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Abstract

Obtaining annotations for large training sets is expen-
sive, especially in settings where domain knowledge is re-
quired, such as behavior analysis. Weak supervision has
been studied to reduce annotation costs by using weak la-
bels from task-specific labeling functions (LFs) to augment
ground truth labels. However, domain experts still need to
hand-craft different LFs for different tasks, limiting scal-
ability. To reduce expert effort, we present AutoSWAP:
a framework for automatically synthesizing data-efficient
task-level LFs. The key to our approach is to efficiently
represent expert knowledge in a reusable domain-specific
language and more general domain-level LFs, with which
we use state-of-the-art program synthesis techniques and a
small labeled dataset to generate task-level LFs. Addition-
ally, we propose a novel structural diversity cost that allows
for efficient synthesis of diverse sets of LFs, further improv-
ing AutoSWAP’s performance. We evaluate AutoSWAP in
three behavior analysis domains and demonstrate that Au-
toSWAP outperforms existing approaches using only a frac-
tion of the data. Our results suggest that AutoSWAP is an
effective way to automatically generate LFs that can signif-
icantly reduce expert effort for behavior analysis.

1. Introduction
In recent years, machine learning has enabled the study

of large-scale datasets in many behavior analysis domains,
such as neuroscience [24, 27], sports analytics [30, 37], and
motion forecasting [7]. However, obtaining labeled data to
train models can be difficult and costly, especially when do-
main expertise is required for annotation, such as for many
behavior analysis tasks [24]. One way to reduce annotation
cost is through weak supervision, which uses noisy, task-
level heuristic “labeling functions” (LFs) to weakly label
data. LFs for a specific task (task-level LFs) are supplied
by domain experts, and are applied to obtain a set of weak
labels. Weakly labeled data can then be used in downstream
settings, such as active learning [4] and self-training [17].

*Work done while author was affiliated with Caltech.
†Correspondence to atseng@caltech.edu.

Figure 1. We present AutoSWAP, a framework for automatically
synthesizing diverse sets of task-level labeling functions (LFs)
with a small labeled dataset and domain knowledge encoded in
domain-level LFs and a DSL. AutoSWAP significantly reduces la-
beler effort by automating LF generation.

While weak supervision has worked well in a wide range
of settings [4, 10, 23], it has not been well-explored for be-
havior analysis tasks. For one, the requirement that LFs
must provide labels and not, for example, features prevents
more general domain knowledge from being used [22] (e.g.
the behavioral features in [14, 24]). Furthermore, new LFs
must be hand-crafted by domain experts for new tasks (such
as new behaviors to study), limiting the scalability of man-
ual weak supervision [33]. To address these challenges, we
study efficient domain knowledge representations and de-
velop automated weak supervision methods towards reduc-
ing annotation bottlenecks in behavior analysis settings.

Our Approach. We propose AutoSWAP (Automatic
Synthesized WeAk SuPervision), a data-efficient frame-
work for automatically generating task-level LFs using a
novel diverse program synthesis formulation. As depicted
in Figure 1, experts provide a domain-specific language
(DSL) and domain-level LFs (LFs specific to a domain of
tasks) for a given domain, such as mouse behaviors or ve-
hicle motion planning. For each task to be studied in that
domain, experts provide a small labeled dataset to specify
the task, and AutoSWAP returns a set of structurally di-
verse task-level LFs that can be used in weakly supervised
frameworks. The domain-level LFs (Figure 2) provide fine-
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grained, label-space agnostic “atomic instructions,” while
the DSL contains abstract structural domain knowledge for
composing the more general domain-level LFs into task-
level LFs (Figure 3). The novel diversity cost enables Au-
toSWAP to generate structurally diverse LFs, which we and
others empirically show outperform structurally homoge-
neous LFs in downstream tasks [33].

To the best of our knowledge, we are the first to demon-
strate the effectiveness of program synthesis for automated
LF generation. Existing works for generating LFs include
iteratively selecting LFs by repeatedly querying experts
for feedback [5] and training exponentially many simple
heuristics models [33], which have limitations in scalability
and tractability. In contrast, our approach represents domain
knowledge in a DSL and domain-level LFs, which can then
be used to automatically synthesize LFs for arbitrary tasks
in a domain with our diverse program synthesizer.

