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Abstract

Volumetric flow velocimetry for experimental fluid dy-
namics relies primarily on the 3D reconstruction of point
objects, which are the detected positions of tracer particles
identified in images obtained by a multi-camera setup. By
assuming that the particles accurately follow the observed
flow, their displacement over a known time interval is a
measure of the local flow velocity. The number of parti-
cles imaged in a 1 Megapixel image is typically in the order
of 103-104, resulting in a large number of consistent but in-
correct reconstructions (no real particle in 3D), that must
be eliminated through tracking or intensity constraints. In
an alternative method, 3D Particle Streak Velocimetry (3D-
PSV), the exposure time is increased, and the particles’
pathlines are imaged as “streaks”. We treat these streaks
(a) as connected endpoints and (b) as conic section seg-
ments and develop a theoretical model that describes the
mechanisms of 3D ambiguity generation and shows that
streaks can drastically reduce reconstruction ambiguities.
Moreover, we propose a method for simultaneously estimat-
ing these short, low-curvature conic section segments and
their 3D position from multiple camera views. Our results
validate the theory, and the streak and conic section recon-
struction method produces far fewer ambiguities than sim-
ple particle reconstruction, outperforming current state-of-
the-art particle tracking software on the evaluated cases.

1. Introduction
Volumetric velocimetry techniques for fluid flows en-

able the analysis of complex flow fields and their complete
spatio-temporal evolution, by providing all three velocity
components of the flow in discrete positions in a 3D mea-
surement volume. Most volumetric methods require a min-
imum of two synchronized cameras and record the posi-
tions of tracers over time as they follow the flow. The most
common approaches are 3D Particle Tracking Velocimetry
(3D-PTV) [14] and Tomographic Particle Image Velocime-

Figure 1. Epipolar and epipolar tangency constraints for conic
section segments reduce the reconstruction ambiguities, “ghosts”,
in 3D flow reconstruction from streaks.

try (Tomo-PIV) [4]. In 3D-PTV, the tracer particles are re-
constructed in 3D space by triangulation, while in Tomo-
PIV a light intensity field is reconstructed tomographically.
Both methods result in “ghost particles”, which are consis-
tently reconstructed particles for which it remains undecid-
able whether they are real or artifacts of the reconstruction
process. The tracer density in these applications is in the
order of 103-104 particles in a 1 Mpx image, resulting in a
large number of ghost particles if left untreated.

There are several ways to reduce the number of ghost
particles and improve the reconstruction quality: increas-
ing the number of cameras, reducing the seeding density
of tracer particles, or rejecting particles using criteria such
as their intensity, estimated velocity, or trajectory smooth-
ness (e.g. [19]). Still, triangulating particles independently
in time, frame-by-frame, results in a loss of information
which needs to be recovered using assumptions about the
flow field. Handling regions with large velocity differences
remains a challenge, as the particle displacement assump-
tions often fail to eliminate ghost tracks [20].

A less common variant of 3D-PTV is 3D Particle Streak
Velocimetry (3D-PSV), where the cameras’ exposure time
is increased, so that the tracer particles’ pathlines over
the exposure time are recorded as “streaks” [2, 15, 16, 24].
Therefore, the tracking information is retained in a single
image and can be used in the triangulation step to eliminate
some of the reconstruction ambiguities. Furthermore, the
displacement of both fast and slow-moving particles is en-
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coded in the streaks, rendering the method inherently suited
to reconstructing flows with a high dynamic velocity range.
Therefore, we ask the question, by how much can the num-
ber of ambiguous,“ghost”, reconstructions be reduced by
using the topological information inherently contained in
long-exposure images?

We initially treat the streaks as line segments defined
by their endpoints and develop a theoretical model that
describes how and by how much the number of recon-
struction ambiguities is reduced when reconstructing linear
streaks instead of points (Sections 3.2.2, 3.2.3). In a sec-
ond stage, we model the streaks as projections of conic sec-
tion segments and show that the probability of ghost streak
generation is further reduced by imposing correspondence
constraints for conic sections over multiple views (Section
3.2.4). Finally, we propose a new method for establishing
multi-view matches among conic section segments while
satisfying an endpoint correspondence constraint (Section
3.3). We validate our models and reconstruction method on
synthetic data (Sections 4.1, 4.2) and test our reconstruction
method on experimental data (Section 4.3).

