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Abstract

The saliency ranking task is recently proposed to study
the visual behavior that humans would typically shift their
attention over different objects of a scene based on their de-
grees of saliency. Existing approaches focus on learning ei-
ther object-object or object-scene relations. Such a strategy
follows the idea of object-based attention in Psychology,
but it tends to favor objects with strong semantics (e.g., hu-
mans), resulting in unrealistic saliency ranking. We observe
that spatial attention works concurrently with object-based
attention in the human visual recognition system. During
the recognition process, the human spatial attention mech-
anism would move, engage, and disengage from region to
region (i.e., context to context). This inspires us to model
region-level interactions, in addition to object-level reason-
ing, for saliency ranking. Hence, we propose a novel bi-
directional method to unify spatial attention and object-
based attention for saliency ranking. Our model has two
novel modules: (1) a selective object saliency (SOS) module
to model object-based attention via inferring the semantic
representation of salient objects, and (2) an object-context-
object relation (OCOR) module to allocate saliency ranks
to objects by jointly modeling object-context and context-
object interactions of salient objects. Extensive experiments
show that our approach outperforms existing state-of-the-
art methods. Code and pretrained model are available at
https://github.com/GrassBro/OCOR.

1. Introduction

Saliency detection is a fundamental task in computer vi-
sion. Previous works mainly focus on the salient object /
instance detection tasks [9, 17, 38], and the gaze prediction
task [33]. Recently, Siris et al. [34] propose to study a novel
task called saliency ranking, which aims to detect the salient
instances and infer their saliency ranks simultaneously. By
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Figure 1. Existing salient ranking approaches [19, 28, 34] pro-
duce unrealistic saliency ranks. (b) RSDNet [19] is a pixel-level
method and does not predict object-level saliency ranks well. (c)
ASSR [34] and (d) IRSR [28] explore object-object and object-
scene relations for inferring saliency ranks. However, they favor
objects with strong semantics and tend to assign people with high
saliency ranks. (e) Our method explores both spatial and object-
based attentions with a bi-directional object-context prioritization
learning formulation, yielding faithful saliency ranking results.

mimicking how humans change their attention across the
scenes depending on the saliency ranks, saliency ranking
can benefit many down-stream visual tasks, e.g., image ma-
nipulation [6, 49], scene understanding [37], important per-
son identification [24] and their interaction reasoning [10].

Islam et al. [19] propose the first saliency ranking work,
which directly predicts a relative saliency map with dif-
ferent pixel values indicating different saliency degrees, as
shown in Figure 1(b). However, this method only studies
the relative saliency of pixels. Later, Siris et al. [34] pro-
pose to study the salient object ranking as humans shift at-
tention from object to object. They propose to model the
relations between objects and global context for reasoning
their ranks. Liu et al. [28] further propose a neural graph-
based method to learn relations between objects and local
contexts as well as relations between objects. However,
these two methods [28,34] tend to favor objects with strong
semantics (e.g., people) as shown in Figure 1, resulting in
incorrect saliency ranks. For example, in the first and sec-
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ond rows of Figure 1(c,d), they assign people with high-
est saliency ranks, despite the visual distinctiveness of the
green screen in the first example and the relatively larger
horse in the second example. In the last row, the two meth-
ods do not even consider the skateboard as a salient object.

