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Abstract

We propose Probabilistic Warp Consistency, a weakly-
supervised learning objective for semantic matching. Our
approach directly supervises the dense matching scores pre-
dicted by the network, encoded as a conditional probability
distribution. We first construct an image triplet by apply-
ing a known warp to one of the images in a pair depict-
ing different instances of the same object class. Our prob-
abilistic learning objectives are then derived using the con-
straints arising from the resulting image triplet. We fur-
ther account for occlusion and background clutter present
in real image pairs by extending our probabilistic output
space with a learnable unmatched state. To supervise it,
we design an objective between image pairs depicting dif-
ferent object classes. We validate our method by apply-
ing it to four recent semantic matching architectures. Our
weakly-supervised approach sets a new state-of-the-art on
four challenging semantic matching benchmarks. Lastly,
we demonstrate that our objective also brings substantial
improvements in the strongly-supervised regime, when com-
bined with keypoint annotations.

1. Introduction

The semantic matching problem entails finding pixel-
wise correspondences between images depicting instances
of the same semantic category of object or scene, such as
‘cat’ or ‘bird’. It has received growing interest, due to its
applications in e.g., semantic segmentation [35,38] and im-
age editing [1, 6, 9, 22]. The task nevertheless remains ex-
tremely challenging due to the large intra-class appearance
and shape variations, view-point changes, and background-
clutter. These issues are further complicated by the inherent
difficulty to obtain ground-truth annotations.

While a few current datasets [10, 11, 30] provide man-
ually annotated keypoints matches, these are often ill-
defined, ambiguous and scarce. Strongly-supervised ap-
proaches relying on such annotations therefore struggle
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Figure 1. From a real image pair (I, J) representing the same
object class, we generate a new image I ′ by warping I accord-
ing to a randomly sampled transformation. We further extend the
image triplet with an additional image A, that depicts a different
object class. For each pixel in I ′, we introduce two consistency
objectives by enforcing the conditional probability distributions
obtained either from the composition I ′ → J → I , or directly
through I ′ → I , to be equal to the known warping distribution.
We further model occlusion and unmatched regions by introduc-
ing a learnable unmatched state. It is trained by enforcing the pre-
dicted distribution between the non-matching images (I ′, A) to be
mapped to the unmatched state for all pixels.

to generalize across datasets, as demonstrated in recent
works [4, 31]. As a prominent alternative, unsupervised
approaches [27, 31–33, 37, 39, 41] often train the network
with synthetically generated dense ground-truth and image
data. While benefiting from direct supervision, the lack of
real image pairs often leads to poor generalization to real
data. Weakly-supervised methods [13,16,31,33,34] thus ap-
pear as an attractive paradigm, leveraging supervision from
real image pairs by only exploiting image-level class labels,
which are inexpensive compared to keypoint annotations.

Previous weakly-supervised alternatives introduce ob-
jectives on the predicted dense correspondence volume,
which encapsulates the matching confidences for all pair-
wise matches between the image pair. The most common
strategy is to maximize the maximum scores [13, 34] or
negative entropy [31] of the correspondence volume com-
puted between images of the same class, while minimizing
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the same quantity for images of different classes. How-
ever, these strategies only provide very limited supervi-
sion due to their weak and indirect learning signal. While
these approaches act directly on the predicted dense corre-
spondence volume, Truong et al. [42] recently introduced
Warp Consistency, a weakly-supervised learning objective
for dense flow regression. The objective is derived from
flow constraints obtained when introducing a third image,
constructed by randomly warping one of the images in the
original pair. While it achieves impressive results, the warp
consistency objective is limited to the learning of flow re-
gression. As such an approach predicts a single match for
each pixel without any confidence measure, it struggles to
handle occlusions and background clutter, which are promi-
nent in the semantic matching task.

We propose Probabilistic Warp Consistency, a weakly-
supervised learning objective for semantic matching. Fol-
lowing [4,13,34] and unlike [42], we employ a probabilistic
mapping representation of the predicted dense correspon-
dences, encoding the transitional probabilities from every
pixel in one image to every pixel in the other. Starting from
a real image pair (I, J), we consider the image triplet in-
troduced in [42], where the synthetic image I ′ is related
to I by a randomly sampled warp (Fig. 1). We derive our
probabilistic consistency objective based on predicting the
known probabilistic mapping relating I ′ to I with the com-
position through the image J . The composition is obtained
by marginalizing over all the intermediate paths that link
pixels in image I ′ to pixels in I through image J .

Since the constraints employed to derive our objective
are only valid in mutually visible object regions, we fur-
ther tackle the problem of identifying pixels that can be
matched. This is particularly challenging in the presence
of background clutter and occlusions, common in semantic
matching. We explicitly model occlusion and unmatched
regions, by introducing a learnable unmatched state into our
probabilistic mapping formulation. To train the model to
detect unmatched regions, we design an additional proba-
bilistic loss that is applied on pairs of images depicting dif-
ferent object classes, as illustrated in Fig. 1. Further, we also
employ a visibility mask, which constrains our introduced
consistency loss to visible object regions.

