
Bring Evanescent Representations to Life in Lifelong Class Incremental
Learning

Marco Toldo 1,2* Mete Ozay1

1Samsung Research UK 2University of Padova
marco.toldo@dei.unipd.it m.ozay@samsung.com

Abstract

In Class Incremental Learning (CIL), a classification
model is progressively trained at each incremental step on
an evolving dataset of new classes, while at the same time,
it is required to preserve knowledge of all the classes ob-
served so far. Prototypical representations can be lever-
aged to model feature distribution for the past data and in-
ject information of former classes in later incremental steps
without resorting to stored exemplars. However, if not up-
dated, those representations become increasingly outdated
as the incremental learning progresses with new classes. To
address the aforementioned problems, we propose a frame-
work which aims to (i) model the semantic drift by learn-
ing the relationship between representations of past and
novel classes among incremental steps, and (ii) estimate
the feature drift, defined as the evolution of the represen-
tations learned by models at each incremental step. Se-
mantic and feature drifts are then jointly exploited to infer
up-to-date representations of past classes (evanescent rep-
resentations), and thereby infuse past knowledge into incre-
mental training. We experimentally evaluate our framework
achieving exemplar-free SotA results on multiple bench-
marks. In the ablation study, we investigate nontrivial rela-
tionships between evanescent representations and models.

1. Introduction

Continual learning (also called lifelong learning) refers
to the ability to continuously learn and adapt to new envi-
ronments, exploiting knowledge gained from the past for
solving novel tasks. Though being a common human trait,
lifelong learning methods are hardly deployed in practical
systems. As a matter of fact, learning models are usually
constrained to well-defined and narrow tasks, where they
can achieve remarkable performance. Nonetheless, when
training a model on a continuous stream of tasks, the catas-
trophic forgetting arises; new information acquired by the

*Researched during internship at Samsung Research UK

Evanescent
Representations

Catastrophic
Forgetting by

Representation
Evanescence

Modeling Semantic Drift

Modeling Feature Drift

Learning new
classes causes

representations
of past data
to change

New class
representations

Evanescent
representations
of old classes

Old class
prototype

Feature drift
(learned)

Semantic
drift (learned)

Decision
boundaries

Semantic
drift (inferred)

Feature drift
(inferred)

Revived
Evanescent

Representations

Revived
Evanescent

Representations

Figure 1. In CIL, training models on new classes causes represen-
tations of past categories to constantly change. Yet, unavailability
of data of former classes prevents from tracking their evolution in
feature spaces, leading to evanescence of their representations and,
in turn, to catastrophic forgetting. We propose to model represen-
tation drift on a semantic level (i.e., relationship among novel and
past classes) and on a feature level (i.e., the combined evolution of
features learned by a classification model), and exploit it to infer
up-to-date representations of past classes. By injecting old-class
knowledge into the learning process, we counteract forgetting.

model tends to erase what has been experienced so far.
Continual learning has been extensively studied in a

class incremental fashion [6, 22, 23]. In class incremental
learning (CIL), a model is employed with sequential tasks,
where classes to be learned progressively change (Fig. 1).
For each incremental training task and step t, the training
set is composed of images belonging to the current class set
Ct, whereas past semantic categories Cold , {Ct′}t−1

t′=1 lack
any training sample. The goal of the model is to maximise
the generalisation (classification) accuracy on all the classes
observed up to the current step. Yet, the change of distribu-
tion of training data Dt in the form of semantic drift (i.e.,
due to change of experienced class set Ct) leads to forget-
ting, where bias towards new data causes past information
to be gradually erased and learned representations to be con-
stantly updated (i.e., feature drift) focusing on new tasks.

Contributions of this work to overcome the aforemen-
tioned limitations can be summarised as follows:

16732

• To expound the forgetting phenomena in CIL, we ex-
plore dynamics of incrementally learned classifiers using
a probabilistic approach. Our investigation (Fig. 1) sug-
gests that a source is the evanescence of representations
Fold learned using old classes Cold and unavailability of
their distribution p(Fold) in incremental steps (Sec. 3).

• To revive the evanescent representations (ERs), we devise
a framework which enables to model different types of
representation drifts modularly. In the framework (Fig. 1,
2 and 3), we first define the change of feature represen-
tations by feature drift (i.e., due to constantly evolving
feature representations of different patterns learned from
data in CIL) and propose an effective method to model it
(Sec. 4.1). Next, we define the change of representations
of classes by semantic drift (i.e., due to the change of se-
mantic categories learned at different incremental steps)
and propose an effective method to model it (Sec. 4.2).

• We propose to train semantic and feature drift models
together with feature learning and classification models.
The proposed method integrates learning and inference in
training: it is used to estimate distributions p(Fold) to be
exploited for preserving knowledge of Cold while learning
new representations for Ct, ∀t (Sec. 5).

• In the experimental analyses, our proposed methods
outperform SotA exemplar-free competitors on various
benchmarks. We also provide a detailed ablation study of
geometric and statistical properties of drift models (Sec.
6). Our experimental results explicate the nontrivial rela-
tionships between accuracy of models and distribution of
evanescent and revived representations in CIL (Sect. 6.2).

2. Related Work
Most of the successful CIL methods use exemplars of

old classes Cold to rehearse past knowledge [1, 3, 4, 7, 8, 12,
18, 20, 25, 27, 32, 36]. However, storing samples belonging
to all classes might be impractical due to limited resource
availability or privacy requirements. To address CIL with-
out storing exemplars, regularisation methods have been
proposed [2, 5, 16, 39, 41]; the common goal is to identify
key model parameters to solve old tasks, and prevent their
change when learning a new task. Alternatively, knowledge
distillation [11, 19] has been introduced, where representa-
tions of new classes are forced to only slightly deviate from
their original version computed at the beginning of an incre-
mental step for learning the current task. Yet, those meth-
ods usually underperform state-of-the-art (SotA). Genera-
tion of pseudo-exemplars of past classes has been proposed
in [15, 26, 28, 34, 37]. Nonetheless, these works resort to
complex generative frameworks, which still must address
an additional generative auxiliary task. We instead operate
in feature spaces, where we can effectively leverage pro-
totypes [29] and use lightweight models. Causal networks
have been exploited for CIL [13], and provided SotA accu-

racy if jointly applied on top of exemplar-based methods.
An exemplar-free approach using self-supervised learning
was devised in [35], yet with focus on embedding networks.