In this paper, we tackle the saliency ranking problem
based on the observation that as revealed by psychologi-
cal studies [2,8], spatial attention and object-based atten-
tion work concurrently in the human visual system. While
object-based attention directs our views to the candidate ob-
jects or perceptual groups via a preattentive segmentation
of the scene [8], the human spatial attention mechanism
allows us to process the scene sequentially through prior-
itizing the regions (where the objects belong to) based on
low-level visual stimuli (e.g., rich colors), functionalities
of the objects, and interactions among the objects. This
inspires us to jointly exploit spatial attention and object-
based attention for saliency ranking. Based on this obser-
vation, we formulate a bi-directional object-context prior-
itization learning approach to model both region-level and
object-level relations. We first propose a Selective Object
Saliency (SOS) module to model object-based attention via
inferring and enriching the semantic representations of the
salient objects based on their local contexts. We then pro-
pose an object-context-object relation (OCOR) module to
exploit the spatial attention mechanism by reasoning in the
object-context and context-object bi-directional way. We
formulate a multi-head attention mechanism to model the
way that an object with its context would interact with other
objects with their contexts. As shown in Figure 1(e), our ap-
proach produces more faithful saliency ranks over the state-
of-the-art methods. For example, our method can detect the
screen (first row) and the horse (second row) as the most
salient objects according to their visual distinctiveness. In
the third row, our method can detect and rank the skateboard
by modeling its interaction with the person.

To summarize, this work has three main contributions:
1) Inspired by the psychological studies, we propose a
novel bi-directional object-context prioritization learning
approach for saliency ranking, by jointly exploiting spatial
and object-based attention mechanisms. 2) We propose a
novel selective object saliency (SOS) module for modeling
object-based attention, and a novel object-context-object re-
lation (OCOR) module for modeling spatial attention via
inferring the relations of objects in a bi-directional object-
context and context-object manner. 3) We conduct exten-
sive experiments to analyze our approach and verify its su-
perior performance over the state-of-the-art methods.

2. Related Work
2.1. Saliency Ranking

Saliency ranking is a new task. It studies the visual phe-
nomenon that objects in a daily scene generally have dif-

ferent saliency degrees, which draws the observer’s atten-
tion sequentially across the objects. Islam et al. [19] make
an initial attempt on this problem, but they only study the
pixel-level relative saliency. This is evident from their data
collection step, where multiple objects are sometimes anno-
tated with the same saliency rank. Siris et al. [34] propose
a new dataset and a model to facilitate research on this task.
Specifically, they exploit the statistics of fixations on objects
to build a large-scale dataset, and design a network with
an object-context relation module to learn saliency ranks.
Liu et al. [28] further propose another dataset with less an-
notation noise, and investigate object-object relations for
the task. Similarly, Fang et al. [12] also propose to model
object-object relations but embed the spatial coordinates of
objects as spatial cues in the learning step.

By modeling object-based attention, the above methods
can take advantages of the learned semantic representations
of objects. However, they tend to produce unreasonable
saliency ranks, e.g., they tend to rank humans higher than
stuff with visually distinguishing hues. In contrast, in this
paper, we propose a bi-directional object-context prioritiza-
tion method to combine spatial attention with object-based
attention for saliency ranking.

2.2. Salient Object Detection (SOD)

SOD is a long-standing problem with a lot of meth-
ods proposed. It aims to detect conspicuous objects in a
scene. Earlier methods [1, 7, 31, 48] mainly rely on hand-
crafted features (e.g., color, brightness, and textures) to
detect salient objects. These methods often fail in com-
plex scenarios due to the limited representation capacities
of low-level hand-crafted features. Recent deep learning-
based methods [42] have achieved superior performances.
They mainly incorporate two kinds of deep techniques, deep
feature fusion [44, 51] and feature attention [27, 35, 52, 53].
Deep feature fusion aims to aggregate multi-level context
information including low-level stimulus and high-level se-
mantics for SOD, while feature attention reweights multi-
scale features and enhances the context learning to help the
model focus on the salient regions and suppress noise from
the background regions.

Unlike SOD, the saliency ranking task needs to detect
salient instances and then determine their saliency ranks.
Hence, existing salient object detection methods cannot be
directly applied to the saliency ranking task.

