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Abstract

Previous works on vanishing point detection usually use
geometric prior for line segment clustering. We find that im-
age context can also contribute to accurate line classifica-
tion. Based on this observation, we propose to classify line
segments into three groups according to three unknown-but-
sought vanishing points with Manhattan world assumption,
using both geometric information and image context in this
work. To achieve this goal, we propose a novel Transformer
based Line segment Classifier (TLC) that can group line
segments in images and estimate the corresponding van-
ishing points. In TLC, we design a line segment descrip-
tor to represent line segments using their positions, direc-
tions and local image contexts. Transformer based feature
fusion module is used to capture global features from all
line segments, which is proved to improve the classification
performance significantly in our experiments. By using a
network to score line segments for outlier rejection, van-
ishing points can be got by Singular Value Decomposition
(SVD) from the classified lines. The proposed method runs
at 25 fps on one NVIDIA 2080Ti card for vanishing point
detection. Experimental results on synthetic and real-world
datasets demonstrate that our method is superior to other
state-of-the-art methods on the balance between accuracy
and efficiency, while keeping stronger generalization capa-
bility when trained and evaluated on different datasets.

1. Introduction

Under the pinhole camera model, parallel world lines
in 3D are projected into 2D image lines that converge on
an image point, which is called the vanishing point (VP).
Vanishing point detection is one of the most fundamental
problems in computer vision. A fast and accurate vanishing
point detection algorithm enables and enhances applications
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Figure 1. (a) Classical vanishing point detection methods usually
depend on geometric prior for line segment clustering. However,
it is not easy to determine which group the line segment (colored
purple) should belong to only based on the geometric prior, since
the line segment is close to both candidate horizontal vanishing
points. (b) On the contrary, one can easily categorize the line seg-
ment when the image context is given. The example is from [12].
Combining image context, it may become easier and faster to clus-
ter a line segment to a certain group. Motivated by this obser-
vation, we use both image context and geometric information in
learning based line segment clustering for vanishing point detec-
tion in this work.

such as camera calibration, 3D reconstruction, object detec-
tion, wireframe parsing, and autonomous driving.

Classical vanishing point detection methods usually fol-
low three steps including line detection, line clustering and
vanishing point regression. With Manhattan world assump-
tion, line segments are supposed to be clustered into three
groups according to the three orthogonal vanishing points.
Previous methods often consider the geometric prior that
line segments in the same group should intersect at the same
point (the vanishing point). Therefore, the image is often
no longer used after the lines are extracted. However, as
shown in Fig. 1, it is not easy to determine which group the
line segment should belong to only based on the geometric
prior, since the line segment is close to both candidate hori-
zontal vanishing points. This ambiguity is eliminated when
the image contexts are given, which shows the potential of
the image contexts in improving the line clustering perfor-
mance. Motivated by this observation, we employ image
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contexts with geometric features in learning based line seg-
ment clustering for vanishing point detection.

Recent learning based methods usually estimate vanish-
ing points, horizon or score candidate vanishing points from
the image contexts directly. In this work, we use networks
to group line segments and remove outliers for vanishing
point detection, which is demonstrated to be less likely to
overfit on a certain dataset in our experiments. We present
each detected line segment in the given image as a 1D fea-
ture vector. For accurately classifying the line segments,
it is important to propagate and gather global information
from all line segments. Inspired by the good performance of
Transformers in many computer vision tasks, we use Trans-
former encoder architecture to efficiently capture non-local
correlation over all line segments. By considering the fea-
ture vectors of line segments as a sequence of tokens, the
Transformer based feature fusion module can be easily ap-
plied in our algorithm.