Our theory and validation results fully agree, and ghost
reconstructions are virtually eliminated when reconstruct-
ing a realistic flow field. Experimental results confirm the
practical value of our reconstruction method. Therefore, our
work challenges the established preference for point recon-
struction and provides theoretical argumentation for why
using topological connectivity is beneficial in reducing the
number of ghost particles in flow reconstruction.

2. Related work
We build on previous work in experimental fluid dynam-

ics and photogrammetric computer vision. The problem of
ghost particles in the reconstruction of densely seeded flows
has been identified and described analytically by Maas et
al. [13,14] as a function of the number of particles per pixel,
volume depth, and relative position of the cameras, using
arguments from epipolar geometry. Elsinga et al. [5] used
similar arguments to describe the number of expected ghost
particles in Tomo-PIV. Modern 3D-PTV methods manage
to significantly reduce ghost particles through Iterative Par-
ticle Reconstruction [25], tracking particles over multiple
time-steps [19], imposing physical constraints on the re-
constructed flow field [11] or using multi-exposed record-
ings [17]. Other approaches use colored light or focus/de-
focus to encode the depth information [12, 26, 27].

Here, we harness the information of the endpoint con-
nectivity and shape of streaks that represent particles’ path-
lines to reduce the number of ambiguous reconstructions.
We employ well-established arguments about point, line,
and conic section reconstruction to determine by how much
the number of reconstruction ambiguities can be reduced
when using long-exposure imaging in 3D-PSV. Conic sec-

tions are chosen to represent the shape of streaks as they are
projectively invariant and offer more correspondence con-
ditions than points and lines, without requiring point-wise
matching as more complex curves do (e.g., [6]). Funda-
mental work on conic section matching has been performed
by [3,7,10,18,21]. To estimate and match conic section seg-
ments, we use a variant of the method proposed by [21] for
our RANSAC-type baseline simulation (supp. mat.), while
our optimization problem is similar to that posed by [22].

3. Our approach
Ghost particle generation is one of the fundamental chal-

lenges in 3D-PTV, and is caused by ambiguities inherent in
projective geometry. To drastically reduce the ambiguities
generated by reconstructing particles, we propose recon-
structing streaks: short lines or curve segments that result
from long-exposure recordings of the pathlines of moving
particles. We perform an analysis of ghost streak genera-
tion probabilities for linear and curved streaks and propose a
method for matching curved streaks across multiple views.

3.1. Preliminaries

The generation of ghost particles is a by-product of pro-
jecting 3D points onto two dimensions, as any number of
points along a camera’s line of sight are projected to a sin-
gle position in the image plane. Though the depth can al-
ready be reconstructed by using a second camera, constella-
tions can exist for which more consistent 3D positions can
be reconstructed than the actual number of corresponding
particles imaged by the two cameras.

Maas [13] described the probability of generating such
reconstruction ambiguities from two images with randomly
distributed particles as follows: a particle in one image, I ,
defines an epipolar line l′ in the second image, I ′, and am-
biguities occur when more than one particle coincides with
l′. Given two images with co-planar image planes and n
particles in each, the probability of more than one particle
being on l′ is then the probability that at least one of the
remaining n−1 particles coincides with the epipolar line l′.

In reality, the region where a particle must be located to
generate a valid reconstruction is, rather than an epipolar
line, an epipolar window f ′ of width 2d (±d) and length L
around l′, where d is the allowed distance from the epipo-
lar line and L is the length of l′. The area of this epipolar
window is then f = 2dL, and the probability of any one
particle lying in this window is f/F , where F is the total
area of the image. Therefore, the average number of am-
biguous reconstructions is,

np = (n− 1)
f

F
. (1)

This process must be considered for each of the n particles
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in image I . Thus, the total number of ambiguities is

Np = (n2 − n)
f

F
. (2)

It must be noted that Maas limits the search length of the
epipolar line based on the depth of the observed volume. In
the following analysis we neglect this constraint.