We extensively evaluate and analyze our approach by
applying it to four recent semantic matching architectures,
across four benchmark datasets. In particular, we train
SF-Net [21] and NC-Net [34] with our weakly-supervised
Probabilistic Warp Consistency objective. Our approach
brings relative gains of 4.3% and 5.8% on PF-Pascal [11]
and PF-Willow [10] respectively, for SF-Net, and +22.6%
and +14.8% for NC-Net on SPair-71K [30] and TSS [38],
respectively. This leads to a new state-of-the-art on all four
datasets. Finally, we extend our approach to the strongly-
supervised regime, by combining our probabilistic objec-

tives with keypoint supervision. When integrated in SF-Net,
NC-Net, DHPF [31] and CATs [4], it leads to substantially
better generalization properties across datasets, setting a
new state-of-the-art on three benchmarks. Code is available
at github.com/PruneTruong/DenseMatching

2. Related Work

Semantic matching architectures: Most semantic match-
ing pipelines include 3 main steps, namely feature ex-
traction, cost volume construction, and displacement es-
timation. Multiple works focus on the latter, through ei-
ther predicting the global geometric transformation param-
eters [2, 16, 18, 32, 33, 37], or directly regressing the flow
field [19, 39–42] relating an image pair. Nevertheless, most
methods instead predict a cost volume as the final network
output, which is further transposed to point-to-point cor-
respondences with argmax or soft-argmax [21] operations.
Recent methods thus focus on improving the cost volume
aggregation stage, through formulating the semantic match-
ing task as an optimal transport problem [26] or leveraging
multi-resolution features and cost volumes [4,21,29,31,45].
Another line of work deals with refining the cost volume,
with 4D [13, 23, 24, 34] or 6D [28] convolutions, an online
optimization-based module [39], an encoder-decoder style
architecture [17] or a Transformer module [4].

Unsupervised and weakly-supervised semantic match-
ing: A common technique for unsupervised learning of se-
mantic correspondences is to rely on synthetically warped
versions of images [2, 17, 32, 37, 41]. It nevertheless comes
at the cost of poorer generalization abilities to real data.
Some methods instead use real image pairs, by leverag-
ing additional annotations in the form of 3D CAD mod-
els [44,46], segmentation masks [3,21], or by jointly learn-
ing semantic matching with attribute transfer [19]. Most re-
lated to our work are approaches that use proxy losses on the
cost volume constructed between real image pairs, with im-
age labels as the only supervision [13,16,18,33,34]. Jeon et
al. [16] identify correct matches from forward-backward
consistency. NC-Net [34] and DCC-Net [13] are trained
by maximizing the mean matching scores over all hard as-
signed matches from the cost volume. Min et al. [31] in-
stead encourage low and high correlation entropy for image
pairs depicting the same or different classes, respectively. In
this work, we instead construct an image triplet by warping
one of the original images with a known warp, from which
we derive our probabilistic losses.

Unsupervised learning from videos: Our approach is also
related to [14], which proposes a self-supervised approach
for learning features, by casting matches as predictions of
links in a space-time graph constructed from videos. Recent
works [8, 15, 43] further leverage the temporal consistency
in videos to learn a representation for feature matching.
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3. Background: Warp Consistency
We derive our approach based on the warp consistency

constraints introduced by [42]. They propose a weakly-
supervised loss, termed Warp Consistency, for learning cor-
respondence regression networks. We therefore first review
relevant background and introduce the notation that we use.

We define the mapping MI←J : R2 → R2, which en-
codes the absolute location MI←J(j) ∈ R2 in I correspond-
ing to the pixel location j ∈ R2 in image J . We consistently
use the hat ·̂ to denote an estimated or predicted quantity.
Warp Consistency graph: Truong et al. [42] first build an
image triplet, which is used to derive the constraints. From
a real image pair (I, J), an image triplet (I, I ′, J) is con-
structed, by creating I ′ through warping of I with a ran-
domly sampled mapping MW , as I ′ = I ◦MW . Here, ◦ de-
notes function composition. The resulting triplet (I, I ′, J)
gives rise to a warp consistency graph (Fig. 2a), from which
a family of mapping-consistency constraints is derived.
Mapping-consistency constraints: Truong et al. [42] anal-
yse the possible mapping-consistency constraints arising
from the triplet and identify two of them as most suit-
able when designing a weakly-supervised learning objective
for dense correspondence regression. Particularly, the pro-
posed objective is based on the W-bipath constraint, where
the mapping MW is computed through the composition
I ′ → J → I via image J , formulated as,

MW = MI←J ◦MJ←I′ . (1)

It is further combined with the warp-supervision constraint,

MW = MI←I′ , (2)

derived from the graph by the direct path I ′ → I .
In [42], these constraints were used to derive a weakly-

supervised objective for correspondence regression. How-
ever, regressing a mapping vector MI←J(j) for each posi-
tion j only retrieves the position of the match, without any
information on its uncertainty or multiple hypotheses. We
instead aim at predicting a matching conditional probability
distribution for each position j. The distribution encapsu-
lates richer information about the matching ability of this
location j, such as confidence, uniqueness, and existence of
the correspondence. In this work, we thus generalize the
mapping constraints (1)- (2) extracted from the warp con-
sistency graph to conditional probability distributions.

