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Abstract

In this paper, we propose an effective and efficient
method for Human-Gaze-Target (HGT) detection, i.e., gaze
following. Current approaches decouple the HGT detection
task into separate branches of salient object detection and
human gaze prediction, employing a two-stage framework
where human head locations must first be detected and then
be fed into the next gaze target prediction sub-network. In
contrast, we redefine the HGT detection task as detecting
human head locations and their gaze targets, simultane-
ously. By this way, our method, named Human-Gaze-Target
detection TRansformer or HGTTR, streamlines the HGT de-
tection pipeline by eliminating all other additional compo-
nents. HGTTR reasons about the relations of salient ob-
Jjects and human gaze from the global image context. More-
over, unlike existing two-stage methods that require human
head locations as input and can predict only one human’s
gaze target at a time, HGTTR can directly predict the loca-
tions of all people and their gaze targets at one time in an
end-to-end manner. The effectiveness and robustness of our
proposed method are verified with extensive experiments on
the two standard benchmark datasets, GazeFollowing and
VideoAttentionTarget. Without bells and whistles, HGTTR
outperforms existing state-of-the-art methods by large mar-
gins (6.4 mAP gain on GazeFollowing and 10.3 mAP gain
on VideoAttentionTarget) with a much simpler architecture.

1. Introduction

Gaze following plays a crucial role in high level human-
scene understanding tasks, and has attracted considerable
research interest recently. Given an image or video frame
containing one or more humans, the goal of gaze following
is to predict where each person is looking at.

Unlike traditional gaze prediction tasks [11, 13] that pre-
dict only the gaze direction with a cropped human head im-
age as input, gaze following further predicts the specific lo-
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Figure 1. Pipelines of existing methods and our proposed
model.

cation in the scene that human is looking at. To this end,
recent works leverage head pose features and the saliency
maps of potential gaze targets by taking both head crops
and the scene image as inputs. For instance, Recasens et
al. [21] precisely detected the attention target of each per-
son by extracting features from the scene and head images
simultaneously. More recently, Chong et al. [4] proposed
a novel framework to solve the problem of identifying gaze
targets in videos. There are also other related works, includ-
ing but not limited to 3, 7, 12, 13, 15, 30, 34]. These meth-
ods are very attractive since they demonstrate the ability to
estimate gaze targets directly from images or videos, with-
out the help of any monitor-based and wearable eye tracker
devices.

However, as shown in Figure 1, existing methods share
a similar multi-stream architecture, which contains a scene
branch for scene understanding and another parallel head
branch to extract head pose features. In this case, a common
problem arises in that both head images and scene images
must be taken as inputs simultaneously. As a consequence,
existing methods face the following three major drawbacks:
(1) An additional human head detector is then essential in
practical applications, which compels the entire framework



to be two-stage, and the precision of the additional detector
can seriously affect the final results of gaze target detec-
tion. (2) As head crops are required for the second stage,
existing methods can only predict gaze targets sequentially,
which is less efficient when there are multiple persons in
the same scene. It implies that the detection process will be
conducted repeatedly and it is necessary to perform some
post-operations to merge the detected gaze targets of differ-
ent subjects in the same scene. (3) Most importantly, even
if both head crops and scene images are taken as inputs,
existing methods predict saliency maps and gaze directions
separately, lacking contextual relational reasoning for inter-
actions between them.

To overcome these drawbacks, we propose HGTTR, a
Human-Gaze-Target detection TRansformer that simultane-
ously detects a human’s head location and his/her attention
target by image-wide contextual modeling. More specifi-
cally, taking as input the image of a scene containing one or
more humans, our HGTTR is designed to simultaneously
detect the head locations of all individuals as well as their
gaze targets at one time. Its outputs can be represented
as N human-gaze-target (HGT) instances in the format of
(head location, attention target), where N is the number of
persons in the image. Besides, with Transformers [27] as
key component, HGTTR has a great ability to reason long-
range gaze behaviors, thanks to its global contextual mod-
eling capability.

To this end, we reformulate HGT detection as a set-based
prediction problem. We define a HGT query set with sev-
eral learnable embeddings, and each query is designed to
capture at most one HGT instance. The HGTTR first takes
a CNN backbone to extract high-level image features from
only a single scene image, and then the encoder is lever-
aged to generate global memory features by modeling the
relation between the image features explicitly. After that,
the HGT queries and the global memory features are sent to
the decoder to generate the output embeddings. Finally, the
HGT instances are predicted based on the output embed-
dings of the decoder with a multi-layer perception. Mean-
while, we also propose a quaternate HGT matching loss to
supervise the learning process of HGT instances prediction.
Experimental results show that HGTTR outperforms exist-
ing state-of-the-art methods by large margins. Specifically,
it achieves a 6.4 mAP gain on GazeFollowing [21] and a
10.3 mAP gain on VideoAttentionTarget [4] with a much
higher FPS (more than 5 times compared to existing meth-
ods).

2. Related Work

Gaze following. Gaze following was first proposed in [21],
which presented a large dataset, GazeFollowing, and an al-
gorithm accordingly. Unlike eye tracking [13, 29, 32, 34]
and saliency detection [12, 15], the goal of gaze following

2203

detection is to estimate what is being looked at by a person
in a picture or a video frame. Based on this, Chong et al.
[3] further addressed the problem of out-of-frame gaze tar-
gets by learning gaze angle and saliency simultaneously. By
utilizing other auxiliary information, such as body pose [8],
sight lines [16, 30], the within-frame gaze target estimation
can be further enhanced. Besides, the work of [22] inferred
gaze targets from videos. More recently, Chong et al. [4]
proposed another new dataset named VideoAttentionTarget,
which modeled the dynamics of gaze from video data and
inferred per-frame gaze targets. In [7], a three-stage method
was proposed to simulate the human gaze inference behav-
ior in 3D space.