We evaluate our approach in three behavior analy-
sis domains with both sequential and nonsequential data:
mouse [27], fly [14], and basketball player [36] behaviors.
In these domains, data collection is expensive and new tasks
frequently emerge, highlighting the importance of scalabil-
ity. The datasets we use are based on agent trajectories,
which provide low-dimensional inputs for easily creating
domain-level LFs. We show that with existing expert de-
fined domain-level LFs from [14, 24] and a simple DSL,
AutoSWAP is capable of synthesizing high quality LFs with
very little labeled data. These LFs outperform LFs from ex-
isting automatic weak supervision methods [33] and offer a
data efficient approach to reducing domain expert effort.

To summarize, our contributions are:

• We propose AutoSWAP, which combines program
synthesis with weak supervision to scalably and effi-
ciently generate labeling functions.

• We propose a novel program-structural diversity cost
that enables AutoSWAP to directly synthesize diverse
sets of labeling functions, which we empirically show
are more data efficient than purely optimal sets.

• We evaluate AutoSWAP in multiple behavior analy-
sis domains and downstream tasks, and show that Au-
toSWAP is capable of significantly improving data ef-
ficiency and reducing expert cost.

Our implementation of AutoSWAP can be found at
https://github.com/autoswap/autoswap_cvpr_2022.

2. Related Work

Behavior Analysis. In many domains, such as behav-
ioral neuroscience [19, 24], sports analytics [36, 37], and
traffic modeling [9], agent pose and location trajectory data

is used for behavior analysis. This data is usually ex-
tracted from recorded videos using detectors and pose esti-
mators [14, 24]; for example, we use trajectories from [24],
[14], and StatsPerform for our mouse, fly, and basketball
datasets, respectively.

To accurately analyze this data for complex behaviors,
frame-level behavior labels from domain experts are usu-
ally needed. However, annotating large datasets is time-
consuming and monotonous [1], motivating methods for
label-efficient modeling. For example, self-supervised
learning [28] and unsupervised behavior discovery meth-
ods [3, 6, 19] aim to learn efficient behavior representations
and discover new behaviors, respectively. Our work is com-
plementary to these methods in that this is not a comparison
between weak supervision and self-supervision. Rather, we
evaluate the merits of our synthesized LFs in the context of
weak supervision for learning expert-defined behaviors.

Weak Supervision. Weak supervision with LFs was in-
troduced in the context of data programming [23]. Since
then, LFs have been applied in a variety of settings, includ-
ing for active learning [4, 20] and self-training [17] tasks.
Our work is complementary to these works in that we au-
tomatically learn LFs that can be used as inputs to existing
weakly supervised frameworks. We note that we are not the
first to propose learning LFs from a small amount of train-
ing data. For example, IWS iteratively proposes rules and
queries domain experts in a large-scale feedback loop [5].
More similar to our work, SNUBA [33] trains heuristics
models, but does so without domain knowledge and has run-
time exponential in the number of features. To the best of
our knowledge, we are the first to apply program synthesis
to this problem, and our framework outperforms existing
model-based methods for learning LFs.

Program Synthesis. Traditionally, programming by
example has been used to synthesize programs from a
DSL that respect hard constraints on input/output exam-
ples [15, 26]. In recent years, a growing number of works
have studied synthesizing programs with soft constraints,
such as minimizing a loss function [13, 21, 25, 31]. This
relaxed form of program synthesis has been applied to a
number of different domains including web information ex-
traction [8], image structure analysis [12], and learning in-
terpretable agent policies [34]. Of these works, algorithms
that learn differentiable programs, such as [25], have shown
great promise in being able to efficiently and simultane-
ously optimize program architectures and parameters. Here,
we use concepts from differentiable program synthesis al-
gorithms to synthesize diverse sets of LFs.