3.2. Probability models for ghost streak generation

3.2.1 Setup

A linear streak in image I defines, by its endpoints, two
epipolar lines l′a and l′b in I ′ (Fig. 2). A 3D streak can be
reconstructed when there exists at least one streak connect-
ing the two epipolar lines l′a, l′b, and ambiguities occur when
more than one streak connects these two epipolar lines. For
our analysis we restrict ourselves to a setup with two cam-
eras with co-planar image planes, which helps to simplify
the analysis as the epipolar lines are parallel (Fig. 2). Ad-
ditionally, it is assumed that all particles move to a position
within the field of view during the exposure time.

In point reconstruction, and in a uniformly seeded vol-
ume, the positions of the frozen particles in one timestep
reveal no information about the flow. Conversely, streak
images inherently contain information about the flow field.
Therefore, the efficacy of streak imaging in reducing recon-
struction ambiguities depends on the observed flow field,
and an estimate of the expected number of reconstruction
ambiguities will be bounded by best-case and worst-case
displacement scenarios.

We identify two limiting cases between which the num-
ber of streak ambiguities is bound to lie, with the worst-case
scenario occurring when the particles experience no dis-
placement and the best-case scenario ocurring when they
experience random displacements within the image. Be-
tween the two extremes, we consider bounded particle dis-
placements to determine the expected number of ambigui-
ties.

3.2.2 Random displacements

The following case presents the scenario where each par-
ticle can move to a random position in the image during
the exposure time. This case, while physically unrealistic,
is useful in establishing a lower bound and introducing the
main ghost streak generation mechanism.

The endpoints of a streak in image I define the epipolar
lines l′a and l′b and their corresponding epipolar windows f ′

a

and f ′
b in I ′ (Fig. 3a). A reconstruction ambiguity occurs if

there exists more than one streak connecting these epipolar
windows. For this constellation to occur, the following two
conditions must hold. Condition 1: at least one more of
the remaining points in the image must coincide with f ′

a,

Figure 2. The imaged streaks (black) are projections of the blue
streaks in 3D space. Without prior knowledge of the world (blue)
streaks, the imaged streaks’ volumetric reconstruction can gener-
ate four different streaks (blue and red), of which two, three or all
four might be real. Here, the two ghost streaks are shown in red.

(a)

(b)

Figure 3. Necessary conditions for ambiguous reconstructions,
for streaks generated from (a) random particle displacements and
(b) bounded particle displacements. The green streak defines the
epipolar constraints, while the blue streak represents every other
streak that fulfills the constraints.

and Condition 2: the additional particle in f ′
a must be the

endpoint of a streak with its other endpoint in f ′
b.

The expected total number of particles np that will coin-
cide with the epipolar window f ′

a is known from the work
of Maas [13] and Eq. 1. Here, however, twice the num-
ber of points, 2n, must be considered, as the signature of
each of the n particles is a line segment with two endpoints
in the same image. As both endpoints are randomly dis-
tributed in I ′, the expected number of particles in f ′

a is
np = (2n− 2)f/F .

For Condition 2, assuming that the particle displace-
ments are random, the probability that an endpoint lies in
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Figure 4. Schematic depiction of the ghost streak generating con-
stellations for the bounded displacement case. The green streak
defines the epipolar constraints.

f ′
b is f/F , as out of all the possible positions the particle

can jump to within the image, it must land in the area f ′
b.

The average number of particles for which this happens is

ns = 2(n− 1)

(
f

F

)2

(3)

and as this process is repeated for all n streaks in I , the
resulting total expected number of streak ambiguities for
random displacements is

Ns = 2(n2 − n)

(
f

F

)2

. (4)

Comparing this expression with the one for point correspon-
dences (Eq. 2), one can already see a drastic reduction since
f/F ≪ 1 can be assumed.