In this paper, we propose a novel method named Trans-
former based line segment classifier (TLC) for real-time
vanishing point detection in Manhattan world. Our method
is composed of two modules including a line segment de-
scriptor and a feature fusion module. Given an image and
line segments in it, TLC first represents each line segment
as a 1D feature vector consisting of both local image con-
texts and geometric features with the line segment descrip-
tor. The local image contexts are extracted from a Convo-
lutional Neural Network (CNN) model followed by a novel
line pooling operation. The geometric features are repre-
sented by one-hot encoding of the direction and positions
of points uniformly sampled from the line segment. Then
the feature vectors are processed with a clustering network
and a scoring network, respectively. These networks are
designed based on Transformer encoder architecture for ef-
ficient feature fusion. For each line segment, the clustering
branch predicts the probability of each group it may belong
to, and the scoring branch predicts a score meaning its con-
fidence in detecting the corresponding vanishing point. Fi-
nally the locations of the vanishing points can be calculated
using Singular Value Decomposition (SVD) based on the
clustered line segments and the predicted scores. The pro-
posed TLC can classify line segments for vanishing point
detection in a non-iterative manner and be end-to-end train-
able. Therefore, the inferring speed of the proposed method
is very fast and further post-processing can be applied on
the clustered line segments easily.

The contributions of our work can be summarized be-
low: (1) This work is the first one that uses learning based
method to classify line segments for vanishing point detec-
tion with both image contexts and geometric information.
(2) For this goal, we propose a novel Transformer based
Line segment Classifier (TLC). In TLC, we present a novel
line segment descriptor to represent a line segment with a

1-D feature vector, and use a Transformer based module to
fuse features of different line segments. Our method can
group line segments according to the vanishing points and
predict their confidence score to be inliers in a non-iterative
manner. (3) The proposed method runs at 25 FPS on one
NVIDIA 2080Ti card for vanishing point detection. Exper-
imental results on synthetic and real-world datasets show
that our method is superior to other state-of-the-art meth-
ods on the balance between accuracy and efficiency, while
keeping stronger generalization capability when trained and
evaluated on different datasets. We also construct a real-
world street view vanishing point (SVVP) dataset' for fur-
ther evaluating the proposed method.

2. Related Works

Vanishing Point Detection. Since the seminal work in-
troduced in [2], various methods have been designed for
vanishing point detection. Previous works tackle the prob-
lem by using Gaussian sphere [10,26,32], Manhattan world
assumption [3, 24, 27], Hough transformation [!], Branch-
and-Bound [3, 14, 22], etc. Line based methods are the
most widely used approaches. They usually start with line
detection [5, 36]. Then the images are usually left aside
and the parametric lines are clustered using Hough trans-
formation [25], RANSAC [4, 38], J-Linkage [33], EM al-
gorithm [12], dual space [20]. In this work, we introduce
image context in line clustering process and use learning
based method to group the line segments corresponding to
the same vanishing point.

Recently, learning based vanishing point detection meth-
ods achieve promising results benefiting from the strong
ability to extract features of neural networks. In [7,30,42],
CNN-based methods are used to classify or regress the van-
ishing point directly. In [41] global image context is ex-
tracted to guide the generation of horizon line candidates.
Kluger et al. [17] use CNN to find vanishing points from
inverse gnomonic image. Bingham mixture model is em-
ployed to estimate vanishing points in [21]. A neural net-
work is used to update the conditional sampling proba-
bilities for line clustering in [18]. Zhou et al. [43] pro-
pose conic convolution for vanishing point detection which
can enforce feature extractions and aggregations along the
structural lines. In this work, we apply Transformer based
module to classify and score the line segments in a non-
iterative way for vanishing point detection.

Line Representation. Lines have been widely used in
learning based methods for various computer vision tasks,
which are represented in different ways. Li et al. [23] pro-
pose a line proposal unit (LPU) to generate candidate traf-
fic lines. Line pooling layer is presented in [19] that per-
forms bilinear interpolation of each sampled location on

Thttps://github.com/tongxin94/svvp/
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Figure 2. Overview of the proposed TLC. Given an image with Manhattan world assumption and the line segments in it, TLC first
represents each line segment as a 1D feature vector which consists of the local image contexts and geometric information. Transformer
based feature fusion module is used to capture non-local correlation of all the line segments. The module predicts the probability of each
group and the confidence scores in estimating the vanishing point. Vanishing points can be obtained using SVD with each group of line

segments and the corresponding scores.

the feature maps. Given image lines, [34] proposes a line
descriptor that averages the feature vectors of the sampled
points on the lines in visual SLAM. The endpoints, cen-
troid and direction are used to represent a line segment in
CONSAC [18]. For vanishing point detection, we present
a novel line segment descriptor considering both the local
image contexts extracted from CNN and geometric features
including positions and directions.