3. Methods
We introduce AutoSWAP, a framework for automati-

cally generating diverse sets of task-level LFs. In our frame-
work, domain experts provide a set of domain-level LFs and
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# lambda_1 − whether fly is attacking target
def is_attacking ( fly , tgt ):

f2t_angle = atan (( tgt .y − fly .y) / ( tgt .x − fly .x))
rel_angle = | fly . abs_angle − f2t_angle |
return fly .speed > 2 and rel_angle < 0.1

# lambda_2 − ratio of fly wingspan
def wing_ratio ( fly , tgt ):

return quantize ( fly .wing_x / fly .wing_y, 4)

# lambda_3 − fly speed relative to target speed
def relative_speed ( fly , tgt ):

return | fly .speed | / | tgt .speed |

Figure 2. Domain experts provide domain-level labeling func-
tions, such as the ones above for the fly domain. Some domain-
level LFs (λ1, λ2) label for specific tasks (and would be considered
task-level LFs on their own), while others (λ3) return features.

a DSL of useful relations. For each task to be studied, speci-
fied with a small labeled dataset, task-level LFs are automat-
ically generated by the AutoSWAP diverse program synthe-
sizer. These LFs can then be used in downstream applica-
tions involving weak supervision. In the following sections,
we provide a background of key components in AutoSWAP
(Section 3.1), detail the framework (Section 3.2), and de-
scribe example downstream applications (Section 3.3).

3.1. Background

Domain-level Labeling Functions. In weak supervi-
sion, users provide a set of task-level hand-crafted heuris-
tics called labeling functions (LFs). LFs can be noisy and
abstain from labeling, but LFs must output in downstream
task’s label space Y . We relax this requirement in Au-
toSWAP by allowing domain experts to provide domain-
level LFs (Figure 2). These LFs do not have to output in Y ,
which reduces LF creation overhead and allows for more
expressive LFs. This also allows us to reuse LFs across
multiple tasks within the same domain, aiding scalability.

Domain Specific Languages. Domain specific lan-
guages (DSLs) define the allowable submodules and struc-
tures in synthesized programs, and are a key component
of program synthesis algorithms. Many recent works have
adopted purely functional DSLs [25], where DSL items are
functions that output to the input space of other DSL items
or the final output space. In AutoSWAP, domain experts
provide a purely functional DSL with program structures
that may be useful in generated LFs. We show empirically
that even using a very simple DSL in AutoSWAP can result
in significant reductions in expert effort.

Differentiable Program Synthesis via Neural Com-
pletions and Guided Search. Our program synthesis for-
mulation is based on NEAR, which finds ϵ-optimal differen-
tiable programs using admissible search heuristics [16, 25].
While NEAR is one instantiation of AutoSWAP, our diverse
synthesis formulation (Section 3.2) is theoretically com-

patible with any search-based synthesizer. Here, the DSL
D is a context-free grammar with differentiable variables.
Programs are defined by a program architecture α in the
context-free language of D,CFLD, and a set of real param-
eters θ, and are denoted by [[α]](x, θ) : X → Y . Synthesiz-
ing a program that is optimal w.r.t. a cost function F and
dataset (X,Y ) ∈ (X ,Y) is equivalent to

(α∗, θ∗) = argmin
α,θ

F ([[α]](X, θ), Y ). (1)

To find (α∗, θ∗), we search over CFLD. This search
space is a tree G, where the root node is an empty architec-
ture, interior nodes are incomplete architectures (architec-
tures with unknown components), and leaf nodes are com-
plete architectures. Edges in G represent single productions
from D between two architectures. We bound the search
tree by limiting the search depth to m and “completing”
incomplete architectures by substituting unknown compo-
nents with neural networks (“neural completions”).

Since neural completions are differentiable, the mini-
mum cost-to-go (CTG) w.r.t. F of a neural completion can
be computed by optimizing the neural completion’s param-
eters. Furthermore, this minimum CTG of a neural comple-
tion is an ϵ-admissible heuristic [16] for the true CTG of the
corresponding incomplete architecture (proof in [25]). This
allows us to use informed search algorithms on G to find
ϵ-optimal solutions to Equation 1.

3.2. AutoSWAP

Synthesizing Diverse Sets of Programs. Diverse sets
of LFs have been shown to improve data efficiency relative
to purely optimal sets in downstream applications of weak
supervision [33]. This is partly due to diverse sets having
improved label coverage (fewer data points where all LFs
abstain) [33], and from having more learning signals for
the downstream model [29]. The program synthesizer in
Section 3.1 can be run repeatedly to obtain a set of purely
optimal LFs, but there is no guarantee that the set will be
diverse. Here, we introduce a structural diversity cost and
admissible heuristic that allows for direct synthesis of di-
verse sets of programs using informed search algorithms.
We empirically show that using the diversity cost improves
performance, corroborating [33]’s observations.