3.2.3 Bounded displacements

In a more realistic case, particles will not move to a ran-
dom position in the image during the exposure time but will
instead move to a position within a radius R, thus generat-
ing streaks with endpoints at a bounded distance from each
other (Fig. 3b). Ambiguities will be generated when two
epipolar windows in I ′, defined by these endpoints, are con-
nected by more than one streak, as in Section 3.2.2.
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Figure 5. Contribution of the different mechanisms of ghost streak
generation to the total number of ghost streaks (blue), for increas-
ing radius R in a 1024×1024 px2 image.

The conditions for this case are the following. Condition
1: at least one more of the remaining points in the image
must coincide with f ′

a, and Condition 2: the additional par-
ticle in f ′

a must be the endpoint of a streak with its other
endpoint in the area of intersection between f ′

b and the area
FR of the circle with radius R centered around the first end-
point (Fig. 3b).

We consider the “first” endpoint as randomly distributed
and the “second” as conditionally distributed, as it cannot
be further away from the first than a distance R. Then, the
probability of the first endpoint of a streak falling in f ′

a is
f/F . The probability of the second endpoint falling in f ′

b

is the probability that out of all the possible positions in the
circle with area FR, the second endpoint will fall in fs,R(ŷ),
the area of intersection of the circle of radius R around the
first endpoint and the epipolar window f ′

b (Fig. 3b).
The size of this area depends on the position of the

first streak’s second endpoint, which defines l′b, and follows
Wigner’s semi-circle distribution along the ŷ axis. There-
fore, the expected value f̄s,R of the area fs,R(ŷ) is de-
scribed by the integral over the circle’s diameter, of the
probability density function of the semi-circle distribution
times the area fs,R(ŷ), integrated over all positions of f ′

b

(Fig. 4). Relevant formulae are provided in the supp. mat.
By further analyzing the conditions leading to the above

cumulative number of ambiguities, we identify three types
of streak endpoint constellations that contribute to ambigu-
ity generation (Fig. 4):
Type A: the first endpoint is only in f ′

a and the second end-
point is only in f ′

b.
Type B: the first and the second endpoint are in f ′

a and only
the first endpoint is in f ′

b.
Type C: the first and the second endpoint are both in f ′

a and
in f ′

b.
It can be seen that the relative importance of these three

mechanisms varies depending on the ratio of the epipolar
constraint tolerance, d, and the maximum expected particle
displacement, R (Fig. 5). The contributions nA, nB , nC
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for Type A, B and C constellations to the total number of
ambiguities can be described as follows:

nA = 2(n− 1)
fR
F

f̄2
A

F 2
R

, (5)

nB = 2(n− 1)
f

F

f̄B
FR

, (6)

nC = (n− 1)
f

F

f̄C
FR

. (7)

fR is the area with extent RL on either side of f ′
a (Fig. 4)

and the formulae for the mean areas of intersection f̄2
A, f̄B ,

f̄C are provided in the supplementary material.
Type C ambiguities occur when both endpoints of a

streak in one image can be matched to both endpoints of a
streak in another image. This contribution increases as the
ratio d/R increases. In such cases we assume that one of the
matches can be eliminated, so that only one reconstruction
is possible from the same streak pair. Therefore, the ex-
pected number of ambiguities, ns,R, per epipolar line, and
total expected number, Ns,R, of ambiguities reconstructed
from images with n randomly distributed streaks, bounded
by a maximum displacement radius R is

ns,R = 2(n− 1)
f

F

f̄s,R
FR

− nC ,

= nA + nB + nC

(8)

Ns,R = n · ns,R. (9)

Note that this expression contains the two limiting cases
discussed before. For a non-moving particle fR −→ 0, f̄B −→
0 and f̄C −→ FR so the single point probability is recovered.

3.2.4 Conic section segments

Considering the shapes of the streaks in the matching pro-
cess further reduces the number of reconstruction ambigui-
ties. Here, we assume that a curved streak can be modeled
as a segment of a conic section projected to the cameras
from a conic section segment on a plane in the 3D world.