Visual Transformer. Transformer is originated in neu-
ral language processing (NLP) [35] then widely applied in
computer vision tasks because of its strong representation
capabilities. Chen ef al. [8] train a sequence transformer to
auto-regressively predict pixels that can get comparable per-
formance in image classification with CNN based methods.
Dosovitskiy et al. [13] use transformer (ViT) in classifica-
tion by dividing a image into patches and adding an extra
learnable classification token in transformer for image clas-
sification. Carion et al. [6] apply transformer (DETR) in
end-to-end object detection. Huang et al. [16] use a trans-
former based network to estimate 3D hand pose from point
clouds. Transformer are also used in image super-resolution
[39], image generation [29], video inpainting [40], track-
ing [9, 37] and hold a potential to be applied in more ap-
plications. In our method, we apply Transformer encoder
architecture in line segment clustering and scoring for van-
ishing point detection.

3. Algorithm
3.1. Overview

The overview of our algorithm is shown in Fig. 2. Given
an image with Manhattan world assumption and the line

segments in it, our algorithm can cluster the line segments
into three groups according to the three vanishing points and
predict the location of each vanishing point. The proposed
method, named Transformer based Line segment Classifier
(TLC), is a neural network model composed of a line seg-
ment descriptor and a feature fusion module, which are in-
troduced in detail in the following subsections.

3.2. Line Segment Descriptor

The line segment descriptor represents a line segment
as a 1D vector of pre-defined size, in which local image
contexts and geometric features are combined together. For
geometric features, the position in the image and the direc-
tion information are used, which are represented as f,,; and
fair respectively. We sample some points uniformly on the
line segments. The coordinates of the points can be used
to describe the position of the line segment. To describe
the direction, we uniformly divide 0° to 180° degrees into
several intervals and encode the direction with one-hot en-
coding according to which interval the direction is located.

We present a line pooling module to capture local image
contexts of a line segment from the image, which is illus-
trated in Fig. 3. In the module, we consider using the se-
mantic features around the line segments to describe them.
We first use a CNN model to extract feature maps from the
image. For each line segment, we then uniformly sample NV
points along it and get IV feature vectors of a total size of
N x C. Bilinear interpolation is used to compute the values
of each sampling point from the nearby grid points on the
feature maps, since sampling points may not locate on the
grid points. As we want to obtain a 1D fix-size representa-
tion of each line segment f.,,, we finally apply a weighted
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Figure 3. Illustration of the presented line pooling module. Given
the feature maps extracted from a CNN model and a line segment,
uniform sampling is applied along the line segment. Bilinear in-
terpolation is used to compute the feature vector of each sampling
point from the nearby grid points on the feature maps. All the fea-
ture vectors at sampling points are summed with learned weights.
We finally get a 1D fix-size feature vector for each line segment.

summation to the feature vectors for squeezing them into a
size of 1 x C. A similar architecture is also used in [34]
for line matching. They average the feature vectors for fi-
nal representation, while we use weighted summation for
stronger representation ability.

The final representation of a line segment f;,,. € R1xC
is the concatenation of the above three features, which can
be described as

fline = [fcon7fpos7fdir]- (1)

In practice, ResNetl8 is used as the semantic feature ex-
tractor followed by a 1 x 1 convolutional layer to reduce the
channel of feature maps to 32. We use 32 coordinates from
16 uniformly sampled points for representing the position
and a one-hot vector with a size of 36 for representing the
direction, respectively.