Consider a complete program P , which is a composition
of variables in D. By construction of G, we can convert P
to a tree TP where each node is a variable in P and a node’s
children are its input variables (Figure 3). Then, given a
set of complete programs P and a complete program P , we
define the structural cost CP,P of P relative to P as:

1

CP,P
= q

( 1

∥P∥
∑
P ′∈P

ZSS(TP , TP ′)
)
, (2)

where q : R → R is a user defined monotonically increas-
ing function and ZSS is the Zhang-Shasha tree edit distance
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Figure 3. A complete program and its tree representation. Each
‘?’ represents one child node function. The depicted program
is an actual AutoSWAP LF for the “lunge vs. no behavior” in
the Fly domain. The program can be interpreted as “If the linear
speed between the flies is small, classify the angular domain-level
LFs of the flies. Otherwise, classify the product of transformations
of the linear speed and positional domain-level LFs.” Note the
parameters (red) are not included in the structural diversity cost.

(TED) [38]. Essentially, programs with a higher average
TED to the elements of P incur a lower diversity cost.

Since this structural cost is not defined for incomplete
programs or neural completions, CP,P cannot be used in
informed search algorithms. However, the following admis-
sible heuristic HPI ,P for incomplete programs PI allows us
to create a set of diverse programs by iteratively synthesiz-
ing programs and adding them to P .

Lemma 3.1. Let PI be an incomplete program and TPI
be

the tree of its known variables. TPI
is guaranteed to exist

by construction of G. Define HPI ,P as:

UPI ,P ′ = m− ∥PI∥+ ZSS(TPI
, TP ′),

1

HPI ,P
= q

( 1

∥P∥
∑
P ′∈P

UPI ,P ′

)
,

where ∥PI∥ is the number of known variables in PI . HPI ,P
is an admissible heuristic for the CTG from PI in G.

Proof. Consider UPI ,P ′ . m−∥PI∥ is an upper bound on the
TED between TPI

and the tree of any complete descendant
P ∗ of PI in G. From the triangle inequality,

UPI ,P ′ = m− ∥PI∥+ ZSS(TPI
, TP ′)

≥ ZSS(TPI
, TP∗) + ZSS(TPI

, TP ′)

≥ ZSS(TP∗ , TP ′).

Then, as TEDs are nonnegative, m ≥ ∥PI∥, and q is nonde-
creasing, HPI ,P ≤ CP∗,P . Thus, H a admissible heuristic
for the structural CTG from PI .

AutoSWAP Framework. AutoSWAP uses program
synthesis to automate significant parts of the weak super-
vision pipeline and reduce domain expert effort. Domain
experts provide a set of domain-level LFs Λm = {λi : X →
Yi}, a purely functional DSLD, and a small labeled dataset
(X,Y ) ∈ (X ,Y) to specify tasks within the domain. In
order to use Λm when synthesizing programs with D, all λi

must be added to D. This can be done either by implement-
ing each λi with operations from D, or precomputing and

Algorithm 1: AutoSWAP.
Input: Λm, D, labeled dataset DL, # LFs n
Output: task-level LFs Λ
D ← Combine ΛM and D
P ← ∅
while ∥P∥ ≤ n do

Synthesize P with D, DL,P
P ← P ∪ {P}

end
Λ← P , return Λ.

Algorithm 2: AutoSWAP for Active Learning.
Input: Λm,D, n, unlabeled XU , A.
Sort A in increasing order.
Randomly select A1 points XL from XU .
XU ← XU \XL

YL ← Obtain labels for XL.
for i = 1, ..., ∥A∥ − 1 do

Λi ← AutoSWAP(Λm,D, (XL, YL), n).
X ′

L ←
[
XL Λi(XL)

]
Train downstream classifier Ci with (X ′

L, YL).
Select Ai+1 −Ai points X ′

L using max entropy
uncertainty sampling.
XU ← XU \X ′

L

XL ← XL ∪X ′
L

YL ← YL ∪ {Obtain labels for X ′
L}

end

selecting Λm(X) as input features in D; we do the latter
in our experiments. With D, AutoSWAP runs the diverse
program synthesis algorithm n times to generate a set Λ of
n LFs. Λ can then be used in downstream tasks, such as in
weak supervision label models to generate weak labels. See
Algorithm 1 for a detailed description of AutoSWAP.