The additional correspondence condition offered by
conic sections is that of the epipolar tangency [3, 18, 21]:
two matching conics are tangent to corresponding epipolar
lines. It follows that, given a conic in image I , tangent to
lt,a and lt,b, a conic can be reconstructed in 3D if there is a
conic tangent to l′t,a and l′t,b in I ′ (Fig. 6). If multiple conics
are tangent to l′t,a and l′t,b, we obtain reconstruction ambi-
guities and, therefore, ghost conics. Although we treat the
curved streaks as general conic section segments during re-
construction, we focus the following discussion on ellipses,
as they allow for a more geometrically intuitive handling.

We calculate the probability of an ellipse in an image be-
ing tangent to two specific epipolar lines, provided that the

Figure 6. Conditions for ghost ellipse generation: endpoint cor-
respondence conditions must hold and, additionally, the ellipses
to which the segments belong must be tangent to corresponding
epipolar lines within some tolerance de (gray area).

lines are horizontal and allowed to be within y ∈ [−R,H+
R], where H is the height of the image and R the maximum
expected displacement of a particle. The coordinate y, that
defines an ellipse’s tangent, also follows a uniform distribu-
tion outside of the region between the two endpoints. One
endpoint of a streak in the image is uniformly distributed,
but the y coordinate of its other endpoint follows the semi-
circle distribution due to the circular bounded displacement.
Finally, a tolerance, de, is defined for the epipolar tangency
constraint so that the ellipse’s epipolar tangents must be
within a distance de of the desired epipolar line for the con-
straint to be fulfilled. The probability p̄e used to calculate
the expected value of the number of ghost ellipses can be
found in the supplementary material. The number of ghost
ellipse matches per streak, ne, and the total number of ghost
ellipses, Ne, in an image with n streaks are calculated as

ne = ns,R · p̄e, (10)
Ne = n · ne, (11)

where ns,R is the number of linear ghost streaks (Sec-
tion 3.2.3). As p̄e ≤ 1, the number of curved ghost streaks
will be at most equal to that of linear ghost streaks, with
ne approaching ns,R as de increases. The presented models
are validated in Section 4.

3.3. Conic section reconstruction

In experiments, the conics that fit through the curved
streaks’ projected 2D coordinates are unknown and must be
estimated. The epipolar tangency constraint, as presented
in the previous section, is, however, not practical for match-
ing short segments of conic sections with low curvature
such as those obtained from realistic flow images. There-
fore, a method is presented here to simultaneously fit the
conics and estimate a multi-view correspondence criterion.
The method is validated and compared to a RANSAC-based
method described in detail in the supp. mat. (Section 4).
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3.3.1 Optimization problem

In our matching approach, we optimize the conic fits to the
curved streak datapoints over multiple cameras while en-
forcing a correspondence criterion between the conic seg-
ments imaged on the different views. The correspondence
is enforced by ensuring that the conic segments on all views
are images of the same world conic. The method is de-
scribed here for three cameras, but it has been implemented
for two-camera and three-camera setups, and it can easily
be extended to more camera views.

Therefore, a conic is sought that lies on a plane in the 3D
world and passes through the two triangulated endpoints of
the streak that, when projected to the images, is a good fit
to the point clouds that define the curved streak segments in
the images (Fig. 7).

A plane π = [α, β, γ, δ], a conic section Cπ with pa-
rameters θπ and three cameras with projection matrices
P1,P2,P3 are given. The homography that transforms
points xπ on the plane π to points xi on the plane of camera
i, so that xi = Hπ,ixπ is defined as:

Hπ,i =

 | | |
H1 H2 H3

| | |

 , (12)

H1 = γPi[:, 1]− αPi[:, 3], (13)

H2 = γPi[:, 2]− βPi[:, 3], (14)

H3 = γPi[:, 4]− δPi[:, 3], (15)

for each of the i = 1, 2, 3 cameras.
Then, an ellipse on π can be transformed to the camera

plane as Ci = H−⊤
π,iCπH

−1
π,i. The goal is then to minimize

the Sampson error

L(π, θπ) =
∑
i,j

(x⊤
i,jCixi,j)

2

4((Cixi,j)21 + (Cixi,j)22)
(16)

for each of the i cameras and j datapoints, where xi,j is
datapoint j on camera i.