2.3. Salient Instance Detection (SID)

A few methods are proposed to detect salient objects at
the instance level. Zhang et al. [50] propose a Maximum a
Posteriori optimization based method to detect salient in-
stances with bounding boxes. Li et al. [22] propose to
leverage the instance-aware saliency contours for detecting
instance-level objects. Fan et al. [11] propose to combine
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Figure 2. Overview of our proposed network. Given an input image, we first apply the query based object detection method [13, 36]
to extract global context features and leverage a set of learnable salient object proposals (i.e., box and object queries that encode object
locations and rich object characteristics), to help predict the final saliency ranks. The Saliency Rank Learning process has (1) a SOS
module to capture and enrich object-level semantic representation, (2) an OCOR module to model the interactions from one object with
its context to other objects with their contexts, i.e., bi-directional object-context and context-object relations learning, and (3) ranking and
mask heads to infer object-wise saliency ranks on top of the improved features from the SOS and OCOR modules.

the object detection model FPN [26] with a segmentation
branch to detect salient instances. Tian et al. [38, 39] pro-
pose a weakly-supervised method that exploits class labels
and subitizing labels for SID.

SID methods can provide instance-level information of
salient objects, but they do not attempt to rank the saliency
degrees of the detected salient instances.

3. Methdology
Psychological studies [2, 8] reveal that spatial attention

and object-based attention work cooperatively in the hu-
man visual systems in order to process multiple visual in-
puts in a scene sequentially. On the one hand, object-based
attention tends to fix humans’ views to the candidate ob-
jects by preattentive segmentation of the scene, as humans
are more likely to be attracted to objects that they are most
familiar with. On the other hand, spatial attention directs
humans’ views from region to region via a joint process
of multiple factors, such as regional visual stimuli, func-
tionalities of objects, and their contextual interactions. This
motivates us to exploit object-based attention and spatial at-
tention to design our saliency ranking model.

Figure 2 shows the overview of our bi-directional object-
context prioritization model. Given an input image, we
first use the query-based object detection method [13, 36]
to extract global features and generate a set of object fea-
tures based on object proposals, i.e., box and object queries
that encode object locations and rich object characteris-
tics. We then feed them into two novel modules, Selec-
tive Object Saliency (SOS) module and Object-Context-
Object Relation (OCOR) module, which model the two at-
tention mechanisms for reasoning the saliency ranks. Fi-
nally, our model learns prioritization information of objects
for saliency ranking.

3.1. Selective Object Saliency Module

Following the spirit of the object-based attention mech-
anism, the goal of our SOS module is to capture and en-
hance the semantic representation of salient objects. It has
been shown that channels of deep features response to di-
verse semantic components [4, 54]. Previous channel-wise

Global 
Covariance

Pooling

Dynamic
RectifyingC

WH
W

H

C
W H

.

Figure 3. Structure of our SOS module.

attentions [18, 45] mainly aim to highlight the discrimina-
tive channels according to the ground truth categories while
suppressing the responses from other channels. However,
simply suppressing the low responses from the other chan-
nels may not be suitable for saliency ranking, as these less
discriminative channels may also be informative. They may
serve as the contexts to correlate objects to each other or as
the global context. Hence, we propose to extend existing
channel-wise attentions in two aspects. First, we leverage
the global covariance pooling [23, 41] to learn object rep-
resentations as well as their correlations to both local and
global contexts. Second, we learn a group of dynamic recti-
fying functions to reallocate attentions to the channels based
on the high-order feature statistics computed by the global
covariance pooling. Consequently, they jointly capture fine-
grained object information for learning object-based repre-
sentations. Figure 3 shows our SOS module.

Global Covariance Pooling investigates cross-channel cor-
relations for modeling high-order feature statistics. Given
the context features Fcontext and object proposals (i.e.,
box and object queries), we first extract object features
Fobj ∈ RH×W×C using ROIAlign [15], where H , W ,
and C indicate the height, width, and channel dimen-
sion of the features. We then split Fobj along the chan-
nel dimension to generate channel-wise features Fobj =
[F1

obj ,F2
obj , ...,FK

obj ] ∈ RC×K , where K = W × H and
k ∈ [1,K], for computing the covariance normalization ma-
trix M as:

M =

(
1

K

K∑
k=1

(
Fk

obj − µ
)(

Fk
obj − µ

)T)α

∈ RC×C ,

(1)
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where µ =
(

1
K

∑K
k=1 Fk

obj

)
∈ R1×K is the channel-wise

mean vector. α is a normalization hyper parameter. We then
compute the global covariance pooling GCP on M as:

sc = GCP(Mc) =
1

C

C∑
c=1

Mc, (2)

where S = [s1, s2, ..., sC ] ∈ RC×1 is the high-order
channel-wise feature statistics, which encodes objects and
their relations to both local and global contexts.