3.3. Downstream Tasks

We describe two downstream tasks in which weak labels
can be used. These examples, which our experiments are
based on, are just a subset of the many weakly supervised
learning frameworks in existence such as ASTRA [17].

Active Learning. Active learning is a paradigm where
the learning algorithm can selectively query for new data to
be labeled. Here, we use labels from task-level LFs as addi-
tional features for a downstream classifier. The downstream
classifier’s predictions are used to select data for labeling.
To evaluate generated LFs in active learning settings, we
consider the performance of downstream classifiers at mul-
tiple data amounts. Given a sorted list A of data amounts,
at each amount we generate new LFs, train a downstream
classifier, and select data points for labeling to form the next
batch. An exact description of our active learning setup for
AutoSWAP can be found in Algorithm 2.

Weak Supervision. Weak supervision frameworks gen-
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Algorithm 3: AutoSWAP for Weak Supervision.
Input: Λm,D, n, Labeled (XL, YL), Unlabeled

XU , A.
Λ← AutoSWAP(Λm,D, (XL, YL), n).
Λ← Abstain(Λ) [33]
Sort A in increasing order.
for i = 1, ..., ∥A∥ do

Randomly select Ai points XP from XU .
X ′

L ← XL ∪XP

Y ′
L ← YL ∪ Λ(XP )

Train downstream classifier Ci with (X ′
L, Y

′
L).

end

erally depend on a generative label model weakly label un-
labeled samples. Using no ground truth labels, the genera-
tive model produces probabilistic estimates (“weak labels”)
for the true labels YU of an unlabeled set XU by modeling
the LF outputs Λ(XU ). Weakly labeled data can then be
used to augment labeled datasets in downstream tasks.

To evaluate AutoSWAP in weak supervision settings, we
start with a small labeled dataset DL and a list of unlabeled
data amounts A. LFs are generated using the small labeled
dataset and abstain using the method in [33]. Then, weak
labels are generated from these LFs for all unlabeled data
using the generative model. For each data amount Ai ∈ A,
a random set DPL of Ai weakly labeled data points is se-
lected and the performance of a downstream classifier is
measured using the training set DL ∪ DPL. An exact de-
scription of our weak supervision setup is in Algorithm 3.

4. Experiments

We evaluate AutoSWAP in multiple real world be-
havior analysis domains (Section 4.1), and show that our
framework outperforms existing LF generation methods in
weak supervision and active learning settings (Section 5.1).
Since researchers often study multiple behaviors in a do-
main [14, 24], we consider each behavior its own task.

4.1. Datasets

We use datasets from behavioral neuroscience (mouse
and fly behaviors) as well as sports analytics (basketball
player trajectories). These datasets include rare behav-
iors, multi-behavior tasks, and sequential data, making them
good representations of real-world behavior analysis tasks.
Each dataset contains a train, validation, and test split; the
validation split is only used for model checkpoint selection.

Fly vs. Fly (Fly). The fly dataset [14] contains frame-
level annotations of videos of interactions between two fruit
flies. Our train, validation, and test sets contain 552k, 20k,
and 166k frames. We use fly trajectories tracked by Fly-
Tracker [14] and evaluate on 6 behaviors: lunge, wing

threat, tussle, wing extension, circle, copulation. This is
a multi-label dataset and we report the mean Average Pre-
cision (mAP) over binary classification tasks for each be-
havior. All behaviors except for copulation are rare; lunge,
wing threat, and tussle occur in < 5% of frames, and wing
extension and circle occur in < 1% of frames. The domain-
level LFs for this dataset are based on features from [14].

CalMS21 (Mouse). The CalMS21 dataset [27] consists
of frame-level pose and behavior annotations from videos
of interactions between pairs of mice. We use data from
Task 1 (532k train, 20k validation, 119k test) and evaluate
on a set of 3 behaviors: attack, investigation, and mount.
These behaviors are mutually exclusive and we report the
mAP over these classes. We use a subset of the features in
[24] as domain-level LFs for this dataset.