4. Method
We address the problem of estimating the pixel-wise cor-

respondences relating an image pair (J, I), depicting se-
mantically similar objects. The dense matches are encap-
sulated in the form of a conditional probability matrix, re-
ferred to as probabilistic mapping. The goal of this work is

to design a weakly-supervised learning objective for proba-
bilistic mappings, applied to the semantic matching task.

4.1. Probabilistic Formulation

In this section, we first introduce our probabilistic repre-
sentation and define a typical base predictive architecture.
We let j ∈ R2 denote the 2D pixel location in a grid of
dimension hJ × wJ , corresponding to image J . We refer
to j ∈ R as the index j = {1, ..., hJwJ} corresponding
to j when the spatial dimensions hJ × wJ are vectorized
into one dimension hJwJ . Following [4, 31, 34], we aim at
predicting the probabilistic mapping PI←J ∈ RhIwI×hJwJ

relating J to I . Given a position j in frame J , PI←J(i|j)
gives the probability that j is mapped to location i in im-
age I . PI←J(·|j) ∈ RhIwI thus encodes the entire discrete
conditional probability distribution of where j is mapped in
image I . We can see PI←J as a matrix, where each column
at index j encapsulates the distribution PI←J(·|j). Also
note that the probabilistic mapping PI←J is asymmetric.

Probabilistic mapping prediction: We here describe a
standard architecture predicting the probabilistic mapping
P relating an image pair. We let DI ∈ RhIwI×d and
DJ ∈ RhJwJ×d denote the d-channel feature maps ex-
tracted from the images I and J , respectively.

A cost volume CI←J ∈ RhIwI×hJwJ is then con-
structed, which encodes the pairwise deep feature similari-
ties between all locations in the two feature maps, as,

CI←J(i, j) = DI(i)TDJ(j) . (3)

The cost volume is finally converted to a probabilistic
mapping PI←J ∈ RhIwI×hJwJ by simply applying the
SoftMax operation over the first dimension,

PI←J(i|j) =
exp(CI←J(i, j))∑
k exp(CI←J(k, j))

(4)

Note that extensions of this basic approach can also be con-
sidered, by e.g. adding post-processing convolutional lay-
ers [13, 34] or a Transformer module [4]. The goal of this
work is to design a weakly-supervised learning objective to
train a neural network fθ, with parameters θ, that predicts
the probabilistic mapping P̂I←J = fθ(J, I) relating J to I .

4.2. Probabilistic Warp Consistency Constraints

We set out to design a weakly-supervised loss for proba-
bilistic mappings. To this end, we consider the consistency
graph introduced in [42] and generalize the mapping con-
straints (1)- (2) to their corresponding probabilistic form.

Probabilistic W-bipath constraint: We start from the W-
bipath constraint (1) extracted from the Warp Consistency
graph Fig. 2a and extend it to its probabilistic matrix coun-
terpart, which we denote as PW-bipath. It states that we
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(a) Warp Consistency Graph [42] (b) Our probabilistic PW-bipath (6) and PWarp-supervision constraints, with corresponding losses (7)-(8)

Figure 2. Mapping and probabilistic mapping constraints derived from the warp consistency graph between the images (I, I ′, J). I ′ is
generated by warping I according to a randomly sampled mapping MW (black arrow). (a) The W-bipath (1) and warp-supervision (2)
mapping constraints [42] predict MW by the composition I ′ → J → I , and directly by I ′ → I respectively. (b) Our probabilistic
PW-bipath and PWarp-supervision constraints are derived by enforcing the composition P̂I←J←I′ of the predicted distributions, and the
direct prediction P̂I←I′ respectively, to be equal to the known warping distribution PW .

obtain the same conditional probability distribution by pro-
ceeding through the path I ′ → I , which is determined by
the randomly sampled warp MW , or by taking the detour
through image J . In the latter case, the resulting probability
distribution is derived by marginalizing over the intermedi-
ate paths that link pixels in I ′ to pixels in I through J as,

PW (i|i′ ) =
∑
j

PI←J(i|j) · PJ←I′(j|i′ ) . (5)

The above equality is expressed in matrix form as,

PW = PI←J ⊗ PJ←I′ . (6)

where ⊗ represents matrix multiplication. This constraint
is schematically represented in Fig. 2b.
PW-bipath training objective: We aim at formulating an
objective based on the PW-bipath constraint (6). Crucially,
in our setting, the mapping MI←I′ = MW is known by
construction, from which we can derive the ground-truth
probabilistic mapping PI←I′ = PW ∈ RhIwI×hI′wI′ . To
measure the distance between the right and the left side
of (6), the KL divergence appears as a natural choice. Since
PW is a constant, it simplifies to the familiar cross-entropy,

LPW-bi =
∑
i′

H
(
[P̂I←J ⊗ P̂J←I′ ](·|i′) , PW (·|i′)

)
(7)

Here, H is the cross-entropy loss. To simplify notations,
we sometimes refer to the marginalization as P̂I←J←I′ =
P̂I←J ⊗ P̂J←I′ . Supervising P̂I←J←I′ with the label PW

provides an implicit learning signal for the predicted inter-
mediate distributions P̂J←I′ and P̂I←J .
PWarp-supervision constraint and objective: Similarly,
we generalize the warp-supervision constraint (2) to its

probabilistic matrix form, as PW = PI←I′ . As previously,
by exploiting the fact that PW is known, we derive the cor-
responding training objective,

LP-warp-sup =
∑
i′

H
(
P̂I←I′(·|i′) , PW (·|i′)

)
(8)

The PW-bipath constraint (6) and its loss (7) assume that
all pixels of image I ′ have a match in both I and J . How-
ever, due to the occlusions introduced by the triplet creation
and the non-matching backgrounds of the images in the se-
mantic matching task, this assumption is partly invalidated.