Dynamic Rectifying Functions further dynamically reallo-
cate attentions to each feature channel based on the channel-
wise statistics S. It first learns to reweight each sc as:

ŝc = max{a1c(S)sc + b1c(S), a2c(S)sc + b2c(S)}, (3)

where a1c , b1c , a2c , and b2c are learnable parameters, which
form two sets of coefficients (i.e., (a1c , b1c) and (a2c , b2c)) to
formulate two piece-wise functions for updating sc to ŝc.
Since the max operation in Eq. 3 is not differentiable, it is
reformulated as:

[∆a11:C ,∆a21:C ,∆b11:C ,∆b21:C ] ∈ R4×C =

2σ(FCR/C→4×C(ReLU(FCC→R/C(S))))− 1, (4)

and, a11:C = 1 + λa∆a11:C , a
2
1:C = λa∆a21:C ,

b11:C = λb∆b11:C , b
2
1:C = λb∆b21:C , (5)

where FCC→R/C is a fully connected layer, which changes
the feature dimension from C to R/C. σ is a Sigmoid func-
tion. λa, λb are hyper-parameters that are set to 1 and 0.5.
a11:C = [a11, a

1
2, ..., a

1
C ] ∈ R1×C . a21:C , b11:C , and b21:C are

defined similar to a11:C .
Note that both a and b are related not only to the input

sc, but also to others si ̸=c ∈ S via two FC layers. Hence,
we establish the cross-channel correlations and compute the
enhanced F̂obj as:

F̂obj = Fobj ⋄ Ŝ, (6)

where Ŝ = [ŝ1, ŝ2, ..., ŝc] ∈ RC×1, and ⋄ denotes channel-
wise multiplication.

Given the globally pooled high-order channel-wise fea-
ture statistics, the dynamic rectifying function refines it via
linear functions described in Eq. 3, where slopes and inter-
cepts (e.g., (a1c , b1c)) of the linear functions are adaptively
learned via Eq. 4 and 5. We leverage two sets of slopes and
intercepts to help adjust negative/positive channel responses
separately. In this way, fine-grained attentions can be ad-
justed via the slopes and intercepts before they are assigned
to the feature channels, to accommodate for the saliency
ranking task.
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Figure 4. Structure of our OCOR module.

3.2. Object-Context-Object Relation Module

The OCOR module aims to model the spatial attention
of the human visual system for learning how to prioritize
regions. To this end, we first encode the object-context re-
lation based on the enhanced object representation of the
SOS module, and then establish the bi-directional object-
context-object relation, to mimic the spatial scanning pro-
cess of humans.

Formulation of object-context relation. After the SOS
module, we obtain N object features F̂obj(n) ∈ RH×W×C .
We then rescale Fcontext to have the same spatial size
(H × W ) as F̂obj(n), and establish the object-context re-
lation by concatenating each F̂obj(n) with Fcontext to form
a series of object-context relation features {Fo↔c(n)}Ni=1 ∈
RH×W×2C for the N objects.

Formulation of object-context-object relation. Based on
the object-context relations, we build bi-directional object-
context-object relations {Fo↔c↔o(n}Nn=1 to model how at-
tentions shift from region to region, accompanied with ob-
jects interacting with objects through contexts. Specifi-
cally, we exploit groups of linear projections to compute
long-range interactions between different object-context re-
lation features, inspired by the multi-head attention mech-
anism [40]. We denote i, j ∈ N as two different objects,
x, y ∈ K as spatial locations, and ϕ as a linear projec-
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tion function. We utilize P distinct projection functions,
ϕp, p ∈ [1, P ], to obtain Key k, Query q, and Value v em-
bedding of the object-context relation features. For exam-
ple, ϕp

vFo↔c(i)(x) denotes the value embedding v of object-
context relation of object i at location x using the p-th linear
projection function. The interaction can be modeled as:

Attp⟨i,j⟩(x, y) = ϱ(Ap
⟨i,j⟩(x, y))× ϕp

v(Fo↔c(i)(x)), (7)

where Attp⟨i,j⟩(x, y) measures how object i with its spatial
context x interacts with object j with its spatial context y.
ϱ is the weighting function (i.e., Softmax) to compute the
importance of the embedding of the object-context repre-
sentation, and Ap

⟨i,j⟩(x, y) encodes the context information
of Fo↔c(i)(x). They are calculated as:

ϱ(Ap
⟨i,j⟩(x, y)) =

e
Ap

⟨i,j⟩(x,y)∑
p′∈P e

Ap
′

⟨i,j⟩(x,y)
, (8)

Ap
⟨i,j⟩(x, y) = ϕp

k(Fo↔c(i)(x))
T · ϕp

q(Fo↔c(j)(y)), (9)

where · is the dot production between two feature vectors.
We compute the object-context-object relation features as:

Fo↔c↔o(i)(x) =

N∑
j=1,j ̸=i

K∑
y=1

P∑
p=1

Attp⟨i,j⟩(x, y). (10)

Finally, we normalize Fo↔c↔o and fuse it with the input
Fo↔c to produce the final output F̂o↔c↔o. Figure 4 shows
the structure of our OCOR module.

3.3. Learning of Saliency Rank

To learn saliency ranking based on our SOS and OCOR
modules, we formulate the ranking step as a multi-stage
query-based detection process, and follow [14] to initialize
with T query stages (1 ≤ t ≤ T ). The advantage of this
multi-stage strategy is that the box and object queries (qtbox,
and qtobj), and the corresponding object features F t

obj can
be improved stage by stage. At each stage, we perform the
following three sub-tasks. First, we extract the object fea-
tures of the current stage t (i.e., F t

obj) from the box query
of stage t− 1 (i.e., qt−1

box ) as:

F t
obj = ROIAlign(Fcontext, q

t−1
box ). (11)

Second, we obtain the improved object features F̃ t
obj and

object query qtobj as:

F̃ t
obj , q

t
obj = Ht

rank

(
fOCOR(fSOS(F t

obj))︸ ︷︷ ︸
F̂ t

o↔c↔o

, fSA(q
t−1
obj )

)
,

(12)
where fSOS and fOCOR are our SOS and OCOR modules,
fSA is the multi-head self-attention [40], and Ht

rank is the

ranking head at stage t. Third, we update the box query
using the box prediction branch B:

qtbox = Bt(F̃ t
obj). (13)

At the final stage, the object features F̃T
obj are fed into the

ranking head for predicting the final saliency ranks, and the
mask head for predicting the salient object masks.

4. Experiments
4.1. Experimental Setups

Datasets and Metrics. Our experiments are conducted on
the publicly available ASSR [34] and IRSR [28] datasets.
ASSR [34] ranks 5 salient objects per image based on the
sequential eye gaze information. It provides 7,464, 1,436,
and 2,418 images for training, validation, and testing, re-
spectively. IRSR [28] considers both eye gaze sequences
and the duration of eye gaze for labeling the saliency ranks.
It also manually filters out inappropriate annotations. In
IRSR, each image involves at most 8 salient objects with
ranks. It contains 8,988 images, which are divided into
6,059 images for training and 2,929 images for test.

We adopt three metrics, i.e., Salient Object Ranking
(SOR) [19, 34], Segmentation-Aware SOR (SA-SOR) [28],
and Mean Absolute Error (MAE), to evaluate our method.
SOR computes the Spaearman’s rank-order correlation be-
tween the prediction and ground truth of the saliency rank-
ing order. This metric indicates the prediction quality
of relative saliency among objects rather than a particular
saliency ranking number for an object. SA-SOR calculates
the Pearson correlation between the prediction and ground
truth of saliency ranks. It also penalizes the errors of detect-
ing non-salient objects and false ranking. MAE measures
averaged per-pixel differences between the prediction and
ground truth of saliency map. Hence, it also helps measure
the ranking quality of an object depending on its overlap-
ping degree with the ground truth.