3.3. Feature Fusion Module

Our feature fusion module is used to predict the prob-
ability of each group and the confidence scores from the
feature vectors of the line segments. The module is com-
posed of two independent network branches Ty sier and
Tscore- Starting from feature vectors of M line segments
frines € RMXC 70 ier is used to predict the probabil-
ity p that the line segments correspond to the unknown-but-
sought vanishing points, which is represented as

b= Softmaw(ﬂluster(flines))- (2)

Similarly, Tscore is used to predict the confidence score s in
estimating the vanishing point, which is represented as

s = sigmoid(Tscore (frines))- 3)

A line segment with high confidence score is supposed to
have a greater probability of passing through the vanishing
point (or closer to the vanishing point).

Figure 4. Visual examples of our constructed SVVP dataset. The
line segments corresponding to the different vanishing points are
colored blue, red and green, respectively.

The networks in the feature fusion module are designed
based on Transformer encoder architecture, which is com-
posed of an attention layer and a feed-forward network
(FFN). The attention layer can capture non-local correla-
tion from different line segments, which is represented as

Att(f) = softmax( -V, @
where ), K, V are linear layers for extracting the query, key
and value vectors from feature vectors f of line segments,
respectively. dj, is the dimension of K (f) for normaliza-
tion. The FFN F(-) consists of a fully connected layer and
residual connection. We do not use position embedding as
classical Transformer since the final clustering results are
supposed to be irrelevant to the order of the input line seg-
ments. Thus, the network architecture we use in the feature
fusion module is represented as

T(f) = F(ALt(f) + f)- ©)

3.4. Losses and Vanishing Points Estimation

We use cross entropy loss to classify the line segments
according to the three unknown-but-sought vanishing points
in Manhattan world, e.g., upwards first, then followed by
left and right ones in horizontal. The line segment clas-
sification loss can help our method converge quickly and
robustly, which can be written as

1 el c c
£class - 7M7m ; czzlgz Ingm (6)

where M;,, is the number of inlier line segments, since we
do not consider the outliers in this loss. p§ is the predicted
probability of the i-th line segment that belongs to group c.
g5 s the corresponding ground-truth label.
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Figure 5. Visual examples of line segment clustering and vanishing point detection results of our method on (a) SU3 [44], (b) ScanNet [11]
and (c) the SVVP datasets constructed by ourselves. The line segment clustering results are directly from the network output without
post-processing. Different clusters of line segments and vanishing points are colored with red, green and blue, respectively. The locations
of ground truth vanishing points are marked with ’o’, and the predicted vanishing points are marked with ’x’. Our method can produce
accurate predictions in real-world and synthetic images of a variety of scenes.

We use BCE loss to supervise the Tycore for removing
outliers, which can be represented as

M
1
Acscore — _M ; (yz IOg Si + (1 - yz) log(]- - 81))7 (7)

where M is the number of both inliers and outliers. s; rep-
resents the predicted score of the i-th line segment and y;
is the corresponding ground-truth. The total loss can be
defined as the sum of the above loss terms, which can be
written as

ACtotal = £class + ['score- (8)

We use Singular Value Decomposition (SVD) to calcu-
late the vanishing points based on the clustered line seg-
ments and their confidence scores. A vanishing point can
be represented as a normalized line direction vector, which
is also called the Gaussian sphere representation. In ho-
mogeneous coordinates, line segments L € R >3 can be
defined by the normal of the plane they form with the cam-
era center [41]. The vector of the vanishing point can be
got from svd(L). Furthermore, a line segment with a high
score is supposed to contribute more in the calculation. In
the inferring phase, we use a hard selection to directly re-

move the line segments with a score under 0.5, since out-
liers may impact the results seriously. Thus, with the scores
s € RMX1 the vector of the vanishing point can be got
from svd(1ss0.5(s)L).