Basketball. The Basketball dataset, also used in [25,
36, 37], contains sequences of basketball player trajectories
from Stats Perform (18k train, 1k validation, 2.7k test). La-
bels for which offense player (5 total) had the ball for the
majority of the sequence were extracted with [2]. We per-
form sequential classification in downstream tasks, and re-
port the mAP over each offense player vs. the other 4. Our
domain-level LFs include player acceleration, velocity, and
position among others. We exclude information about the
ball position in the domain-level LFs and data features to
focus on analyzing player behaviors.

4.2. Baselines

We compare AutoSWAP to two main baselines: student
networks from student-teacher training and decision trees
from SNUBA [33]. We show that AutoSWAP outperforms
both in data efficiency, requiring a fraction of the data to
achieve or exceed performance parity. For both baselines,
domain-level LFs are incorporated as input features to eval-
uate the effectiveness of AutoSWAP and not the domain-
level LFs themselves. We do not compare against IWS [5],
as IWS is a human-in-the-loop LF generation system. We
also do not compare against ASTRA [17], as ASTRA is a
weak supervision framework for using task-level LFs in self
training. However, ASTRA can be used as a downstream
task for AutoSWAP.

Student Networks Student-teacher training (from
knowledge distillation [35]) has been used successfully in
self-training. We adopt the concept of student networks
by training models with similar capacity as the downstream
classifier to serve as LFs. In weak supervision experiments,
these student LFs and the label model (Equation 3) serve as
a teacher model for the downstream classifier.

Decision Trees and SNUBA Decision trees have been
shown to be good LFs [33] and offer some degree of in-
terpretability. The SNUBA framework [33] generates a di-
verse set of decision tree LFs by training 2k − 1 decision
trees over all feature subsets and then pruning trees based
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on a diversity and performance metric, where k is the fea-
ture dimension of X . Clearly, this is intractable for large
k, which is often the case for behavior analysis tasks. Fur-
thermore, SNUBA does not use domain knowledge, instead
relying on the complete set of decision trees for data effi-
ciency. In relation to SNUBA, AutoSWAP can be viewed as
an scalable alternative to the synthesizer and pruner stages.

4.3. Training Setup

Our experimental setup consists of two stages: obtain-
ing LFs, and evaluating generated LFs in downstream tasks.
Our downstream tasks include active learning, where LFs
are used to select data for labeling, and weak supervision,
where LFs generate pseudolabels for unlabeled data points.

4.3.1 Obtaining labeling functions

Synthesized Programs via AutoSWAP. For each do-
main, we use a simple DSL that includes add, multiply, fold,
and differentiable if-then-else (ITE) structures among oth-
ers. We synthesize programs with our diverse program syn-
thesizer and A∗ search. Our cost function is the sum of the
F1 cost from [25] and our diversity cost CP,P . We set q(x)
to x2 and m to log2 ∥Λm∥. Program parameters are trained
with weighted cross entropy loss. More information about
the exact DSL used is in the Supplementary Materials.

Student Networks. We use neural networks for frame
classification tasks and LSTMs for scene classification
tasks. To induce diversity in the learned student networks,
we take inspiration from [35] and randomly set the size of
each layer so the “expected” student network is of similar
capacity as the downstream classifier. All student networks
are trained using weighted cross entropy loss.

Decision Trees. We fit decision trees using Gini im-
purity as the split criteria. We limit the depth of decision
trees to log2 k, so the number of nodes is O(k). We se-
lect diverse sets of decision trees by pruning a superset of
trees based on coverage and performance, similar to how
SNUBA does [33]. However, unlike SNUBA, we group our
features when generating the superset, as training 2k − 1
decision trees is intractable with our datasets.

4.3.2 Downstream Tasks

We use 3 LFs in our main experiments. Experiments
with more LFs (5, 7) are in the Supplementary Materials.

Active Learning. As previous described, we evaluate
the performance of AutoSWAP at multiple data amounts,
selecting additional labeled data with active learning at each
amount (Algorithm 2). We use max-entropy uncertainty
sampling on downstream classifier outputs to select points
for labeling [18]. We use {1000, 2000, 3500, 5000, 7500,
12500, 25000, 50000} frames for the fly and mouse datasets

and {500, 1000, 1500, 2000, 3000, 4000, 5000} sequences
for the basketball dataset.