Implementation Details. Our network is built upon the
multi-stage query-based detector [14, 36]. Following their
settings, the stage number T is set to 6, and the query num-
ber N is set to 100. We utilize the Swin transformer [29]
pretrained on ImageNet [20] as our backbone. H and W
are initially set to 7 in the SOS module, and then reduced
to 2 in the OCOR module. We set the α to 1

2 and C to 256.
We experimentally set R = 4 and P = 8 for our SOS and
OCOR modules, respectively.

We train our model for 60 epochs on each dataset. The
learning rate starts from 2.5 × 10−5, and is divided by 10
at epochs 25 and 45. To optimize the model, we adopt
AdamW optimizer with a 1 × 10−4 weight decay. Images
are resized to 800× 800 resolution. We use random flip for
data augmentation. The batch size is set to 16 for training
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on 4 Tesla GPU cards. We train the ranking head with set
prediction loss [14, 36] and saliency ranking loss [28], and
the mask head with dice loss [30]. We test our model on a
single Tesla GPU card with images of 800×800 resolution.

4.2. Baselines

Since saliency ranking is a relatively new task with only
four methods proposed, to evaluate our method comprehen-
sively, we design baseline methods for comparisons. We
find the Semantic Instance Segmentation task related to our
task in that they have a similar output formulation (i.e., ob-
ject instance maps + corresponding semantic categories)
to our task (i.e., salient instance maps + saliency ranks).
Hence, we include eight representative semantic instance
segmentation methods as baselines for comparisons.

• Mask R-CNN [15] is a popular two-stage detector. All
existing salient object ranking methods [12,28,34] are
built on it. Here, we have two versions: a ResNet-
based Mask R-CNN, and a Swin-based Mask R-CNN.

• BlendMask [5] is a single-stage anchor-free method
that integrates high-level task semantics (from top-
down) and low-level finer details (from bottom-up). It
provides a simpler baseline compared to the anchor-
based detectors [15].

• CenterMask [21] is also a single-stage anchor-free net-
work consisting of a channel attention-based backbone
(VoVNet) and a spatial attention-based mask head
for extracting informative semantics and suppressing
background noise, respectively.

• SOLO [43] proposes to classify and detect an instance
at each location of the feature grid. They directly com-
bine coordinate information with candidate object fea-
tures so that the detection can be more sensitive to the
object centroids and boundaries.

• Cascade R-CNN [3] and QueryInst [14] detect in-
stances in a progressive manner. They utilize cascaded
detectors in a network to refine the detection results
stage-by-stage.

• CBNetV2 [25] proposes to connect parallel backbones
in a top-down pathway. The higher-level features, with
coarser space information and finer semantic informa-
tion, of the former backbone can be used to enrich
lower-level features of the later backbone.

To adapt these methods for saliency ranking, we mod-
ify their output layers according to the amounts of saliency
ranks in the saliency ranking datasets. We train these meth-
ods using the saliency ranking loss [28].