In [43], class prototypes were used to inject past knowl-
edge. Although showing promising results, this method
fails to capture the representation drift that is present while
incrementally training models. This is because represen-
tations Fold , {Ft′}tt′=1 of Cold (computed when corre-
sponding data is available and then kept fixed for the rest of
the training) are getting constantly staler and more outdated
as the learning progresses and models are updated. A differ-
ent work [40] proposes to estimate the change of prototypes
Πold , {Πt′}tt′=1 of Cold while learning Ct. However, they
(i) do not directly capture the relationship between semantic
representations of old (Πold) and new classes (Πt′), rather
focusing on estimating the change of drifts across Cold and
Ct, (ii) neglect what we call feature drift, that is the joint
evolution of model features during single task training (i.e.,
they treat feature representation drift independently for each
feature channel), (iii) limit their scope to embedding learn-
ing and (iv) devise a non-learnable module to estimate pro-
totype shift, where we show that our framework learning
representation drift provides models with higher capacity,
and leads to overall improved classification accuracy.

3. Learning Representations in CIL
At each step t ∈ [T] = {0, 1, . . . , T} of CIL, we are

given a datasetDt = (Xt,Yt), where Xt = {xt,j}Nt
j=1 is the

set of samples, Yt = {yt,j ∈ Ct}Nt
j=1 is the set of their

labels. Ct is the set of class labels observed at this step, and
Ct ∩Ct′ = ∅,∀t 6= t′. Popularly employed CIL models [43]
are composed of a feature extraction model fθ ∈ F and a
classifier hφ ∈ H with parameters θ ∈ Θ and φ ∈ Φ. At
each tth step, the models are trained by solving

arg min
θt,φt,ε

Ltcc +

t−1∑
t′=0

εt′ , (1)

where Ltcc , Lµt(Dt; θt, φt) is the expected loss of the
model gt = hφt

◦fθt onDt sampled from a distribution µt at
step t, while εt′ controls forgetting of representations of old
classes [43]. Generative classifiers implementing hφ ∈ H
optimise (1) to model p(C,F ;P) where P = Θ ∪ Φ. Dis-
criminative classifiers, such as softmax classifier, optimise
(1) to model p(C|F ;P) defining the loss by a function (e.g.,
cross-entropy) of p(C|F ;P). CIL methods aim to model
p(C,F |Pt) without using {Dt′}tt′=0 at t, where
• Pt = Θt ∪ Φt, Θt = {θt′}tt′=0 and Φt = {φt′}tt′=0

1,
• F ∈ F = Ft ∪ Fold is the random variable taking values

from the set of feature representations Ft learned at step
t on Dt and from Fold = {Ft′}t−1

t′=0, and
1In some CIL methods, models trained at earlier steps t′ < t are frozen

and re-used at consecutive steps, while the other methods incrementally
update the models at each step. In the latter case, Pt = {θt} ∪ {φt}.

16733

Term Distribution Term Distribution
PC p(Fold,Ft) P12 p(Ct,Ft,Fold)
P1 p(Ct,Ft) P13 p(Ct, Cold,Ft)
P2 p(Ct,Fold) P14 p(Cold,Ft,Fold)
P3 p(Cold,Ft) P24 p(Ct, Cold,Fold)
P4 p(Cold,Fold) P34 p(Cold,Fold,Ft)

Table 1. Factors of the classification probablity p(C|F) modeled
by a discriminative classifier in CIL.

• C ∈ C = Ct ∪ Cold is a random variable of semantic
(class) representations, where Cold = {Ct′}t−1

t′=0.
To elucidate the dynamics of models used for CIL in this

setting, we factorize the probability p(C ∈ C|F ∈ F) by2

p(C ∈ C|F ∈ F) ∝PA −PB
PC

, (2)

where PC , PA := P1 +P2 +P3 +P4, and PB := P12 +
P13 + P14 + P24 + P34 are expressed in Table 1. More
details are provided in supplemental material.

Deep learning models have been employed to model
these probabilities implicitly by learning representations of
old and new classes, and make predictions for new classes:
(i) Class posterior probabilities for old (p(C ∈ Cold|•))
and new classes (p(C ∈ Ct|•)) are computed using classi-
fiers hΦt′ ,∀t

′ ∈ [t]. (ii) Feature representationsFt of new
classes Ct are learned by updating fΘt′ ,∀t

′ ∈ [t].
Evanescent Representations (ERs): At the tth step, we

do not have access to old samples Dold = {Dt′}t−1
t′=0. Thus,

features Fold cannot be extracted from Dold. Therefore,
methods aiming to learn representations via (2) treat PC ,
which denotes the distribution of features learned using old
classes, as a normalising partition function, and ignore it to
compute p(C ∈ C|F ∈ F) ∝ PA −PB .

To address this problem and bring the evanescent
representations Fold to life, we exploit class proto-
types3 π ∈ Πold. We leverage prototypes at the begin-
ning of an incremental step to model their distribution
p(F ∈ Fold|πc ∈ Πold) (denoted by Fold ∼ Πold in Fig. 2
and Fig. 3). Then, we update p(F ∈ Fold) throughout the
incremental step by modeling the representation drift to re-
vive evanescent representations. In the next section, we will
provide a detailed description of the proposed approach.

4. Modeling Representation Drift
Let F0

t denote the set of features extracted using a fea-
ture extractor fθt at the beginning of the incremental step
t, and Fnt denote the set of features extracted using fθt
updated with n > 0 optimisation stages from the dataset
Dt. Since only Dt is available at the step t, F0

t and Fnt
contain only representations of new classes Ct. Similarly,
Πt,0
old and Πt,n

old are the set of semantic representations (pro-
totypes) of old classes Cold, respectively available at the be-
ginning of the step t and updated at the nth stage (n > 0) of

2We drop Pt when dependency on it is trivial for the sake of simplicity.
3We obtain prototypes by computing class-wise mean of features [43].