4.3. Modelling Unmatched Regions

The semantic matching task aims to estimate correspon-
dences between different image instances of the same object
class. However, even in that case, the backgrounds of each
image do not match. As a result, the common visible re-
gions only represent a fraction of the images (see the birds
in Fig. 2). Nevertheless, the distribution PI←J(·|j) is un-
able to model the no-match case for pixel j.

Moreover, the construction of our image triplet (I, I ′, J)
introduces occluded areas, for which the constraint (6) is
undefined. In fact, it is only valid in non-occluded object
regions. However, in our setting, the locations of the ob-
jects in the real image pairs (I, J) are unknown. In this
section, we derive our visibility-aware learning objective.
We additionally introduce explicit modelling of occlusion
and unmatchable regions into our probabilistic formulation.
Visibility-aware training objective: In general, the PW-
bipath constraint (6) is only valid in regions of I ′ that are
visible in both images J and I . That is, only in non-
occluded object regions, as illustrated in Fig. 3. Apply-
ing the loss (7) in non-matching regions, such as in back-
ground areas, or in occluded objects regions (blue area in

8711



w/o occ. modelling 

Figure 3. Triplet of images for training, and the visibility mask V̂
(yellow is V̂ = 1). The shaded blue region on I ′ represent object
pixels visible in both I ′ and I , but occluded in J , for which our
PW-bipath loss (7) is not valid. It is only valid in object regions
visible in all three images, i.e. the orange shaded region. Explicitly
modelling occlusions further helps to identify them.

Fig. 3), bares the risk to confuse the network by enforcing
matches in non-matching areas. As a result, we extend the
introduced loss (7) by further integrating a visibility mask
V ∈ [0, 1]wI′hI′ . The mask V takes a value V (i′ ) = 1 for
any pixel i′ belonging to the non-occluded common object
(roughly the orange area in Fig. 3) and V (i′ ) = 0 other-
wise. The loss (7) is then extended as,

Lvis-PW-bi =
∑
i′

V̂ (i′ ) H
(
P̂I←J←I′(·|i′) , PW (·|i′)

)
(9)

Since we do not know the true V , we aim to find an
estimate V̂ , also visualized in Fig. 3. We consider the
predicted probability value P̂I←J←I′(MW (i′)|i′) ∈ [0, 1]
of a pixel i′ of I ′ to be mapped to position MW (i′) in
I , according to the known mapping MW . We assume
that this value should be higher in matching regions, i.e.
the object, than in non-matching regions, i.e. the back-
ground, where the constraint (6) doesn’t hold. We there-
fore compute our visibility mask by taking the highest γ
percent of P̂I←J←I′(MW (i′)|i′) over all i′ of I ′. The
scalar γ is a hyperparameter controlling the sensitivity of
the mask estimation. While we do not know the actual cov-
erage of the object in the image, which might vary across
training images, we found that taking a high estimate for
γ is sufficient in practise, as it simply removes the ob-
vious non-matching regions. Moreover, while we could
have instead computed V̂ by thresholding the probabilities
as V̂ (i′ ) = 1

[
P̂I←J←I′(MW (i′)|i′) > β

]
, our approach

avoids tedious continuous tuning of the β parameter during
training, necessary to follow the evolution of the probabili-
ties. While valid as it is, the accuracy of the estimate V̂ can
further be improved through explicit occlusion modelling.
Occlusion modelling: In order to explicitly model occlu-
sion and non-matching regions into our probabilistic map-
ping PI←J , we predict the probability of a pixel to be oc-
cluded or unmatched in one image, given that it is visible in
the other. This can, for example, be achieved by augment-
ing the cost volume C in (3) with an unmatched bin [7, 36]
ø, such as C(ø, j) = z ∈ R, where z is a single learn-
able parameter. After converting the cost volume C into a
probabilistic mapping P through (4), PI←J(ø|j) encodes
the probability of pixel j of image J to map to the un-
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Figure 4. Learning objective on non-matching images (I, A).