The vanishing points are computed independently. For
uncalibrated images, a pre-defined approximate focal length
(e.g., width of the image) can be used to estimate the inter-
sections of the lines in each group. For calibrated images,
the estimated vanishing points are supposed to be orthogo-
nal to others (e.g., up to a tolerance 7). Otherwise, the best
orthogonal pair can be selected and the third vanishing point
can be calculated by the cross product.

4. Experimental Results
4.1. Experimental Setup

We conduct our experiments in three publicly available
datasets including SU3 dataset [44], ScanNet dataset [11]
and York Urban Dataset (YUD) [12]. All the datasets fol-
low the Manhattan world assumption, where there should
be three orthogonal vanishing points in each image. The
SU3 dataset is a photo-realistic dataset that contains 23000
synthetic outdoor images. The vanishing points are directly
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Method SU3 [44] ScanNet [11] SVVP FPS
AA@3° AA@5° AA@I10°|AA@3° AA@5° AA@I10°|AA@3° AA@5° AA@10°

J-linkage [33] 69.2 77.0 84.4 27.8 41.7 57.7 32.8 45.7 60.2 1.2
Simon et al. [31] 70.2 77.9 85.1 25.7 399 56.6 454 59.6 73.2 0.6
Wu et al. [38] 74.8 79.5 83.9 229 36.8 54.0 39.1 52.4 67.9 23
Lu et al. [24] 81.4 87.8 93.0 35.6 53.2 71.6 48.5 64.8 80.0 25
Lietal [22] 59.1 66.9 74.6 35.0 50.2 66.9 39.3 53.0 66.8 25
CONSAC [18] 77.9 85.2 91.0 31.1 46.1 62.4 43.8 56.5 69.4 2

NeurVPS-SU3 [43] 94.4 96.5 98.2 17.4 26.8 41.0 27.1 40.4 55.3 0.5
NeurVPS-ScanNet [43]| 57.2 72.6 85.5 36.1 54.3 74.9 35.5 53.7 73.5 0.5
Ours-SU3 91.3 94.6 97.1 36.0 53.4 71.6 51.6 67.7 82.6 25
Ours-ScanNet 88.9 92.8 95.8 36.2 53.9 72.6 49.2 65.0 80.2 25

Table 1. Comparison results on SU3 [44], ScanNet [ 1] and the SVVP datasets. We compare our method with J-linkage [33], Simon et

al. [31], CONSAC [18], NeurVPS [43], Wu et al. [38], Lu et al. [

] and Li er al. [22]. Method-dataset represents the learning based

method trained on the dataset. Our method gets better performance on the balance between accuracy and efficiency, while achieving
stronger generalization capability compared to other learning based methods when trained and evaluated on different datasets.
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Figure 6. Angle accuracy curves for different methods on SU3 [44], ScanNet [ | 1] and the SVVP datasets constructed by ourselves.

computed from the CAD models of the buildings. The
ScanNet dataset is a real-world dataset and captures indoor
scenes. It provides 189916 training images and 53193 vali-
dation images. We follow [43] to get the ground truth van-
ishing points. YUD includes 102 images of outdoor and in-
door scenes with their ground truth VP triplets. For further
evaluating our method, we also construct a real-world street
view dataset for vanishing point detection, called SVVP. We
get 500 images from Google Street View and label the van-
ishing points manually. Some examples are shown in Fig. 4.

For SU3 and ScanNet datasets, we use 500 images for
evaluation following [43], and the others (in the training set)
for training. For training our model, we generate ground
truth classes of the line segments using the provided ground
truth vanishing points. The ground truth class of a line seg-
ment is assigned according to the closest vanishing point
to it. When a line segment is close to more than one van-
ishing point, we manually label the line segment. We use
two thresholds d;,, and J,,; to discriminate the inliers and
outliers. They are set to 1°, 10° for SU3 dataset and 1.5°,
15° for ScanNet dataset empirically. We find in ScanNet

dataset, the inliers for the real vanishing points may be very
few in some images. To keep the training images having
enough inliers, we remove the images where the number of
inliers are less than 30 in the training phase. In the evalua-
tion of YUD and SV VP, we use the model trained with SU3
or ScanNet dataset, since there are not enough images for
training in YUD and SVVP.