Weak Supervision. In our weak supervision experi-
ments, we use factor graph model proposed in [22, 23].

pθ(YU ,Λ) = Z−1
θ exp

( ∥XU∥∑
i=1

θTϕi(Λ(XUi
), YUi

)
)
. (3)

Here, LF accuracies are modeled by factor ϕAcc
i,j (Λ, YU ) =

1{Λj(XUi
) = YUi

}, and the proportion of data the LF la-
bels is modeled by ϕLab

i,j (Λ, YU ) = 1{Λj(XUi
) ̸= ∅}.

For the labeled dataset, we use 2000 frames for the
fly and mouse datasets, and 500 sequences for the bas-
ketball dataset. Our unlabeled data amounts are set to
{1×, 2×, 3×, 4×, 5×} the number of labeled points.

5. Results

We compare the data efficiency of AutoSWAP against
the baselines on our behavior analysis datasets. We do not
run the decision tree (SNUBA) baseline on the Basketball
dataset as it contains only sequential data.

5.1. Data Efficiency Results

Active Learning. AutoSWAP LFs are far more data
efficient than baseline methods across all datasets, indicat-
ing that AutoSWAP is effective in reducing label cost in
active learning settings (Figure 4). This difference is espe-
cially pronounced in the Mouse dataset, where AutoSWAP
achieves parity with decision tree LFs with roughly 30×
less data. In the Fly dataset, AutoSWAP is consistently
∼ 4× more data efficient than the baselines, and no base-
line is able to reach performance parity with AutoSWAP by
50000 samples (9.1% of the entire Fly dataset). We observe
a similar trend in the Basketball dataset, with AutoSWAP
being ∼ 2× as data efficient. We also observe an improve-
ment in data efficiency even when using random sampling,
and note that uncertainty sampling widens the gap between
AutoSWAP and the baselines.

While AutoSWAP LFs themselves do not necessarily
perform better than baseline LFs when evaluated on their
own (see the Supplementary Materials), they do provide
a stronger learning signal for downstream classifiers than
the baselines. These data efficiency differences can be at-
tributed in part the structural domain knowledge encoded in
the DSL, as the domain-level LFs themselves perform sig-
nificantly worse. For example, a AutoSWAP LF classifying
“lunge vs. no behavior” for the Fly dataset can be seen in
Figure 3, and the structure of this program cannot be easily
approximated with a decision tree or a neural network.

Weak Supervision. Similar to our active learning exper-
iments, we observe that AutoSWAP is more data efficient
than the baselines in weak supervision settings (Figure 5).
We note that the ground truth labels are not a baseline in
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Figure 4. AutoSWAP Active Learning Experiments. Each line represents the mean of 5 random seeds for an automatic labeling function
method. The shaded region is the standard error of the seeds. As can be seen, AutoSWAP matches or outperforms all baseline methods
using only a fraction of the data. Note that all plots are on log-log scales.

Figure 5. AutoSWAP Weak Supervision Experiments. Each line represents the mean of 5 random seeds for an automatic labeling function
method. The shaded region is the standard error of the seeds. The gray line shows performance when ground truth labels are used as weak
labels. Although it may seem odd that AutoSWAP outperforms ground truth labels in the Mouse dataset, weak labels have been observed
to outperform ground truth labels in other works [17]. Note that all plots are on log-log scales.

this setting, as they are essentially an “optimal” case where
the weak labels match the ground truth labels.

On the Fly dataset, AutoSWAP generally performs bet-
ter than both baselines, and on the Mouse and Basketball
datasets, no baseline is able to match the performance of
AutoSWAP LFs at any evaluated amount of annotated data.
AutoSWAP is even able to outperform the ground truth
labels in the Mouse dataset at some levels of annotated
data, which indicates that the learned LFs are especially in-
formative. Finally, we observe that AutoSWAP generally
improves with more weakly labeled data points, which is
useful as there is no expert annotation cost to using more
weakly labeled data points.