New class
input data

New class
representations

Learning Semantic Drift

LP
GM

VM
.

Stage 0

Learning Feature Drift

LP
GM

VM
.

Stage nfrozen at stage n of step t

Old class
prototypes at
beginning of

step t

frozen at the
beginning of step t

Evanescent old
class features

Figure 2. Illustration of the learning phase (LP) of semantic and
feature drift models. SD (top): we model the relationship between
representations of new and old classes at the beginning of the in-
cremental step. FD (bottom): we capture the evolution of repre-
sentations of novel classes within the incremental step.

the same step. Moreover, we remark that storing prototypes
is very memory efficient and compliant to privacy require-
ments [43], since a very limited amount of processed data
has to be stored (i.e., comparable to the size of a classifier).

We propose modeling the drift of feature and semantic
representations using two models: (i) Γγ parameterized by
γ, and (ii) Ψψ parameterized by ψ in two phases:
• In the Learning Phase (LP); the parameters γ and ψ are

optimized to estimate the relationship among representa-
tions available at an incremental step t (Fig. 2).

• In the Inference Phase (IP); the learned models Γγ and
Ψψ are used to infer Fnold which are evanescent represen-
tations revived at the step t (Fig. 3).

The following subsections present the methods proposed for
modeling drifts. To identify and train Γγ and Ψψ , we pro-
pose employment of Gaussian (GM) and Variational (VM)4

models parameterized by DNNs. We introduce model train-
ing algorithms in Sec. 5. The analyses given in Sec. 6 show
that GMs provide more robust accuracy since they do not
suffer from pathologies of VMs [21, 38]. On the other hand,
VMs can provide higher accuracy for small Dt.

4.1. Modeling Feature Drift

4.1.1 Learning Phase

We aim at modeling the feature drift (FD) on Dt as repre-
sentations revive and evolve throughout the step t > 0 as
depicted in Fig. 2. At stage n > 0, we extract Fnt and train
Γγn

t
to learn the relationship between F0

t and Fnt .
GM: To employ GMs, we first identify Γγn

t
: F0

t → Fnt
by a DNN, e.g., a multilayer perceptron (MLP). Then,
Γγn

t
is trained to track and model the evolution of revived

evanescent representations (RERs) from stage 0 to n.
VM: We consider Γγn

t
as a stochastic map and identify

it by a variational model such as a variational auto-encoder
(VAE). The VM is trained by maximising the likelihood

4Although Gaussian processes can be used for VMs [14], we consider
GMs and VM individually to explicate variational structure of VMs.

16734

Evanescent
representations

at beginning
of step t

New class
input data

Step t - Stage n

Stage 0

Stage nfrozen

New class
features

Revived
evanescent

representations

Rehearse
old classes

Learn new
classes

Model
fusion

Inferring Feature Drift

Inferring Semantic Drift

IP
GM

VM
.

IP
GM

VM
.

(frozen)

(frozen)

Figure 3. An outline of our CIL framework augmented with the proposed representation drift models. A classifier is trained on the dataset
Dt at step t (Ltce). Feature knowledge distillation (Ltfkd) is used to reduce feature drift. We exploit the drift models learned in LP (Fig. 2) to
infer revived evanescent representations (RERs), which are leveraged by Ltrd to inject past knowledge into the current training procedure.

p(F ∈ Fnt |F ∈ F0
t ; γnt). Thereby, we can statistically

model the FD across different stages [n] at a given step t.

4.1.2 Inference Phase

In the LP, the model Γγn
t

is trained to learn the drift expe-
rienced by features of Ct. In the IP (Fig. 3), we exploit the
trained Γγn

t
to infer the FD undergone by features of Cold,

and distribution p(F ∈ Fnold) of RERs.
GM: We use Γγn

t
to infer representations of old class

prototypes Πt,n
old at stage n > 0 under the FD. That is,

Γγn
t

enables us to directly track the trajectory of Πt
old from

stage 0 to n, and thus map Πt,0
old to Πt,n

old,f . If n = 0, then
Γγ0

t
is an identity map. Finally, we approximate the distri-

bution p(F ∈ Fnold) of RERs at stage n by a Gaussian dis-
tribution p(F ∈ Fnold;πc ∈ Πt,n

old,f) ∼ N (πc, σc). For both
GM and VM, the standard deviation σc is estimated at step
t′ when c ∈ Ct′ , and kept fixed at every step t′′ > t′.

VM: The trained model Γγn
t

provides an approxi-
mation of p(F ∈ Fnold|F ∈ F0

old). At stage n = 0,
we resort to p(F ∈ F0

old), as no feature drift has to
be estimated, and we model the distribution of RERs
by p(F ∈ F0

old) ∝ p(F ∈ F0
old;πc ∈ Πt,0

old) ∼ N (πc, σc).
At n > 0, training features are sampled from
p(F ∈ Fnold|F ∈ F0

old; γ
n
t) · p(F ∈ F0

old).

4.2. Modeling Semantic Drift

4.2.1 Learning Phase

We aim at capturing the semantic drift (SD) experienced by
representations at each incremental step. To this end, at the
beginning of each step, we extract F0

t and train a network
Ψψ0

t
with parameters ψ0

t to model the relationship between
F0
t and F0

old. We employ prototypes π ∈ Πt,0
old to model

p(F ∈ F0
old) ∝ p(F ∈ F0

old;πc ∈ Πt,0
old) ∼ N (πc, σc). As

opposed to Γγ , Ψψ captures the SD observed at each new
step. Therefore, an individual model Ψψ is optimised at the
start, and fixed for the rest of the step (i.e., ψnt = ψ0

t). When
model fusion is adopted, instead, Ψψ is re-trained once per
stage , to account for the drift estimated by Γγ (Sec. 5.2).

GM: We first identify Ψψn
t

: F0
t → Πt,0

old by a DNN.
(e.g., MLP). Then, Ψψn

t
is trained to model the SD between

representations for classes available at the current step (Ct)
and those experienced in the past (Cold).