matched or occluded state ø, i.e. to have no match in image
I . We further specify the matching distribution given an un-
matched state, to always be mapped to the unmatched state.
Specifically, we augment P̂ with a fixed column, forcing the
distribution given an unmatched state to be as P̂ (ø|ø) = 1.
Occlusion aware PW-bipath: Our modelling of the un-
matched state given the unmatched state, as P̂I←J(ø|ø) = 1
naturally ensures that the following scheme is respected. If
a pixel i′ in image I ′ is predicted as unmatched in image
J , such as P̂J←I′(ø|i′ ) = 1, it will also be predicted un-
matched in image I , i.e. P̂I←J←I′(ø|i′ ) = 1. This prevents
enforcing (9) on P̂I←J←I′ for pixels of image I ′ which are
visible in I , but occluded in image J (blue area in Fig. 3).
Moreover, predicting a high probability for the occluded
state P̂I←J←I′(ø|i′) allows to identify occluded and non-
matching areas i′ in I ′. It further ensures that these regions
are not selected in V̂ , and therefore not supervised with (9).
Supervision of the unmatched state: Our introduced ob-
jectives (8)-(9) do not impact the unmatched state ø. We
thus propose an additional loss to supervise it. Particularly,
we aim at encouraging background and occluded object re-
gions in images (I, I ′, J) depicting the same object class,
to be predicted as unmatchable. Nevertheless, since the lo-
cations of the object in (I, J) are unknown during training,
we cannot get direct supervision. To overcome this, we in-
troduce an image A, depicting a different semantic content
than the triplet. We then supervise the unmatched state by
guiding the mode of the distribution between A and I to be
in the unmatched state for all pixels of the images. The cor-
responding learning objective on the non-matching image
pair (I, A) is defined as follows, and illustrated in Fig. 4,

LPNeg =
∑
i

B(P̂A←I(ø|i) , pneg) (10)

B denotes the binary cross-entropy and we set pneg = 0.9.

4.4. Final Training Objectives

Finally, we introduce our final weakly-supervised ob-
jective, the Probabilistic Warp Consistency, as a combina-
tion of our previously introduced PW-bipath (9), PWarp-
supervision (8) and PNeg (10) objectives. We additionally
propose a strongly-supervised approach, benefiting from
our losses while also leveraging keypoint annotations.
Weak supervision: In this setup, we assume that only
image-level class labels are given, such that each image pair
is either positive, i.e. depicting the same object class, or
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negative, i.e. representing different classes, following [13,
31, 34]. We obtain our final weakly-supervised objective
by combining the PW-bipath (9) and PWarp-supervision (8)
losses applied to positive image pairs, with our negative
probabilistic objective (10) on negative image pairs.

Lweak = Lvis-PW-bi+λP-warp-supLP-warp-sup+λPNegLPNeg (11)

Here, λP-warp-sup and λPNeg are weighting factors.
Strong supervision: We extend our approach to the
strongly-supervised regime, where keypoint match annota-
tions are given for each training image pair. Previous ap-
proaches [4, 24, 28] leverage these annotations by training
semantic networks with a keypoint objective Lkp. Our final
strongly-supervised objective is defined as the combination
of the keypoint loss with our PW-bipath (9) and PWarp-
supervision (8) objectives. Note that we do not include our
explicit occlusion modelling, i.e. the unmatched state and
its corresponding loss (10) on negative image pairs. This is
to ensure fair comparison to previous strongly-supervised
approaches, which solely rely on keypoint annotations, and
not on image-level labels, required for our loss (10).

Lstrong = Lvis-PW-bi + λP-warp-supLP-warp-sup + λkpLkp (12)

Here, λvis-PW-bi and λkp also are weighting factors.

5. Experimental Results
We evaluate our weakly-supervised learning approach

for two semantic networks. The benefits brought by the
combination of our probabilistic losses with keypoint an-
notations are also demonstrated for four recent networks.
We extensively analyze our method and compare it to pre-
vious approaches, setting a new state-of-the-art on multiple
challenging datasets.

5.1. Networks and Implementation Details

For weak supervision, we integrate our approach (11)
into baselines SF-Net [21] and NC-Net [34]. It leads to our
weakly-supervised PWarpC-SF-Net and PWarpC-NC-
Net respectively. We also apply our strongly-supervised
loss (12) to baselines SF-Net, NC-Net, DHPF [31] and
CATs [4], resulting in respectively PWarpC-SF-Net*,
PWarpC-NC-Net*, PWarpC-DHPF and PWarpC-CATs.
For fair comparison, we additionally train a strongly-
supervised baseline for both SF-Net and NC-Net, referred
to as SF-Net* and NC-Net*. Note that for all methods, the
strongly-supervised baseline is trained with only Lkp, which
is defined as the cross-entropy loss for SF-Net*, NC-Net*
and DHPF, and the End-Point-Error objective after apply-
ing soft-argmax [21] for CATs. To convert the predicted
probabilistic mapping to point-to-point matches for evalua-
tion, all networks trained with our PWarpC objectives em-
ploy the argmax operation, except for PWarpC-CATs where

(a) NC-Net [34] (b) PWarpC-NC-Net (Ours)

(c) SF-Net [21] (d) PWarpC-SF-Net (Ours)

Figure 5. Example predictions of baselines NC-Net [34] and SF-
Net [21], compared to our weakly-supervised PWarpC-NC-Net
and PWarpC-SF-Net. Green and red line denotes correct and
wrong predictions, respectively, with respect to the ground-truth.

we adopt the same soft-argmax as in the baseline CATs [4].
Additional details on the integration of our objectives for
each architecture are provided in the appendix, Sec. A-F.
We train all networks on PF-Pascal [11], using the splits
of [12]. The results when trained on SPair-71K are further
presented in the appendix, Sec. G.1.