As only streak combinations that fulfill the epipolar con-
straints for linear streaks are considered, the streaks’ end-
point correspondence is guaranteed. The plane π is there-
fore a pencil of planes through the line that connects the two
endpoints of the streaks, Xs, Xe, while the conic must nec-
essarily pass through the triangulated endpoints on plane π,
xπ,s, xπ,e. This defines a set of equality constraints, result-
ing in the following optimization problem

min
π,θπ

L(π, θπ)

s.t. x⊤
π,sCπxπ,s = 0,

x⊤
π,eCπxπ,e = 0,

π⊤Xs = 0,

π⊤Xe = 0,

(17)

Figure 7. Setup of the optimization problem for 3 cameras.

which we solve using a non-linear solver (IPOPT) [23] with
CasADi [1]. The tolerance for accepting a good fit is set by
estimating the standard deviation of the distance of the point
cloud to an unconstrained best-fit conic section. The initial
guess for the parameters of π and θπ is found as a best-fit
through five points sampled along the streaks on the two
images using the epipolar constraint. To improve the fits for
noisy data we use a regularizer (supp. mat.).

4. Results
4.1. Synthetic data - model validation

Synthetic images of particles and their streak signatures
are used to validate the estimates of the probability of ghost
streak and ghost ellipse generation as described in the previ-
ous sections. The particles’ coordinates are uniformly dis-
tributed in two images and are then displaced either to a
random location in each image or to a position within a cir-
cle of radius R to simulate bounded particle displacements.
We use a co-planar, two-camera setup (Fig. 2) with image
sizes of 1024×1024 px2.

4.1.1 Linear segments

The points and streaks in the two images are matched using
the epipolar constraint and two different strategies: (a) the
streaks’ endpoints are matched independently of each other
and (b) the endpoints are matched jointly, i.e. a match is
accepted only if both endpoints of a streak in image I can
be matched to the endpoints of a streak in I ′.

For each case, the particle generation and matching is
repeated with 20 image sets, containing from 1000 to 7000
particles, and the number of reconstructed particles/streaks
is averaged. The epipolar constraint is set to d=1 px.

The theoretical model and the reconstruction results
match well, as shown in Fig. 8 and in Table 1. The num-
ber of reconstruction ambiguities lies consistently below
that for individual particles by almost an order of magni-
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Figure 8. Number of ghost streak and ghost particle recon-
structions from synthetic data (markers) and theoretical estimates
(lines), for increasing number of particles, n, with d=1 px,
F=1024×1024 px2. The bounded cases lie between the two edge
cases of individual particle reconstruction and streak reconstruc-
tion for streaks with random displacements.

Np Ns,R, R=10 px Ns,R, R=40 px
pred. sim. pred. sim. pred. sim.

n=1000 1951 1968 397 404 104 103
n=3000 17572 17739 3573 3614 937 962
n=5000 48818 49285 9927 9978 2603 2650
n=7000 95689 96543 19458 19579 5102 5206

Table 1. Number of reconstructed ghost particles, Np and
ghost streaks Ns,R, for two different maximum displacement
radii and different numbers of imaged particles, n, with d=1 px,
F=1024×1024 px2. The predictions are derived from the theo-
retical analysis (Section 3.2.3), while the simulation results are
obtained as the mean of 20 runs with new particle positions.

tude, even for small maximum displacements. It is evident
that ghost streak generation is reduced with increasing max-
imum allowable displacement radius, as the position of each
streak’s second endpoint is allowed more variability. In-
creasing the initial number of particles n produces the same
behavior for ghost streaks as for individual ghost particles.