VM: We first approximate the distribution p(F ∈ F0
old)

of evanescent representations revived at stage n = 0 by
p(F ∈ F0

old;πc ∈ Πt,0
old) ∼ N (πc, σc). Then, a conditional

VM (e.g., VAE) is trained by maximising the likelihood
p(F ∈ F0

old|F ∈ F0
t ;ψnt) to learn the representations

shared among old and new classes.

4.2.2 Inference Phase

In the LP, Ψψn
t

is trained to learn the SD experienced while
moving from Cold to Ct. The drift is captured at the begin-
ning of the current step t, when up-to-date representations
of both sets are available. We now exploit the trained Ψψn

t

to infer the SD undergone at every stage n > 0, and esti-
mate the distribution p(F ∈ Fnold) of RERs.

GM: We use the trained Ψψn
t

to infer representations
of old class prototypes Πt,n

old,∀n ≥ 0 under SD. That
is, Ψψn

t
: Fnt → Πt,n

old,s is trained to estimate the rela-
tionship between feature and prototypical representations
at stage n. We then approximate p(F ∈ Fnold) by
p(F ∈ Fnold;πc ∈ Πt,n

old,s) ∼ N (πc, σc).
VM: The trained model Ψψn

t
provides an approximation

of the distribution p(F ∈ Fnold|F ∈ Fnt), ∀n ≥ 0. To gen-
erate training feature samples, we perform inference using
p(F ∈ Fnold|F ∈ Fnt ;ψnt) · p(F ∈ Fnt), where Fnt is pro-
vided by fθt trained for n optimisation stages and applied
on samples from Dt.

5. Training Models of Representation Drift
5.1. Training Classification Models

At each step t, we train gt = hφt
◦ fθt on Dt using a

cross-entropy loss Ltce , Lce(Dt).
When t > 0, to mitigate forgetting of previous tasks, we

generate features of Cold by modeling the drift and estimat-
ing the distribution p(F ∈ Fold). Thus, we compute

16735

Algorithm 1: Training Models.
Input: {Dt}Tt=0 (datasets), N (num. of stages per step).
Output: gT = hφT ◦ fθT .

1 Train fθ0 and hφ0 with L0
cc, and compute Π0

new.
2 Initialise Πt=1,0

old as Π0
new.

3 for each incremental step t← 1 to T do
4 for each optimisation stage n← 0 to N − 1 do
5 LP: Train Γγnt and Ψψn

t
by solving (5).

6 IP: Estimate p(Fnold) and Πt,n
old.

7 Train fθt and hφt by solving (6).
8 end for
9 LP: Train ΓγNt

and ΨψN
t

by solving (5).

10 IP: Estimate Πt,N
old and Πt

new.
11 Initialise Πt+1,0

old := Πt
new ∪Πt,N

old .
12 end for

Ltrd , Lrd(Fn,told) =
∑

F∈Fn,t
old

yF log hφt(F) (3)

where yF is the one-hot label vector of the class cF ∈ Cold
andFn,told is the set of RERs sampled from the estimated dis-
tribution using the updated prototypes of Cold. The loss Ltrd
approximates Lµt′ (Dt′ ; θt, φt) ≤ εt′ of gt on the previous
datasets {Dt′}t−1

t′=0 using their inferred representations.
We enhance the training objective by a distillation loss

Ltfkd , Lfkd(Dt) [7] to reduce the entity of representa-
tion drift across incremental tasks. Ltfkd is defined by the
`2 distance between representations extracted from Dt us-
ing fθt and fθt−1 , the latter inherited from the previous step
and kept fixed. Thereby, Ltfkd approximates the difference
between Ltcc and the loss Ltpc of the previous model fθt−1

on Dt. Although Ltpc is not explicitly defined in (1), it pro-
vides information regarding shareability of representations
among consecutive steps t−1 and t. Therefore, models op-
timising Ltfkd can make use of the feature shareability for
learning drifts. Then, the overall classification objectiveLtcc
computed at each step t is Ltcc = Ltce+λrdL

t
rd+λfkdL

t
fkd,

where Ltrd and Ltfkd are used only for t > 0 with loss bal-
ancing parameters λrd > 0 and λfkd > 0.

5.2. Training Representation Drift Models

The loss functions Ltf , Lf (F0
t ,Fnt ; γnt) and

Lts , Ls(F0
t ,Π

t,0
old;ψ

n
t) denote the objectives used to

individually train feature and semantic drift models Γγn
t

and Ψψn
t

, respectively. The exact form of the afore-
mentioned objectives depends on the employed network
architecture identifying Γγn

t
and Ψψn

t
. A more detailed

description is provided in the supplementary material.
Model Fusion (MF): To estimate p(F ∈ Fnold) using

GM and VM, we fuse the output of Γγn
t

and Ψψn
t

by
jointly training them. For this purpose, we optimise model
parameters by minimising a measure of discrepancy be-

tween the estimated distributions p(F ∈ Fnold; γnt) and
p(F ∈ Fnold;ψnt) employing the training objective

Ltfus =‖Πt,n
old,s −Πt,n

old,f‖
2
2

+ λcorr‖ρ(Πt,n
old,s)− ρ(Πt,n

old,f)‖22
(4)

where the subscript s and f denotes the updated prototypes
of old classes estimated by the semantic and feature drift
models, respectively, ‖·‖22 is the squared `2 norm, λcorr > 0
is the regularisation parameter and ρ(Π) is the normalised
correlation matrix of Π [9]. Finally, the renovated distri-
butions p(F ∈ Fnold; γnt) and p(F ∈ Fnold;ψnt) are linearly
combined with equal weights to obtain p(F ∈ Fnold).

Then, the overall objective used to learn representation
drift is defined by Ltdrift = Lts + Ltf + λfusL

t
fus where

λfus > 0 is the loss balancing parameter. We note that
Ltdrift measures the loss of current models on inferred rep-
resentations of old classes. Thereby, we aim at reducing
forgetting (εt), i.e., the discrepancy between RERs as es-
timated by drift models and their evanescent (unavailable)
counterparts by training models optimising Ltdrift.

