety of seman-
tic backbones. We augment each of these semantic back-
bones with instance features from ASIS [36]. The results
show that we obtain 1.5%, 0.6% and 0.8% improvement in
mIoU on using Segment-Fusion over MinkNet18 [3], KP-
Conv [30] and ASIS [36] respectively.

4.4. Comparisons with Occuseg clustering

We also assess Segment-Fusion with heuristic driven
graph clustering approach as employed in OccuSeg [12].

1License: CC BY-NC
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Figure 6. Qualitative results of Segment-Fusion on some sample point clouds of the ScanNet validation set using the MinkowskiNet-42 [3],
PointConv [37] and SparseConvNet [10] semantic backbones. The highlighted regions indicate mispredictions in the base semantic model
(S). Note how Segment-Fusion builds consensus using the instance features to correct the semantic predictions in these areas (without
degrading the performance in the other regions).

Table 2. Impact of Segment-Fusion on state-of-the-art semantic segmentation back-
bones on the S3DIS Area 5
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MinkNet18 51.4 0.0 66.5 67.4 92.3 87.1 34.9 68.4 95.9 59.8 76.0 81.0 49.2 63.8
MinkNet18+SF 52.4 0.0 69.3 67.2 93.0 88.4 37.6 67.7 96.7 67.7 76.5 81.6 51.2 65.3

KPConv 54.3 0.0 60.9 72.5 92.3 89.7 20.2 73.2 96.8 70.1 77.9 80.1 52.0 64.6
KPConv+SF 55.2 0.0 61.8 73.3 92.4 89.5 20.7 75.6 96.9 70.0 77.9 80.7 53.4 65.2

ASIS 41.5 0.0 52.5 0.0 89.6 1.4 7.8 17.2 96.5 0.0 1.4 73.1 39.9 32.4
ASIS+SF 43.2 0.0 61.6 0.0 89.7 0.0 2.9 16.9 96.6 0.0 0.0 74.5 43.4 33.2
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Figure 7. Performance comparison between
Occuseg’s clustering and Segment-Fusion’s
learnable fusion algorithm on ScanNet/val.

For this we use semantic and instance backbones simi-
lar to OccuSeg, and compare the improvement in seman-
tic segmentation performance obtained through the iterative
clustering algorithm they propose, with that of Segment-
Fusion. Figure 7 shows that Segment-Fusion outperforms
the heuristic driven iterative clustering algorithm across se-
mantic backbones; lending the conclusion that a learnable
algorithm like Segment-Fusion may be more scalable and
generic to apply on generic semantic and instance back-
bones as compared to a hand-crafted algorithm.

4.5. Ablation Studies

4.5.1 Impact of learning beyond J-GS

To better understand the effectiveness of our approach, we
study the individual contributions of the components of our
system. Table 3 compares the mIoU of the 3 semantic seg-
mentation backbones employing (i) only graph segmenta-
tion based voting (J-GSV) without any fusion network, (ii)
J-GS + SF, but trained only with instance losses (Linstance),
and (iii) J-GS + SF trained with both segment and instance
losses (Lsegment + Linstance). In J-GSV, we obtain semantic
labels by performing majority voting within the segment;
while in SF, semantic labels are computed as described in

Section 3.3. Note that employing only Linstance degrades
performance, essentially because we use a simplistic CCL
algorithm to compute labels from the features; using only
instance loss results in over-fusion of segments, leading to
poorer performance. We observe a significant performance
improvement on adding segment losses to constrain indi-
vidual edges. Thus, noting steady improvements in mIoU
on account of J-GS and SF, we conclude that (i) a hierar-
chical approach consisting of abstracting pointwise features
to segment-wise features and (ii) learnable methods to fuse
these segments are both required and effective.

Table 3. Impact of individual components of Segment-Fusion on
overall mIoU (ScanNet validation set) (Lins = Linstance, Lseg =
Lsegment)

Model Base Base +
J-GSV

Base +
SF(Lins)

Base +
SF(Lins+Lseg)

SparseConvNet 67.1 70.4 69.7 71.5
PointConv 58.3 61.5 61.4 63.6
MinkNet42 72.4 74.6 73.11 75.2
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Figure 8. Top: Fraction of points in a point cloud where J-GSV
is incorrect and the base semantic predictor is correct. Bottom:
Fraction points in a point cloud where J-GSV is correct and the
base semantic predictor is incorrect.