We use LSD [36] as the line segment detector for the
proposed method. Our training and evaluation are imple-
mented in PyTorch. For training, we use SGD optimizer.
The learning rate is set to 0.005, while the momentum and
weight decay are set to 0.9 and 0.0001 respectively. Due to
GPU memory limitations, we use a batch size of 16 and the
size of the input images is set to 512 x 512. In training, we
randomly select 100 line segments in each image. For ob-
taining more accurate results, we also run a RANSAC based
post-processing for 20 iterations per vanishing point before
using SVD.

We evaluate all methods by measuring the angle differ-
ence between the predicted vanishing points and the ground
truth on Gaussian sphere following [43]. The percentage
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YUD[12]
Method AA@3° AA@5° AA@10°
J-linkage [33] 40.2 50.5 64.1
Simon et al. [31] 40.1 58.2 71.5
Wu et al. [38] 443 61.4 77.4
Lietal. [22] 51.1 66.1 80.5
Lu et al. [24] 58.0 73.2 86.2
CONSAC [18] 62.1 73.7 84.1
NeurVPS-SU3 [43] 39.9 50.3 65.0
NeurVPS-ScanNet [43]| 30.3 50.4 71.0
Ours-SU3 65.5 771 87.4
Ours-ScanNet 63.1 76.1 87.3

Table 2. Comparison results for different methods on YUD [12].
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Figure 7. Quantitative comparisons in terms of precision and recall
of line clustering on all the images of the YUD [12].

of predictions whose angle difference is smaller than some
threshold can be counted. By plotting the angle accuracy
(AA) curves via different thresholds, AA @0 is defined as
the area under the curve between [0, 0] divided by 6. We
also measure the clustering accuracy of the line segments
of our method, which is the ratio of line segments correctly
clustered by our method to the total line segments.

4.2. Comparison with the SOTA

We conduct our comparison on four benchmarks includ-
ing SU3 dataset [44], ScanNet dataset [11], York Urban
Dataset (YUD) [12] and the SVVP dataset constructed by
ourselves. We show some visual examples of line seg-
ment clustering and vanishing point detection results of our
method on these datasets in Fig. 5. Notice the clustering re-
sults of the line segments in the images are directly from the
network outputs without post-processing. Our method can

(b) with image context

(a) w/o image context

Figure 8. Line segments clustering results of two examples from
SU3 [44] (top) and ScanNet [11] dataset (bottom) by our method
(a) without using image context and (b) using image context. Im-
age context is able to improve the clustering performance of the
line segments, especially when the geometric prior is difficult to
categorize them. The line segments enclosed by cyan bounding
boxes denote the representative mistakenly clustered inliers.

produce accurate predictions in both real-world and syn-
thetic images of a variety of scenes.

We compare our method with some state-of-the-art
methods including J-Linkage [33], Simon et al. [31], Li
et al. [22], Wu et al. [38], Lu et al. [24], CONSAC [18]
and NeurVPS [43]. J-Linkage, Simon et al., Wu et al., Lu
et al. and Li er al. are optimization based methods. The
others are learning based methods. The comparison results
are listed in Table 1 and Table 2. We also show the an-
gle accuracy curves for detail comparison in Fig. 6. Com-
parison results show that our method achieves comparable
or better performance than previous SOTA methods on the
benchmarks, and keeps a inferring speed of 25 FPS. More-
over, our method achieves stronger generalization capabil-
ity when trained and evaluated on different datasets.

We also report the precision and recall for line segment
clustering on the images of YUD in Fig. 7. We use the
manually extracted lines and their ground truth vanishing
point association provided by YUD, similar to [22]. Our
method performs better than other line based methods in
the comparison.