5.3. Optimisation of Model Parameters

In the previous subsections, we designed the loss func-
tions to capture losses induced by representation drift in CIL
while training classification models. Consequently, we con-
sider training models by minimizingLtcc+L

t
drift,∀t. At the

incremental step t = 0, we train fθ0 and hφ0
with Lce(D0).

At each step t > 0, we train classification and drift models
in an alternate fashion as follows:
• Fnt is extracted from Dt using fθt , and Γγn

t
and Ψψn

t
are

trained until convergence5 by solving

arg min
γn
t ,ψ

n
t

Ltdrift(Π
t,0
old,Π

t,n
old,{f,s},F

0
t ,Fnt ; γnt , ψ

n
t). (5)

• First,Fnold is estimated by drift models Γγn
t

and Ψψn
t

(em-
ployed individually or fused). Then, Πt,n

old is computed by
class-wise averaging features sampled from p(F ∈ Fnold).
Finally, fθt and hφt are trained on D̃t = Dt ∪ Fnold by

arg min
θt,φt

Ltcc(D̃t; θt, φt). (6)

At the end of step t≥ 0, we compute Πt
new={πc, c ∈ Ct}

by class-wise average of feature representations fθt(Dt) of
input samples and initialise Πt+1,0

old = Πt,n
old ∪Πt

new, where
Πt,n
old = ∅ for t = 0. A detailed description of the training

procedure is given in Algorithm 1.

6. Experimental Results
Datasets. We evaluate our approach on multiple stan-
dard CIL benchmarks, that is, CIFAR100 [17], TinyIma-
geNet [24] and CUB200-2011 [33] datasets. We devise 3

5The convergence criterion for a model is early stopping the optimisa-
tion of model parameters if the training loss does not change for τ steps.

16736

PASS SDC Fusion (GM-MLP) Fusion (VM-VAE)

0 1 2 3 4 5
Incremental Step

60

65

70

75

80

To
p-

1
Ac

cu
ra

cy
 (%

)

CIFAR100 (5 Steps)

0 2 4 6 8 10
Incremental Step

50

55

60

65

70

75

80
CIFAR100 (10 Steps)

0 5 10 15 20
Incremental Step

50

55

60

65

70

75

80

CIFAR100 (20 Steps)

0 1 2 3 4 5
Incremental Step

55

60

65

70

To
p-

1
Ac

cu
ra

cy
 (%

)

CUB200 (5 Steps)

0 2 4 6 8 10
Incremental Step

40

45

50

55

60

65

70

CUB200 (10 Steps)

0 5 10 15 20
Incremental Step

20

30

40

50

60

70

CUB200 (20 Steps)

Figure 4. Per step average top-1 accuracy (%) on the CIFAR100 and CUB200-2011 datasets.

class-incremental setups; first, the framework is trained on
half of the available semantic classes (except for one setup
on CIFAR100, where only 40 classes are selected as the
first task); then, the remaining class set is evenly divided
into respectively 5, 10 or 20 incremental steps. Class order
is selected randomly and then fixed at every class split.
Implementation details. ResNet-18 [10] is used as a back-
bone. The model is trained for 100 epochs (i.e., N = 100
and each stage corresponds to one epoch over Dt) at each
incremental step with Adam optimiser. Learning rate is ini-
tialised to 1e−3 for CIFAR100 and TinyImageNet, and to
1e−4 for CUB200-2011. It is decreased by a factor of 0.1
after 45 and 90 epochs [43]. Images are cropped to 32×32,
64 × 64 and 256 × 256 for CIFAR100, TinyImageNet and
CUB200-2011 respectively, and randomly flipped. We ap-
ply input and label augmentation [43]. We set batch size to
64, and λfkd = 10 and λrd = 10 in all experiments.

We employed lightweight DNNs to identify networks of
Γγ and Ψψ to model representation drifts. In particular,
we investigate the use of GMs with an MLP, and we use
a conditional VAE [30, 42] to implement VMs, where hy-
perparameters are experimentally tuned. We implement the
fusion loss (4) using two methods for an ablation: we de-
fine ρ by (i) a normalised feature kernel matrix [9], and (ii)
an identity map, i.e., A = ρ(A). The results obtained by
(ii) are marked by † in the tables. An extensive description
of the implementation and training details of Γγ and Ψψ is
provided in the supplemental material.
Comparisons. We compare our approach with several
CIL methods storing exemplars of old classes (EEIL [3],
iCarl [25], UCIR [12], DER [39]) and other SotA exemplar-
free methods (EWC [16], LwF [19], LwM [7], PASS [43],
SDC [40]). As for exemplar-based methods, we store 20
samples with herd selection [12, 25]. We evaluate SDC [40]
by employing the prototype drift compensation proposed
in [40] to update prototypes of past classes, and model
old-class feature distribution by Gaussians as discussed in
Sec. 4. In the following sections, we will show how our
methods outperform SotA exemplar-free frameworks, while
surpassing some approaches that make use of exemplars.
Evaluation metrics. We use a per-step incremental accu-
racy metric [43] defined as the average top-1 classification
accuracy over all classes observed up to the current incre-

Table 2. Per-class average top-1 accuracy (%).
CIFAR100 TinyImageNet

Method 5 Steps 10 Steps 20 Steps 5 Steps 10 Steps 20 Steps

Fine-tuning 9.09 4.49 2.76 8.12 4.34 2.33
Joint 72.24 72.24 72.24 58.19 58.19 58.19

EWC [16] 26.26 19.92 3.82 14.63 6.73 3.62
LwF [19] 39.51 18.00 12.58 40.62 24.43 22.62
LwM [7] 40.49 38.39 33.65 28.39 27.18 23.55
EEIL [3] 45.26 41.36 34.84 32.03 28.93 27.25
iCarl [25] 54.06 51.11 41.20 41.81 41.39 38.68
UCIR [12] 51.13 46.00 38.31 35.73 32.95 29.23
DER [39]∗ 66.33 65.76 - - - -
PASS [43] 56.53 47.54 47.30 47.00 41.50 29.04
SDC [40] 57.62 52.26 48.84 47.89 45.41 41.46