5.2. Experimental Settings

We evaluate our networks on four standard benchmark
datasets for semantic matching, namely PF-Pascal [11], PF-
Willow [10], SPair-71K [30] and TSS [38]. Results on
Caltech-101 [20] are further shown in appendix H.6.

Datasets: The PF-Pascal, PF-Willow and SPair-71K are
keypoint datasets, which respectively contain 1341, 900 and
70958 image pairs from 20, 4 and 18 categories. Images
have dimensions ranging from 102 × 300 to 500 × 500.
TSS is the only dataset providing dense flow field annota-
tions for the foreground object in each pair. It contains 400
image pairs, divided into three groups: FG3DCAR, JODS,
and PASCAL, according to the origins of the images.

Metrics: We adopt the standard metric, Percentage of
Correct Keypoints (PCK), with a pixel threshold of ατ ·
max(hτ

s , w
τ
s ). Here, hs and ws are either the dimensions

of the source image or the dimensions of the object bound-
ing box in the source image, such as τ ∈ {img, bbox}.

5.3. Results

We present results on PF-Pascal, PF-Willow, SPair-71K
and TSS in Tab. 1. A few previous approaches compute
the PCK metrics after resizing the annotations to a different
resolution than the original. Nevertheless, we found that in
practise, the annotation resolution can lead to notable vari-
ations in results, as evidenced for DHPF or CATs in Tab. 1.
For fair comparison, we thus compute the metrics on the
standard setting, i.e. the original image size, and re-compute
the PCK in this setting for baseline works if necessary. We
also indicate the annotation size used, whenever reported by
the authors or provided in their public implementation.
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PF-Pascal PF-Willow Spair-71K TSS
PCK @ αimg PCK @ αbbox PCK @ αbbox PCK @ αimg , α = 0.05

Methods Reso 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 FG3DCar JODS Pascal Avg.

S UCNres101 [5] - - 75.1 - - - - - 17.7 - - - -
SCNetVGG16 [12] - 36.2 72.2 82.0 - - - - - - - - -
HPFres101 [29] max 300 60.1 84.8 92.7 45.9 74.4 85.6 - - 93.6 79.7 57.3 76.9
SCOTres101 [26] max 300 63.1 85.4 92.7 47.8 76.0 87.1 - - 95.3 81.3 57.7 78.1
ANC-Netres101 [24] - - 86.1 - - - - - 28.7 - - - -
CHMres101 [28] 240 80.1 91.6 - - - - - - - - - -
PMDres101 [25] - - 90.7 - - 75.6 - - - - - - -
PMNCres101 [23] - 82.4 90.6 - - - - - 28.8 - - - -
MMNetres101 [45] 224× 320 77.7 89.1 94.3 - - - - - - - - -
DHPFres101 [31] 240 75.7 90.7 95.0 41.4 † 67.4 † 81.8 † 15.4 † 27.4 - - - -
CATsres101 [4] 256 67.5 89.1 94.9 37.4 † 65.8 † 79.7 † 10.9 † 22.4 † - - - -
CATs-ft-featuresres101 [4] 256 75.4 92.6 96.4 40.9 † 69.5 † 83.2 † 13.6 † 27.0 † - - - -

CATsres101 [4] ori † 67.3 88.6 94.6 41.6 68.9 81.9 10.8 22.1 89.5 76.0 58.8 74.8
PWarpC-CATsres101 ori 67.1 88.5 93.8 44.2 71.2 83.5 12.2 23.3 93.2 83.4 70.7 82.4

CATs-ft-featuresres101 [4] ori † 76.8 92.7 96.5 45.2 73.2 85.2 13.7 26.8 92.1 78.9 64.2 78.4
PWarpC-CATs-ft-featuresres101 ori 79.8 92.6 96.4 48.1 75.1 86.6 15.4 27.9 95.5 85.0 85.5 88.7

DHPFres101 [31] ori 77.3 91.7 95.5 44.8 70.6 83.2 15.3 27.5 88.2 71.9 56.6 72.2
PWarpC-DHPFres101 ori 79.1 91.3 96.1 48.5 74.4 85.4 16.4 28.6 89.1 74.1 59.7 74.3

NC-Net*res101 ori 78.6 91.7 95.3 43.0 70.9 83.9 17.3 32.4 92.3 76.9 57.1 75.3
PWarpC-NC-Net*res101 ori 79.2 92.1 95.6 48.0 76.2 86.8 21.5 37.1 97.5 87.8 88.4 91.2

SF-Net*res101 ori 78.7 92.9 96.0 43.2 72.5 85.9 13.3 27.9 88.0 75.1 58.4 73.8
PWarpC-SF-Net*res101 ori 78.3 92.2 96.2 47.5 77.7 88.8 17.3 32.5 94.9 83.4 74.3 84.2

U CNNGeores101 [32] ori 41.0 69.5 80.4 36.9 69.2 77.8 - 18.1 90.1 76.4 56.3 74.4
PARNres101 [16] ori - - - - - - - - 89.5 75.9 71.2 78.8
GLU-Netvgg16 [41] ori 42.2 69.1 83.1 30.4 57.7 72.9 - - 93.2 73.3 71.1 79.2
Semantic-GLU-Netvgg16 [41, 42] ori 48.3 72.5 85.1 39.7 67.5 82.1 7.6 16.5 95.3 82.2 78.2 85.2
A2Netres101 [37] - 42.8 70.8 83.3 36.3 68.8 84.4 - 20.1 - - - -
PMDres101 [25] - - 80.5 - - 73.4 - - - - - - -