4.3. Main Results

We compare our method to four existing saliency rank-
ing methods: RSDNet [19], ASSR [34], IRSR [28], and
SOR [12]; four salient object detection methods used
by [34] for comparison: S4Net [11], BASNet [32], CPD-R
[46], and SCRN [47]; and our eight baselines from seman-
tic instance segmentation: CenterMask [21], SOLO [43],
BlendMask [5], ResNet-based Mask R-CNN [15], Swin-
based Mask R-CNN [15], Cascade R-CNN [3], QueryInst
[14], and CBNetV2 [25].
Quantitative Comparisons. Table 1 shows the quantita-
tive results. From the comparison on the ASSR testing set,
we can see that S4Net performs the second best on SOR,
but the second worst based on MAE. This is because miss-
ing objects are not penalized by SOR but are considered by
MAE. SOD-based methods perform relatively bad on SOR,
as they do not have ability to rank object saliency. Several
SIS baselines perform well on the SR task. Overall, the pro-
posed method outperforms all methods compared by a large
margin on all three metrics and on both testing sets.
Qualitative Comparisons. We further qualitatively evalu-
ate our method, as shown in Figure 5. Due to limited space,
we only compare with the best performing methods in Ta-
ble 1. We can see that existing methods commonly suf-
fer from detecting non-salient objects, inferring incorrect
saliency ranks among objects, and under-/over-detection of
objects. The visual comparison show that our method is
able to individualize salient objects and infer their saliency
ranks accurately for diverse scenes.

4.4. Module Analysis

Ablation Study of Our Model. We begin by studying the
effectiveness of the proposed SOS and OCOR modules. Ta-
ble 2 shows the results. By removing each or both of them
from the network, we can see that the performance drops
significantly. This shows both SOS and OCOR modules are
important to the saliency ranking performance.
Internal Analysis of the SOS Module. We study how
Global Covariance Pooling (GCP) and Dynamic Rectifying
(DR) functions in the SOS module influence the saliency
ranking performance. Table 3 shows the results, from which
we can see that GCP and DR perform much more better
when they work together than individually.

Alternatives of the OCOR Module. Finally, we exploit
four alternative strategies to build bi-directional object-
context relations. S1: Given two object features and the
context features, we concatenate them together and feed
them to two conv. layers to learn their context relation; S2:
Based on S1, we apply channel-wise attention [45] on the
fused features; S3: Based on S1, we apply spatial-wise at-
tention [45] on the fused features; S4: Based on S1, we
apply both channel-wise and spatial-wise attentions [45] on
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Table 1. Quantitative comparison with 4 state-of-the-art saliency ranking methods, 4 salient object detection methods used by [34] for
comparison, and our 8 baselines in Section 4.2. We show their original tasks and backbones used (i.e., ResNet [16], VoVNet [21], and
Swin [29]) in the 2nd and 3rd columns. SID, SOD, SIS, and SR represent salient instance detection, salient object detection, semantic
instance segmentation, and saliency ranking, respectively. Methods with † denotes that their results are copied from their original papers.
- denotes missing results due to the lacking of publicly available implementations/results. Best performances are marked in bold.

Method Original Task Backbone
Benchmark Datasets and Evaluation Metrics

ASSR Test Set [34] IRSR Test Set [28]
SA-SOR↑ SOR↑ MAE↓ SA-SOR↑ SOR↑ MAE↓

S4Net† [11] SID ResNet-50 - 0.891 0.150 - - -
BASNet† [32] SOD ResNet-34 - 0.707 0.115 - - -
CPD-R† [46] SOD ResNet-50 - 0.766 0.100 - - -
SCRN† [47] SOD ResNet-50 - 0.756 0.116 - - -
RSDNet [19] SR ResNet-101 0.499 0.717 0.158 0.460 0.735 0.129
ASSR [34] SR ResNet-101 0.667 0.792 0.101 0.388 0.714 0.125
IRSR [28] SR ResNet-50 0.709 0.811 0.105 0.565 0.806 0.085

SOR† [12]
SR and SIS

(joint learning)
VoVNet-39 - 0.841 0.081 - - -

CenterMask [21] SIS VoVNet-99 0.672 0.813 0.099 0.509 0.771 0.113
SOLO [43] SIS ResNet-101 0.655 0.805 0.112 0.499 0.745 0.126

BlendMask [5] SIS ResNet-101 0.694 0.822 0.094 0.531 0.785 0.098
Mask R-CNN [15] SIS ResNet-101 0.632 0.739 0.123 0.480 0.699 0.137
Mask R-CNN [15] SIS Swin-L 0.643 0.750 0.118 0.489 0.712 0.128

Cascade R-CNN [3] SIS Swin-L 0.699 0.816 0.100 0.520 0.766 0.105
QueryInst [14] SIS Swin-L 0.715 0.837 0.095 0.542 0.799 0.087
CBNetV2 [25] SIS Cascaded Swin-L 0.704 0.827 0.101 0.514 0.780 0.091

Ours SR Swin-L 0.738 0.904 0.078 0.578 0.834 0.079

Table 2. Ablation study of the SOS and OCOR modules.