Feat. Drift (GM-MLP) 57.91 54.45 50.63 47.48 45.19 40.56
Sem. Drift (GM-MLP) 58.33 54.15 50.85 47.92 46.21 42.43
Fusion† (GM-MLP) 58.89 55.95 51.61 47.95 46.36 42.43
Fusion (GM-MLP) 59.37 55.99 51.91 48.56 46.50 42.81

Feat. Drift (VM-VAE) 56.99 53.69 51.09 47.88 44.67 41.05
Sem. Drift (VM-VAE) 58.17 55.38 51.65 48.60 46.24 43.44
Fusion† (VM-VAE) 58.76 55.50 51.72 48.74 46.46 42.72
Fusion (VM-VAE) 58.72 56.86 51.75 48.57 46.92 44.61

† Without using the correlation objective [9] in fusion loss.
∗ Numerical values were directly taken from [39].

mental step k: āk = 1/|C0:k|
∑
c∈C0:k a

k
c , C0:k = ∪kt=0Ct,

where akc denotes the accuracy for class c attained at step k.
Accuracy results in Table 2 and 3 are computed at the end of
the last incremental step. Additional implementation details
and results are provided in the supplemental material.

6.1. Comparison with the State-of-the-Art

CIFAR100. Results given in Table 2 show that our mod-
els (with the best achieved accuracy) outperform the closest
SotA (SDC) by 1.75%, 4.6% and 3.07% for 5, 10 and 20
steps. In Fig. 4, for the sake of clearance of presentation
of results, we only provide per-step incremental accuracy
of Fusion (GM-MLP and VM-VAE). The results show the
improved accuracy achieved by our models with respect to
the competitors throughout the incremental steps.
TinyImageNet. Table 2 shows that our framework outper-
forms exemplar-based competitors and the SotA methods
not using exemplars [43, 40]. In particular, our drift models
yield superior performance w.r.t. SDC [40]. This is espe-
cially true when semantic and feature representation drifts
are jointly taken into account, showing that they both indi-
vidually model crucial and complementary information by
model fusion, which is not fully captured by SDC [40].
CUB200-2011. Table 3 shows that non-exemplar methods
provide quite low results, especially when the number of

16737

Table 3. Per-class average top-1 accuracy (%).
CUB200

Method 5 Steps 10 Steps 20 Steps

Fine-tuning 10.93 7.10 4.63
Joint 74.67 74.67 74.67

EWC [16] 10.63 6.43 4.65
LwF [19] 26.40 13.65 7.89
PASS [43] 52.14 37.97 18.29
SDC [40] 52.30 38.30 18.17

Feat. Drift (GM-MLP) 55.87 50.67 31.36
Sem. Drift (GM-MLP) 56.51 47.89 32.50
Fusion† (GM-MLP) 56.20 52.07 36.67
Fusion (GM-MLP) 56.28 51.82 37.99

Feat. Drift (VM-VAE) 57.39 51.29 32.72
Sem. Drift (VM-VAE) 57.34 51.88 33.34
Fusion† (VM-VAE) 56.59 52.00 36.80
Fusion (VM-VAE) 56.97 52.58 38.26
† Without using the correlation objective [9] in fusion loss.

incremental steps is increased. Adopting the method pro-
posed in [40] to compensate for modeling shift of proto-
types using a softmax classifier seems to have no benefi-
cial effect, showing that it fails to adequately model se-
mantic drift in a fine-grained classification setup with high
semantic similarity among classes. On the other end, our
framework demonstrates to successfully capture model rep-
resentation drift; by injecting up-to-date knowledge of old
classes, in fact, we manage to more effectively mitigate
catastrophic forgetting. Per-step accuracy values displayed
in Fig. 4 corroborate accuracy results given in Table 3.

6.2. Ablation Study

Modeling drifts with GMs and VMs: Our framework
enables implementation of drift models using different GMs
and VMs. We studied the accuracy of a GM (MLP) and
VM (VAE) for modeling different drifts and their fusion in
Sec. 6.1. The results suggest that the accuracy of GMs and
VMs depends on statistical sufficiency of data which affects
capacity of fθ and learned representations as follows:
• On the Cifar100 dataset, the GM (MLP) outperforms the

VM (VAE) for smaller (e.g., 5) steps, where more classes
are observed at each step, compared to the larger (e.g. 20)
steps. We conjecture that this result can be attributed to
training models using statistically insufficient data repre-
senting all classes at each step.

• On TinyImageNet, containing larger images than Ci-
far100, the VM (VAE) performs on par with and slightly
outperforms the GM (MLP) for smaller steps.

• On CUB200 containing the largest images, the VM
(VAE) outperforms the GM (MLP) for all steps.

Analysing semantic drift: We study how the proposed
framework captures and preserves semantic relationships
between representation of old and new classes by model-
ing semantic drift. We express inter-class relationships by
the Euclidean distance between prototypes (those estimated
for old classes and computed over available data for new
classes) and track the evolution of such measures over an
incremental step. In Fig. 5, we report distance values com-

Old ClassesNe
w

Cl
as

se
s Start (PASS)

Old Classes

End (PASS)

Old Classes

Difference (PASS)

Old ClassesNe
w

Cl
as

se
s Start (Fusion-GM-MLP)

Old Classes

End (Fusion-GM-MLP)

Old Classes

Difference (Fusion-GM-MLP)

0.8

1.0

1.2

0.01

0.02

0.8

1.0

1.2

0.01

0.02

Figure 5. Normalised distance bw. estimated prototypes of classes
seen at the first and second step, captured at the beginning (left)
and end (mid) of the second step (CIFAR100, 20 steps). We report
the absolute value of the difference of the two measures (right).

0 5 10 15 20
Incremental step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Estimated-Evanescent Euclidean Distance
PASS
SDC
Fusion (GM-MLP)

0 5 10 15 20
Incremental step

0.95

0.96

0.97

0.98

0.99

1.00
Estimated-Evanescent Cosine Similarity

PASS
SDC
Fusion (GM-MLP)

Figure 6. Average distance between estimated and evanescent pro-
totypes of old classes (CIFAR100, 20 incremental steps).