4.3. Ablation Study

To verify the effectiveness of each module and further
compare each module with its variants in our proposed
method, we conduct an ablation study of our network ar-
chitecture. The ablation study is conducted on SU3 dataset,
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Position Direction Context Extractor Line Pooling Classification Network | Classification Acc
16 Points | 36 Intervals - - MLP based 82.1%
16 Points | 36 Intervals - - Transformer based 98.2%
16 Points - - - Transformer based 95.4%
16 Points | 18 Intervals - - Transformer based 97.8%
- 36 Intervals - - Transformer based 84.9%
3 Points | 36 Intervals - - Transformer based 98.0%
32 Points | 36 Intervals - - Transformer based 98.2%
16 Points | 36 Intervals ResNet18 average pooling Transformer based 98.7%
16 Points | 36 Intervals ResNet18 weighted sum Transformer based 98.9%
16 Points | 36 Intervals RefineNet average pooling Transformer based 98.6%
16 Points | 36 Intervals RefineNet weighted sum Transformer based 99.0%

Table 3. Ablation study of our method on SU3 dataset [

angle space into different number of intervals. The classification accuracy of line segments is compared as the metric.

]. We sample different number of points on each line segment and divide the

s

-’ means the

corresponding feature is not used. Experimental results show that both geometric features and image contexts are important for clustering
the line segments. Using Transformer based architecture to capture global information from all line segments can significantly improve the
line classification results, and employing image context in line classification can further boost the performance.

which is presented in Table 3. We report the results on the
line segment classification accuracy directly from the net-
work output.

As a baseline learning based line segment classifier, we
use position and direction information to compose the fea-
ture vectors of line segments, and use MLP based network
to classify them. By applying the feature fusion module
described in Section 3.3, we find the classification perfor-
mance can be significantly improved. Then, we vary the
number of sampled point and angle intervals for getting the
best hyper-parameter in our descriptor. Furthermore, we
test two line pooling modules including average pooling and
weighted sum. Two efficient context extraction backbones
including ResNet18 [15] and RefineNet [28] are also tested.
Experimental results demonstrate the effectiveness of TLC
architecture. We show the improvement of our method by
employing image contexts in composing the feature vector
of line segments with a visual comparison in Fig. 8. Im-
age context is able to improve the clustering performance
of the line segments, especially when the geometric prior is
difficult to categorize them.

The scoring network in TLC can improve the efficiency
of post-processing by reducing the number of its iterations.
We also test different architectures of the scoring network.
We find Transformer based module can get 94% precision
and 81% recall for outlier detection on SU3 dataset, while
MLP based one produces approximately random results.

4.4. Discussions

Compared to the algorithm directly using the ground
truth vanishing point as the supervisory signal, an advantage
of our method is that post-processing such as RANSAC,
EM can be easier to apply for further improving the perfor-
mance. Another potential advantage is that our method is

less sensitive to labeling errors, since small biases in label-
ing the vanishing points may not change the ground truth
line classification labels. We also discuss the limitations
of our method. First, our method is a line-based method,
which cannot work when there are no detected lines in im-
ages. Second, our method can predict at most three van-
ishing points directly. Exploiting new clustering loss may
make it possible to predict more vanishing points and our
future works will focus on the problem.

5. Conclusion

In this paper, we propose a novel method named Trans-
former based line segment classifier (TLC) for real-time
vanishing point detection. Our method exploits the im-
age contexts in accurately grouping the line segments. We
model the line classification problem as a sequence predic-
tion problem. Each line segment is represented as a 1D fea-
ture vector and Transformer based architecture is used to
exchange information for updating the features of the line
segments. Given an image with Manhattan world assump-
tion and the line segments in it, TLC can classify them into
three groups according to the vanishing points and predict
the outliers in a non-iterative way. Vanishing points can be
estimated using SVD with each group of line segments. Our
method achieves comparable or better performance com-
pared with other state-of-the-art vanishing point detection
methods on both synthetic and real-world datasets, and gets
an inferring speed of 25 FPS.
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