5.2. Additional Results

AutoSWAP Diversity Cost. The diversity cost is an im-
portant part of AutoSWAP. As can be seen in Figure 6, syn-
thesizing purely optimal programs w.r.t. Equation 1 results
in worse performance than synthesizing diverse sets of pro-
grams. This mirrors the observations in [33], where using
diverse sets of decision trees improves performance.

Interpretability of Labeling Functions. An important
part of behavior analysis is being able to interpret learned
models. Neural networks and LSTMs are by nature not
interpretable. Decision trees offer some degree of inter-
pretability, but are limited to branched if-then-else state-
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Figure 6. Diversity Cost Utility Comparison. Synthesizing diverse
sets of programs instead of purely ϵ-optimal sets improves Au-
toSWAP, showing the utility of the structural diversity cost.

ments. With AutoSWAP, complex yet interpretable pro-
grams can be learned by using interpretable structures in
the DSL (Figures 3, 7, Supplementary Materials).

Effect on Rare Behaviors. Rare behaviors can be dif-
ficult to analyze, as even with large datasets very little data
exists. Our fly domain results show that AutoSWAP greatly
improves data efficiency for rare behaviors, as 5 of the 6
behaviors we study occur in < 5% of the frames. We note
the copulation task (which is not rare) does not bias our
Fly domain data efficiency comparison as all tested meth-
ods achieve near-perfect performance on it.

6. Discussion and Conclusion
We propose AutoSWAP, a framework that uses program

synthesis to automatically synthesize diverse LFs. Our re-
sults demonstrate the effectiveness of our framework in both
active learning and weak supervision settings and across
three behavior analysis settings. We find that with existing
domain-level LFs [14, 24] and a simple DSL, AutoSWAP
can synthesize highly data efficient task-level LFs with min-
imal amounts of labeled data, thus reducing annotation re-
quirements for domain experts.

Additionally, we introduce a novel structural diversity
cost and admissible heuristic for synthesized programs,

Fly Domain:
(Lunge) Map(Add(Multiply(Speed, WingRatio), Positional ))
(Tussle ) Map(SimpleITE(Angular, Speed, WingDistance))))

Mouse Domain:
Map(Fold(SimpleITE(DistanceM1, AngleM1, SpeedM1)))
Map(SimpleITE(PositionalM2, SpeedM1, DistanceM1))

Basketball Domain:
Fold(Add(PlAccel(), Add(PlPos(), PlVel ())))
Fold(SimpleITE(BVel(), PlVel (), PlPos ()))

Figure 7. Example AutoSWAP task-level LFs (architectures only).
LFs are composed of domain-level LFs and structural relations
from the DSL. For example, the “Fly Lunge LF” labels whether
a fly is lunging using the fly’s speed, wing ratio, and positional
domain-level LFs. More detailed descriptions of AutoSWAP LFs
can be found in the Supplementary Materials.

which allows AutoSWAP to scalably synthesize diverse LFs
with informed search algorithms. This further improves the
performance of our framework in behavior analysis settings,
all without requiring domain experts to repeatedly hand-
craft task-level LFs. Overall, AutoSWAP effectively inte-
grates weak supervision with behavior analysis, and greatly
reduces domain expert effort through automatically synthe-
sizing task-level LFs from domain-level knowledge.

Limitations. While our DSL and LFs are at the domain-
level, our method requires task-level information in the
form of a small labeled dataset to synthesize LFs. Addi-
tionally, the LFs provided by domain experts should be in-
formative of behavior (although we do show that current be-
havioral features [14,24] studied by domain experts are suf-
ficient for this task). Extensions to automate other aspects
of our framework while taking into account domain expert
knowledge, such as library learning [11] or integrating per-
ception [32], may further reduce expert effort. However, we
note that our current framework already leads to significant
reductions in data requirements.

Societal Impact. Automatically generating interpretable
LFs to reduce expert effort can help behavior analysis across
domains, such as in neuroscience, ethology, sports analyt-
ics, and autonomous vehicles, among others. Our frame-
work leverages inductive biases in the DSL to produce in-
terpretable programs; however, since humans create the
DSL, interpret programs, and annotate data, users should
be aware of potential human-encoded biases in these steps.
Additional care is especially needed in human behavior do-
mains, such as with informed consent of participants and
responsible handling of data.
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