40 50 60 70 80 90 100
Observed classes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Estimated-Evanescent Distance (CIFAR100)

5 Steps
10 Steps
20 Steps

100 120 140 160 180 200
Observed classes

0

1

2

3

4

5

6

7
Estimated-Evanescent Distance (CUB200)

PASS Ours (Fusion-VAE)

Figure 7. Average Euclidean distance between the estimated and
evanescent prototypes of old classes.

puted at the beginning and end of an incremental step, to-
gether with their difference (distances are normalised along
new-class axis). We notice how prototypes estimated by
leveraging the modelled semantic drift tend to more effec-
tively preserve their relationships, whereas keeping proto-
types fixed (as in PASS) causes impairment of inter-class
relationships as new representations are learned.
Analysing feature drift of evanescent representations:
We compute the Euclidean and cosine distances between es-
timated prototypes of old classes (i.e., computed over train-
ing data and fixed [43], or updated by [40] or by drift mod-
els) and their reference (i.e., evanescent) representations
(computed over the test set) at each step (Fig. 6). The results
show that our proposed methods can track more efficiently
the trajectory of evanescent prototypes (in terms of geomet-
ric distances) compared to the SotA PASS and SDC meth-
ods, by modeling the evolution of the representations (i.e.,
feature drift). In Fig. 7, we compare normalised distance
between estimated and evanescent prototypes for different
number of total steps, on CIFAR100 and CUB200. We ob-
serve that our methods always outperform PASS. This is
particularly noticeable for the 20-step setup on CUB200,

16738

PASS Fusion
(GM-MLP)

Fusion
(GM-MLP)

Original
Evanescent
Estimate

Class 0
Class 1
Class 2
Class 3

Figure 8. Feature representations of the first four learned classes
(CIFAR100, 20 steps) extracted from samples of test set (dots),
along with their prototypes computed over available training data
(squares), over test data (diamonds) and estimated prototypes (di-
amonds). In the lower plot, decrease in transparency and increase
in brightness indicate that representations are extracted at progres-
sively increasing incremental steps (i.e., at steps 0, 10 and 20).

where our approach jointly shows the largest improvement
over SotA accuracy by ∼ 20%. We visualise 2D embed-
dings of feature vectors in Fig. 8 using Isomap [31]. We ob-
serve that our proposed methods estimate prototypes closer
to their evanescent versions compared to PASS, following
the trajectory of evanescent representations of old classes,
without having access to training data of such classes.

Analysing how learned evanescent representations af-
fect classification accuracy: We investigate the relation-
ship between incremental accuracy and normalised dis-
tance between estimated and evanescent prototypes (Fig. 9).
We notice that accuracy and prototype distance are nega-
tively correlated, with similar trends for different methods.
Thereby, by more accurately tracking and modeling evanes-
cent old class prototypes, our methods yield superior perfor-
mance compared to the SotA PASS and SDC methods.

Statistical analyses of representations: We first compute
pF (c) = exp(−||F−πc)||2/ζ)/

∑
j exp(−||F−πj)||2/ζ),

where F ∈ Fold is the representation of a test sample of
Cold as extracted by the current feature extractor, {πj}j
are estimated prototypes of Cold and ζ is set to 0.1. We
analyse the change of entropy (H) and cross-entropy (CE)
of pF across incremental steps in Fig. 10 and Fig. 11. We
observe that our method provides higher H and smaller
CE compared to PASS and SDC. This result suggests
that information capacity of representations learned by our
methods increases along with classification accuracy more
compared to the SotA as models are incrementally trained.

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34
Normalized Estimated-Evanescent Prototype Distance

50

55

60

65

70

To
p-

1
Ac

cu
ra

cy
 (%

)

PASS
SDC
Fusion (GM-MLP)

Figure 9. Relationship between top-1 accuracy (%) and normalised
Euclidean distance between estimated and evanescent old-class
prototypes. Each point depicts a single training phase, and the
decrease in transparency indicates progressively increasing incre-
mental steps. For each step, accuracy values have been averaged
over all classes observed so far and distances are averaged over all
past classes (CIFAR100, 20 steps).

0 5 10 15
Incremental Step

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Entropy of Prototype-based Distribution
PASS
SDC
Fusion (GM-MLP)

0 5 10 15
Incremental Step

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Cross-Entropy of Prototype-based Distribution
PASS
SDC
Fusion (GM-MLP)

Figure 10. Avg. entropy H and CE of pF (CIFAR100, 20 steps).

1 3 5 7 9 11 13 15 17 19
Incremental Step

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Cl
as

s I
nd

ex

CE (Fusion-GM-MLP)

1 3 5 7 9 11 13 15 17 19
Incremental Step

Top-1 Accuracy (%) (Fusion-GM-MLP)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20

40

60

80

Figure 11. Class-wise average CE of pF and top-1 accuracy com-
puted at multiple incremental steps (CIFAR100, 20 steps).

7. Conclusion
We identify the evanescence of representations of old

data as a cause of catastrophic forgetting in CIL. To employ
evanescent representations in CIL and improve accuracy of
classification models, we propose a new framework. First,
we aim to model feature and semantic drift of representa-
tions. Then, by leveraging drift models, we are able to infer
up-to-date representations of former tasks without storing
any exemplar, and exploit them to preserve the past knowl-
edge. We have evaluated our proposed framework on multi-
ple CIL benchmarks. In the analyses, our proposed method
achieved exemplar-free SotA accuracy. We further provided
a detailed ablation study of geometric and statistical prop-
erties of the learned representations and drift models.

We believe that our proposed framework and approach
for modeling drifts will lead to new research directions for
CIL such as multi-level optimisation of hierarchical models
with compositional loss functions of evolving representa-
tions, and analyses of their theoretical properties.