4.1.2 Ellipse segments

For the ellipse segment matching, ellipses with varying pa-
rameters are fitted through the streak endpoints so that the
fitted ellipses are tangent to horizontal lines randomly dis-
tributed in y ∈ [−R,H + R]. The results were obtained
using an epipolar constraint of d=1 px, epipolar tangency
constraints de of 100 and 200 px and n=1000 streaks.

A good match between the theoretical estimate (Sec-
tion 3.2.4) and the reconstructed number of ghost ellipses
can be seen in Fig. 9. The number of ghost ellipses lies
below that for linear ghost streaks, and it depends on the
epipolar constraint tolerance, de, which in turn depends on
the uncertainty of the estimated ellipse parameters. For ex-
ample, for R=40 px and de=200 px the number of ambigu-
ities is reduced from 104 ghost streaks to 39 ghost ellipses.
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Figure 9. Number of ghost streak and ghost ellipse segment recon-
structions from synthetic data (dots) and theoretical predictions
(lines), for increasing number of maximum allowable displace-
ment radius, R and two different epipolar tangency tolerances de.
d=1 px, F=1024×1024 px2.

Np Ns Nc, optimization Nc, RANSAC
ghosts ghosts ghosts lost ghosts lost

0 px
n=1000 2001.5 189.1 11.6 0.2 7.7 0.1
n=3000 18095.5 1692 115.9 1.4 76 1.3

0.25 px
n=1000 2000 189.3 52 14.2 31 63
n=3000 18098.4 1696.1 463.8 87.25 275 454

0.5 px
n=1000 2001 186.5 61.3 28.3 58.8 26.1
n=3000 18115.6 1688.9 553.6 197 543.6 180

Table 2. Number of reconstructed ghost particles, Np, ghost
streaks, Ns, and curved ghost streaks, Nc, for different initial
number of particles n and noise levels. “Ghosts” are the ambigu-
ous reconstructions, while “lost” are the false negatives. The two
conic reconstruction methods, optimization-based and RANSAC-
based, are compared. d=1 px, F=1024×1024 px2.

4.2. Synthetic data - reconstruction validation

4.2.1 Conic section data

The synthetic data used for the validation of our conic fit
and reconstruction method consist of images of conic sec-
tion segments, obtained by projecting onto the cameras
conic section segments generated in 3D, with parameters
limited to a range that produces similar results to experi-
mental images. Uniformly distributed noise up to ±0.5 px
is added to the curved streaks’ 2D coordinates.

These conic section segments are then reconstructed us-
ing (a) the optimization-based method described in Sec-
tion 3.3 and (b) our RANSAC-type method (supp. mat).
The mean results of 20 3D scenes are presented in Table 2.

In the absence of noise, effectively all segments are
reconstructed correctly, and the number of curved ghost
streaks, Nc, is significantly lower than the number of lin-
ear ghost streaks, Ns. Noise reduces both methods’ per-
formance. Increasing the number of particles increases Nc,
which, however, remains at about a third of Ns.
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Np Ns Nc, optimization NCS

ghosts ghosts ghosts lost ghosts lost
0 px

n=1000 542.5 10 4 0 20 71
n=3000 4925 111 57 0 149 562

0.25 px
n=1000 546 11 11 1 - -
n=3000 4951 111 87 6 - -

0.5 px
n=1000 551 12 12 1 - -
n=3000 4952.5 107 99 5 - -

Table 3. Number of reconstructed ghost particles, Np, ghost
streaks, Ns, and curved ghost streaks, Nc, for different initial
number of particles n and noise levels, for Hill’s spherical vortex
data. “Ghosts” are the ambiguous reconstructions, while “lost”
are the false negatives. Our method is compared to a commercial
3D-PTV software (NCS). d=1 px, F=1024×1024 px2.

4.2.2 Hill’s spherical vortex

We reconstruct synthetic streak images of Hill’s spherical
vortex [9] to validate our method on realistic flow field data.
The mean displacement is 33 px, and the same setup of two
co-planar views is used. The results of the conic recon-
struction method are compared with results obtained using
state-of-the-art commercial 3D-PTV software [8] (Table 3).