M SF-Netres101 [21] 288 / ori 53.6 81.9 90.6 46.3 74.0 84.2 - - - - - -
SF-Netres101 [21] ori † 59.0 84.0 92.0 46.3 74.0 84.2 11.2 24.0 90.8 78.6 58.0 75.8

W PWarpC-SF-Netres101 ori 65.7 87.6 93.1 47.5 78.3 89.0 17.6 33.5 95.1 84.7 76.8 85.5

WarpC-SF-Netres101 ⋄ [21, 42] ori 64.9 86.1 92.2 46.9 76.6 87.9 13.1 26.6 95.7 82.3 68.8 82.2
WeakAlignres101 [33] ori/ ori / - 49.0 75.8 84.0 38.2 71.2 85.8 - 21.1 90.3 76.4 56.5 74.4
RTNsres101 [18] - 55.2 75.9 85.2 41.3 71.9 86.2 - - 90.1 78.2 63.3 77.2
DCCNetres101 [13] 240 / ori / - 55.6 82.3 90.5 43.6 73.8 86.5 - 26.7 93.5 82.6 57.6 77.9
SAM-Netvgg19 [19] - 60.1 80.2 86.9 - - - - - 96.1 82.2 67.2 81.8
DHPFres101 [31] 240 56.1 82.1 91.1 40.5 † 70.6 † 83.8 † 14.7 † 28.5 - - - -
DHPFres101 [31] ori † 61.2 84.1 92.4 45.1 73.6 85.0 14.7 27.8 - - - -
GSFres101 [17] - 62.8 84.5 93.7 47.0 75.8 88.9 - 33.5 - - - -
PMDres101 [25] - - 81.2 - - 74.7 - - 26.5 - - - -
WarpC-SemGLU-Netvgg16 [42] ori 62.1 81.7 89.7 49.0 75.1 86.9 13.4 † 23.8 † 97.1 84.7 79.7 87.2
NC-Netres101 [34] 240 / ori / - 54.3 78.9 86.0 44.0 72.7 85.4 - 26.4 - - - -
WarpC-NC-Netres101 ⋄ [34, 42] ori 59.1 75.0 81.2 44.6 70.1 81.3 18.0 35.0 95.8 87.5 79.3 87.0

NC-Netres101 [34] ori † 60.5 82.3 87.9 44.0 72.7 85.4 13.9 28.8 94.5 81.4 57.1 77.7
PWarpC-NC-Netres101 ori 64.2 84.4 90.5 45.0 75.9 87.9 18.2 35.3 95.9 88.8 82.9 89.2

Table 1. PCK [%] obtained by different state-of-the-art methods on the PF-Pascal [11], PF-Willow [10], SPair-71K [30] and TSS [38]
datasets. All approaches are trained on the training set of PF-Pascal, except for [41]. S denotes strong supervision using keypoint match
annotations, M refers to using ground-truth object segmentation mask, U is fully unsupervised requiring only single images, and W refers
to weakly-supervised with image-level class labels. Each method evaluates with ground-truth annotations resized to a specific resolution.
However, using different ground-truth resolutions leads to slightly different results. We therefore use the standard setting of evaluating
on the original resolution (ori) and gray the results computed with the ground-truth annotations at a different size. When needed, we
re-compute metrics of baselines using the provided pre-trained weights, indicated by †. For each of our PWarpC networks, we compare
to its corresponding baseline within the dashed-lines. For completeness, we also train the baseline networks using the weakly-supervised
mapping-based Warp Consistency objective [42], indicated with ⋄. Best and second best results are in red and blue respectively.

Weak supervision (W): In Tab. 1, bottom part, we com-
pare approaches trained with weak-supervision in the form
of image labels. In this setting, our PWarpC networks are
trained with Lweak in (11). While bringing improvements on
the PF-Pascal dataset itself, our approach PWarpC-NC-Net
most notably achieves widely better generalization proper-

ties, with impressive 4.4% (+ 3.2), 22.6% (+ 6.5) and 14.8%
(+ 11.5) relative (and absolute) gains compared to the base-
line NC-Net on PF-Willow (α = 0.1), SPair-71K (α =
0.1) and TSS (α = 0.05) respectively. Our PWarpC-NC-
Net thus sets a new state-of-the-art on SPair-71K and TSS
among weakly-supervised methods trained on PF-Pascal.
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Even though it utilizes a lower degree of supervision, our
approach PWarpC-SF-Net also significantly outperforms
the baseline SF-Net, which is trained with mask supervi-
sion (M), on all datasets. In particular, it shows a rela-
tive (and absolute) gain of 4.3% (+ 3.6), 5.8% (+ 4.3) and
39.6% (+ 9.5) on respectively PF-Pascal, PF-Willow and
SPair-71K for α = 0.1, and of 10.9% (+ 8.3) on TSS for
α = 0.05. This makes our PWarpC-SF-Net the new state-
of-the-art across all unsupervised (U), weakly-supervised
(W) and mask-supervised (M) approaches on PF-Pascal and
PF-Willow. Example predictions are shown in Fig. 5
Strong supervision (S): In the top part of Tab. 1, we eval-
uate networks trained with strong supervision, in the form
of key-point annotations. Our strongly-supervised PWarpC
approaches are trained with our Lstrong (12). For all net-
works, while the results are on par with the baselines on PF-
Pascal, the PWarpC networks show drastically better per-
formance on PF-Willow, SPair-71K and TSS compared to
their respective baselines. PWarpC-SF-Net* and PWarpC-
NC-Net* thus set a new state-of-the-art on respectively PF-
Willow, and the SPair-71K and TSS datasets, across all
strongly-supervised approaches trained on PF-Pascal. Fi-
nally, while most works focus on designing novel semantic
architectures, we here show that the right training strategy
bridges the gap between architectures.