16739

References

[1] Hongjoon Ahn, Jihwan Kwak, Su Fang Lim, Hyeonsu
Bang, Hyojun Kim, and Taesup Moon. SS-IL: Sep-
arated softmax for incremental learning. In Proceed-
ings of the International Conference on Computer Vi-
sion (ICCV), 2021. 2

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. Mem-
ory aware synapses: Learning what (not) to forget.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018. 2

[3] Francisco M. Castro, Manuel J. Marı́n-Jiménez,
Nicolás Guil, Cordelia Schmid, and Karteek Ala-
hari. End-to-end incremental learning. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), 2018. 2, 6

[4] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2L:
Contrastive continual learning. In Proceedings of the
International Conference on Computer Vision (ICCV),
2021. 2

[5] Arslan Chaudhry, Puneet Kumar Dokania, Tha-
laiyasingam Ajanthan, and Philip H. S. Torr. Rie-
mannian walk for incremental learning: Understand-
ing forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV),
2018. 2

[6] Matthias Delange, Rahaf Aljundi, Marc Masana,
Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh,
and Tinne Tuytelaars. A continual learning survey:
Defying forgetting in classification tasks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021. 1

[7] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan
Peng, Ziyan Wu, and Rama Chellappa. Learning with-
out memorizing. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2019. 2, 5, 6

[8] Arthur Douillard, Matthieu Cord, Charles Ollion,
Thomas Robert, and Eduardo Valle. Podnet: Pooled
outputs distillation for small-tasks incremental learn-
ing. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 2

[9] Bobby He and Mete Ozay. Feature kernel distilla-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR), 2022. 5, 6, 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 6

[11] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 2

[12] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei
Wang, and Dahua Lin. Learning a unified classi-
fier incrementally via rebalancing. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2, 6

[13] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-
Sheng Hua, and Hanwang Zhang. Distilling causal
effect of data in class-incremental learning. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[14] Metod Jazbec, Matt Ashman, Vincent Fortuin,
Michael Pearce, Stephan Mandt, and Gunnar Rätsch.
Scalable gaussian process variational autoencoders. In
Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (AIStat), 2021. 3

[15] Ronald Kemker and Christopher Kanan. Fearnet:
Brain-inspired model for incremental learning. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2018. 2

[16] James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Over-
coming catastrophic forgetting in neural networks.
CoRR, abs/1612.00796, 2016. 2, 6, 7

[17] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009. 5

[18] Matthias De Lange and Tinne Tuytelaars. Contin-
ual prototype evolution: Learning online from non-
stationary data streams. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2021.
2

[19] Zhizhong Li and Derek Hoiem. Learning without for-
getting. In Proceedings of the European Conference
on Computer Vision (ECCV), 2016. 2, 6, 7

[20] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive
aggregation networks for class-incremental learning.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

[21] James Lucas, George Tucker, Roger B Grosse, and
Mohammad Norouzi. Don't blame the ELBO! A linear
VAE perspective on posterior collapse. In Advances
in Neural Information Processing Systems (NeurIPS),
2019. 3

[22] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe,
Hyunwoo Kim, and Scott Sanner. Online continual

16740

learning in image classification: An empirical survey.
Neurocomputing, 469:28–51, 2022. 1

[23] German I. Parisi, Ronald Kemker, Jose L. Part,
Christopher Kanan, and Stefan Wermter. Contin-
ual lifelong learning with neural networks: A review.
Neural Networks, 113:54–71, 2019. 1

[24] Hadi Pouransari and Saman Ghili. Tiny imagenet vi-
sual recognition challenge. In CS231N course, Stan-
ford Univ., Stanford, CA, USA, 2014. 5

[25] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. iCaRL: In-
cremental classifier and representation learning. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017. 2, 6

[26] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Ji-
won Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing
Systems (NeurIPS), 2017. 2

[27] Christian Simon, Piotr Koniusz, and Mehrtash Ha-
randi. On learning the geodesic path for incremen-
tal learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2021. 2

[28] James Smith, Yen-Chang Hsu, Jonathan Balloch,
Yilin Shen, Hongxia Jin, and Zsolt Kira. Always
be dreaming: A new approach for data-free class-
incremental learning. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2021.
2

[29] Jake Snell, Kevin Swersky, and Richard S. Zemel.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), 2017. 2

[30] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learn-
ing structured output representation using deep condi-
tional generative models. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2015. 6

[31] Joshua B. Tenenbaum, Vin de Silva, and John C.
Langford. A global geometric framework for
nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000. 8

[32] Eli Verwimp, Matthias De Lange, and Tinne Tuyte-
laars. Rehearsal revealed: The limits and merits of re-
visiting samples in continual learning. In Proceedings
of the International Conference on Computer Vision
(ICCV), 2021. 2

[33] Catherine Wah, Peter Welinder Steve Branso and,
Pietro Perona, and Serge Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report
CNS-TR-2011-001, California Institute of Technol-
ogy, 2011. 5

[34] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing
Wang, Joost van de Weijer, and Bogdan Raducanu.
Memory replay gans: Learning to generate new cat-
egories without forgetting. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2018. 2

[35] Guile Wu, Shaogang Gong, and Pan Lid. Striking
a balance between stability and plasticity for class-
incremental learning. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2021.
2

[36] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 2

[37] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremen-
tal learning using conditional adversarial networks. In
Proceedings of the International Conference on Com-
puter Vision (ICCV), 2019. 2

[38] Yaniv Yacoby, Weiwei Pan, and Finale Doshi-Velez.
Failure modes of variational autoencoders and their
effects on downstream tasks. In ICML 2020 Work-
shop on Uncertainty and Robustness in Deep Learn-
ing, 2021. 3

[39] Shipeng Yan, Jiangwei Xie, and Xuming He. DER:
dynamically expandable representation for class in-
cremental learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2021. 2, 6

[40] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Her-
ranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation
for class-incremental learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 6, 7

[41] Friedemann Zenke, Ben Poole, and Surya Ganguli.
Continual learning through synaptic intelligence. In
Proceedings of the International Conference on Ma-
chine Learning (ICML), 2017. 2

[42] Shengjia Zhao, Jiaming Song, and Stefano Ermon.
Infovae: Information maximizing variational autoen-
coders. CoRR, abs/1706.02262, 2017. 6

[43] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and
Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 2, 3, 6, 7

16741