4.5.2 Does J-GS result in over-fusion?

While graph segmentation aids in abstracting the problem
to a higher level spatially, it runs the risk of over-fusing
points belonging to two different classes into one segment.
We evaluate the impact of such occurrences on overall per-
formance using the proposed J-GSV score. For each point
cloud, we analyse the base semantic predictions S with
the predictions after J-GSV Smaj(without Segment-Fusion
Network) and count the number of points for which they
disagree with each other. We define overfusion to occur
when the J-GSV predictions are incorrect while the base
predictor is correct. In Figure 8 we observe that J-GS based
voting helps in an improvement of atleast 2% in ∼ 32% of
the point clouds in the validation set of the ScanNet dataset,
while being 2% incorrect in ∼ 1% of the point clouds. This
indicates that J-GSV is consistently beneficial across point
clouds of the dataset and provides higher improvement than
the degradation due to overfusion.

4.5.3 J-GS on S3DIS

We present an ablative study to describe the methodology
of selecting the thresholds for the proposed J-GS method.
Figure 9 illustrates the performance of J-GSV on the train-
ing and validation sets of the S3DIS dataset. As discussed
in Section 3.1, we evaluate the performance of various J-
GSV variants on the training set to select the J-GS parame-
ters and apply them to the validation set. It is observed that
on an average, sorting of edge weights along feature sim-
ilarity performs better than sorting along similarity along
normals. Also, relying solely on normals ends up reduc-
ing performance as compared to the base validation perfor-
mance (without J-GSV). We observe that (s : feats, fth :
0.5) provides optimal performance for the training set, and
use this to apply J-GS on the validation set and generate
segment-wise data for Segment-Fusion Network. To evalu-
ate how well these parameters generalize from the training
to the validation set, we evaluate the same parameter set
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Figure 9. J-GS Voting Score results for the S3DIS validation set
across a variety of feature thresholds. The threshold used in the
normals space nth is 0.01; results along this axes are omitted here
due to lack of sensitivity.

on the validation set as well. Though (s : feats, fth : 2)
performs better on the validation set, the difference with
fth : 0.5 is low (lower than the gains we see alongwith SF,
Table 2). On the validation set, the sorting parameter s has a
higher sensitivity than the feature-threshold parameter. The
ScanNet dataset has more distinctive normals, hence we did
not observe much sensitivity with the fth threshold.

5. Limitations and Future Work

While we have demonstrated the effectiveness of our ap-
proach on multiple semantic and instance backbones, the
method still requires supervision. There is also potential in
exploring deeper and more complex network architectures
in the Segment-Fusion network to increase improvements.
In the future, we plan to extend this work by using similar
strategies to fuse learnings from problems with shared con-
text, along with focusing on semi/self-supervised learning.

6. Conclusion

We presented Segment-Fusion, a learnable, hierarchical
method to fuse segments, aimed at improving semantic seg-
mentation performance of generic base models. We pro-
posed a voting based algorithm to select optimal graph seg-
mentation hyperparameters for varying datasets. Our learn-
able method can be flexibly used in conjunction with exist-
ing semantic/instance models. Finally, we performed com-
prehensive evaluations to demonstrate the effectiveness of
our methods on multiple types of semantic backbones.

7. Acknowledgements

We would like to thank Chris Choy for his help in setting
up the MinkowskiNet baseline for semantic segmentation.

1243



References
[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 1, 2, 4

[2] Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and
Xinggang Wang. Hierarchical aggregation for 3d instance
segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 15467–15476,
2021. 1, 3

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019. 1, 2, 3, 6, 7

[4] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest,
and Clifford Stein. Introduction to algorithms. MIT press,
2009. 6

[5] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 1, 2, 3, 4

[6] Konstantinos G Derpanis. Mean shift clustering. Lecture
Notes, page 32, 2005. 2, 3, 5

[7] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias Nießner. 3d-mpa: Multi-proposal ag-
gregation for 3d semantic instance segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9031–9040, 2020. 1, 3

[8] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 3, 4

[9] Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun
Qu, Yuan Xie, and Lizhuang Ma. Omni-supervised point
cloud segmentation via gradual receptive field component
reasoning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11673–
11682, 2021. 1

[10] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submani-
fold sparse convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9224–9232, 2018. 1, 2, 3, 6, 7

[11] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jiten-
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