Method SA-SOR ↑ SOR↑ MAE↓

w/o SOS, OCOR 0.715 0.837 0.095
w/o SOS 0.729 0.885 0.084

w/o OCOR 0.722 0.870 0.090
Ours 0.738 0.904 0.078

Table 3. Internal analysis of the SOS module.

Method SA-SOR ↑ SOR↑ MAE↓

Baseline 0.715 0.837 0.095
Baseline + GCP 0.715 0.840 0.092
Baseline + DR 0.719 0.857 0.094
Baseline + SOS 0.722 0.870 0.090

the fused features. Table 4 shows that our OCOR module
outperforms all these baselines, verifying that our OCOR
module can capture region-level context relating to an ob-
ject and build bidirectional object-context relations well.

5. Conclusion

In this paper, we have studied the saliency ranking prob-
lem. We observe that the human visual system leverage
both spatial and object-based attentions for handling the vi-

Table 4. Comparison of different strategies for modeling object-
context-object relation.

Method SA-SOR ↑ SOR↑ MAE↓

Baseline 0.715 0.837 0.095
Baseline + S1 0.718 0.842 0.092
Baseline + S2 0.719 0.845 0.093
Baseline + S3 0.722 0.853 0.090
Baseline + S4 0.722 0.857 0.088

Baseline + OCOR 0.729 0.885 0.084

sual inputs. We therefore propose a bi-directional Object-
Context Prioritization Learning approach for saliency rank-
ing. A selective object saliency module is proposed to
model object-based attention via capturing and enhanc-
ing object semantic representation. An object-context-
object relation module is proposed to model spatial atten-
tion through studying how an object with its regional con-
text would interact with other objects with their regional
contexts. Extensive experiments have verified the effective-
ness of our method against state-of-the-art methods.

Our work does have a limitation. When objects with the
same functionality appear in a scene with a narrow context,
our model may fail to infer correct saliency ranking. Fig-
ure 6 shows two examples. In the first row, the left and right
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Image RSDNet
[19]

BlendMask
[5]

CenterMask
[21]

SOLOv2
[43]

Cascade
R-CNN [46]

CBNetv2
[25]

QueryInst
[14]

ASSR
[34]

IRSR
[28]

Ours GT

(1) Examples of ranking salient objects based on their interactions about the activity context of a scene.
Row 1: playing a video game, Row 2: flying a kite, Row 3: human-to-animal interaction, and Row 4: playing the baseball.

(2) Examples of ranking salient objects based on their correlated functionalities.
Row 5: computer in an office, and Row 6: food of a meal.

(3) Examples of ranking salient objects based on their semantics and positional contexts.
Row 7: two sinks at different distances and a small liquid soap in the middle, and Row 8: a nearby cat and a distant bird.

(4) Examples of ranking salient objects based on their semantics and low-level stimulus.
Row 9: a man holding a colorful kite, and Row 10: a woman, and a girl grabbing a colorful umbrella.

lowhigh

Figure 5. Qualitative comparison of our method with existing saliency ranking approaches and baseline methods. Above each image group,
we summarize the scenarios of the images used for the test.

Input image Our prediction Ground truth

Figure 6. Our method may fail to infer accurate saliency ranks for
objects with a similar functionality and interaction with the global
contexts.

screens interact with the global context symmetrically. In
the second row, these donuts are all visually attractive. We
suspect that in these scenarios, even humans may not have
a consistent ranking. In the future, we would like to delve
deeper into the human visual system for more cues to help
with the saliency ranking task.
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