Only data without noise are processed with the commer-
cial software, as the purpose of noise is to assess our conic
reconstruction method. The software requires range and
velocity constraints, and we impose the same constraints
on our reconstruction pipeline. Direct comparison with the
commercial software is challenging, as in the software, the
number of ghost reconstructions can be tuned at the ex-
pense of losing more true particles. Therefore, the results
of Table 3 are what we consider a fair compromise between
recognized true particles and reconstructed ghosts. The de-
tailed evaluation settings, unconstrained results that can be
compared to the theoretical estimates, and results obtained
with different parameters are provided in the supp. mat.

Our method drastically reduces ghost reconstructions in
a flow field with high dynamic velocity range, typically
challenging for 3D-PTV. From a single frame, we obtain
lower ghost streak numbers than those obtained by an equiv-
alent multi-frame analysis using state-of-the-art commer-
cial software for the examined flow field and setup.

4.3. Experimental data

The flow field we use in our experiments is a vortex ring
in air, visualized using helium-filled soap bubbles as trac-
ers. Two synchronized 1 Mpx high-speed cameras record
particle images at 1000 fps, with an exposure time of 1 ms.
The streaks are obtained by summing the individual frames
and are then detected using a CNN-based instance segmen-
tation method. The high frame rate acquisition allows us to
perform both 3D-PSV and 3D-PTV analyses.

1.0

(a) (b)

0.8

0.4

0.6

0.2

0.0

Figure 10. Projections of the reconstructed experimental data su-
perimposed on one of the camera views (a) with our method and
(b) with 3D-PTV. For (a) the velocity, u, is obtained from the 3D
arc length. Velocities normalized by maximum velocity, umax.

n Cam. 1 / Cam. 2 Nt,p Nt,s Nt,c, optimization Nt,CS

2529 / 2265 20366 4928 3477 2759

Table 4. Number of reconstructed particles, Nt,p, linear streaks,
Nt,s, and curved streaks, Nt,c, for the vortex ring experiment with
d=1px. Our method is compared to 3D-PTV software (Nt,CS).

2529 and 2265 streaks are detected in the two views, and
the number of total particle and streak reconstructions, in-
cluding correct and ghost reconstructions, are shown in Ta-
ble 4, along with results from the 3D-PTV software [8]. The
reconstructed streaks agree well with the recorded images,
with visibly more complete trajectories recovered compared
to 3D-PTV (Fig. 10). Camera synchronization and calibra-
tion are essential to keep the epipolar tolerance, d, and the
number of ambiguities, low. Here, d=1 px is used. Details
on the experimental setup are provided in the supp. mat.

Limitations. A notable limitation of the proposed method
is that we require the curved streaks to be planar curves, thus
effectively limiting the maximum allowable exposure time.
Additionally, streak imaging requires sufficiently accurate
streak segmentation and endpoint detection, which can be
more challenging than particle detection.

5. Conclusion
We have shown that 3D-PSV is a method inherently

suited for reducing the number of reconstruction ambigui-
ties in volumetric flow velocimetry. We have provided mod-
els to estimate the expected number of linear and curved
ghost streaks and presented a method for simultaneously fit-
ting conic sections through curved streaks and testing their
correspondence over multiple views. Simulations validate
our theoretical analysis, and streak reconstruction produces
significantly fewer ambiguities than point reconstruction.
Our endpoint and subsequent conic section matching ap-
proach is validated using synthetic flow data, with results
outperforming state-of-the-art commercial software on the
evaluated cases. Finally, the reconstruction of experimen-
tal data shows that our conic matching and reconstruction
method can be used to successfully evaluate real data.
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Shake-The-Box: Lagrangian particle tracking at high par-
ticle image densities. Experiments in Fluids, 57(5):1–27,
2016. 1, 2

[20] Daniel Schanz, Matteo Novara, and Andreas Schröder.
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