5.4. Method Analysis

We here perform a comprehensive analysis of our ap-
proach in Tab. 2. We adopt SF-Net as the base architecture.
Ablation study: In the top part of Tab. 2, we analyze key
components of our approach. The version denoted as (II)
is trained using our PW-bipath objective (7), without the
visibility mask. Further introducing our visibility mask (9)
in (III) significantly boosts the results since it enables to
supervise only in the common visible regions. Note that
this version (III) already outperforms the baseline SF-Net
(I), while using less annotation (class instead of mask). In
(IV), we add our probabilistic warp-supervision (8), lead-
ing to a small improvement for all thresholds and on all
datasets. From (IV) to (V), we further introduce our explicit
occlusion modelling associated with our negative loss (10),
which results in drastically better performance. This ver-

PF-Pascal PF-Willow Spair-71K TSS
αimg αbbox αbbox αimg

Methods 0.05 0.10 0.05 0.10 0.10 0.05

I SF-Net baseline 59.0 84.0 46.3 74.0 24.0 75.8
II PW-bipath (7) 59.1 82.3 44.9 74.3 28.0 83.4
III + visibility mask (9) 61.2 83.7 46.1 75.8 28.5 78.4
IV + PWarp-supervision (8) 63.0 84.9 47.0 76.9 30.7 83.5
V + PNeg (10) (PWarpC-SF-Net) 65.7 87.6 47.5 78.3 33.5 85.5

V PWarpC-SF-Net (Ours) 65.7 87.6 47.5 78.3 33.5 85.5
VI Mapping Warp Consistency [42] 64.9 86.1 46.9 76.6 26.6 82.2
VII PWarp-supervision only (8) 52.9 74.3 38.0 66.6 27.9 79.4
VIII Max-score [34] 52.4 76.7 31.2 59.5 24.6 74.8
IX Min-entropy [31] 44.7 74.4 25.4 57.8 20.6 69.6

Table 2. Ablation study (top part) and comparison to alternative
objectives (bottom part) for PWarpC-SF-Net.

(a) Training with mapping-based Warp Consistency [42]
Source STarget T

(b) Training with Probabilistic Warp Consistency (Ours)
Source STarget T

unmatchedmatched

Figure 6. In (a), SF-Net is trained using the mapping-based Warp
Consistency approach [42], after converting the cost volume to a
mapping through soft-argmax [21]. It predicts ambiguous match-
ing scores, struggling to differentiate between the car wheels. Our
probabilistic approach (b) instead directly predicts a Dirac-like
distribution, whose mode is correct. Here, we also show that our
approach identifies most of the background areas as unmatched.

sion corresponds to our final weakly-supervised PWarC-SF-
Net, trained with (11). An example of the regions identified
as unmatched by PWarpC-SF-Net is shown in Fig. 6b.
Comparison to other losses: In Tab. 2, bottom part, we
first compare our probabilistic approach (11) correspond-
ing to (V) with the mapping-based warp consistency ob-
jective [42], denoted as (VI). Our approach (V) leads to
better performance than warp consistency (VI), with a par-
ticularly impressive 6.9% absolute gain on the challenging
SPair-71K dataset. We further illustrate the benefit of our
approach on an example in Fig. 6. Moreover, using only the
PWarp-supervision loss (8) in (VII) results in much worse
performance than our Probabilistic Warp Consistency (V).
Finally, we compare our approach (V) to previous losses
applied on cost volumes. The versions (VIII) and (IX) are
trained with respectively maximizing the max scores [34],
and minimizing the cost volume entropy [31]. Both ap-
proaches lead to poor results, likely caused by the very in-
direct supervision signal that these objectives provide.

6. Conclusion
We propose Probabilistic Warp Consistency, a weakly-

supervised learning objective for semantic matching. We
introduce multiple probabilistic losses derived both from
a triplet of images generated based on a real image pair,
and from a pair of non-matching images. When integrated
into four recent semantic networks, our approach sets a new
state-of-the-art on four challenging benchmarks.
Limitations: Since our approach acts on cost volumes,
which are memory expensive, it is limited to relatively
coarse resolution. This might in turn impact its accuracy.
Acknowledgements: This work was supported by a
Huawei Gift and the ETH Future Computing Laboratory
(EFCL) financed by a gift from Huawei Technologies.
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