However, in both GazeFollowing and VideoAttention-
Target, human head locations were carefully and manually
annotated and all existing methods took them as inputs,
which is impossible for real world applications.
Transformer. Transformer was first proposed in Natu-
ral Language Processing (NLP) domain [27]. With self-
attention mechanism as key component, it has great abil-
ity to selectively capture long range dependence among all
tokens. Recently, a great number of excellent works have
been proposed that perform Transformer structure in vision
tasks. In DETR [1], object detection was reformulated as a
set prediction problem and solved via a typical Transformer,
which eliminates the need for many hand-designed compo-
nents in object detection while demonstrating good perfor-
mance. ViT [5] solved the image classification by represent-
ing an image as 16 x 16 patches and utilizing a Transformer
encoder to predict the possible category. Transformer has
also show great potential in many other vision tasks, such as
semantic segmentation [24, 31], low-level vision tasks [2]
and so on.

3. Method
3.1. Problem Reformulation

Given a single image € R3*#*W that contains one
or more humans as input, we aim to predict all positions of
all humans at one time, as well as their gaze locations. For
convenience, we denote the position of people I, as their
head locations since they have been annotated in existing
datasets. Specifically, a human’s head location is repre-
sented as a bounding box (4, Yt1, Tbr, Ybr ), Where the sub-
scripts ¢l and br denote top-left and bottom-right, respec-
tively. Meanwhile, the gaze location I, is represented as a
Gaussian heatmap. By this means, our problem can be for-
mulated as maximizing a joint posteriori of the output pairs
(In,1y) on the input image:

N
T = max Hp((lh,lg)i | x), (1)
i=1
where N is the number of the humans in this image and 7*
refers to the optimal model.
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Figure 2. Pipeline of the proposed model. It consists of four key components: a backbone, a typical Transformer, four multi-layer

perceptions (MLP) and a quaternate loss function.

It has to be noticed that this is quite different from the
traditional gaze following problem, which takes both scene
image and cropped human head image as input, and pre-
dicts only one individual’s gaze location at a time. It can be
formulated as:

T = mﬁxp(lg | :B,wfl), )
where :nil refers to the j-th cropped human head image and
l; denotes the j-th human’s gaze location. Namely, for ex-
isting methods, an identical scene image is regarded as N
different cases when there are N different humans.

3.2. Network Architecture

Figure 2 illustrates the overall architecture of the pro-

posed HGTTR. It consists of four main parts: (i) a backbone
to extract high-level visual feature from the input image, (ii)
a Transformer encoder-decoder to digest visual feature and
generate output embeddings, (iii) several multi-layer per-
ceptions (MLP) to predict HGT instances and (iiii) a qua-
ternate loss function for bipartite matching.
Backbone. Given an input image & € R>*#>W 4 fea-
ture map zp € RP»*H' W' s calculated by an arbitrary
CNN backbone network. zp is then fed into a projection
convolution layer with a kernel size of 1 x 1 to reduce the
dimension from Dy to D.. After that, a flatten operator is
used to collapse the spatial dimension into one dimension,
and a feature map zy € RP<*HW i5 obtained, which is de-
noted as Flattened Features in Figure 2. In this work, we
use ResNet [9] as our backbone and reduce the dimension
of feature layer-5 from D, = 2048 to D, = 256.

Encoder. The encoder consists of N, encoder layers
built upon standard Transformer structure with a multi-head
self-attention (MSA) module and a feed-forward network
(FFN). It takes the output of the backbone z; € RPxHW
as input to produce another feature map with richer con-
textual information. Besides, a fixed positional encoding
p € RPxH W s additionally fed into the encoder to sup-
plement the positional information as the Transformer ar-
chitecture is permutation invariant. The attention in Trans-

2204

former can be formulated as:
T

Vdy
QZQf+Qp7K:Kf+Kp,V=Vf,

where dj, is the channel dimension, subscript f means the
feature and p refers to the position encoding. The Q, K,V
are the query, key and value, respectively. As shown in Fig-
ure 2, in the self-attention module of the encoder, Q5 =
Ky=V;=2zand Q, = K, = p.

Decoder. We also build the decoder layer on the basis of
transformer architecture. Different from the encoder layer
containing only self-attention module, the decoder layer
consists of both self-attention and cross-attention mecha-
nisms. In self-attention, Ky and V; are the same as Q)
while K, is the same as @,. Specifically, Q; € RNa*¢
is the output of the last decoder and we initialize it for the
first decoder with a constant vector. For HGT query po-
sition embedding @, € RY4*C we use a set of learning
embedding:

Attention(Q, K, V) = softmax( WV,

3

Qp = Embedding(N,, C), “
where IV, is always larger than the number of actual HGT
instances in an image. In cross-attention, Q) € RNaxC ig
generated from the output of the former self-attention mod-
ule while Ky € REWXC and V; € REW*C are the output
features of the encoder. @), is also set as Eq. (4) and K, is
equal to p.

In summary, the decoder has three inputs, the global
memory from the encoder, HGT instance queries and po-
sition encoding. It serves to transform [V, learnable posi-
tion embeddings (denoted as HGT instance Embeddings in
Figure 2) into N, output embeddings with both the self-
attention and cross-attention mechanisms.

MLP for HGT instances prediction. Mathematically, we
define each HGT instance by the following three vectors: a
human-head-bounding-box vector normalized by the corre-
sponding image size I;, € [0,1]%, a watch-in-out (whether
the gaze target is located inside the scene image or not) bi-
nary one-hot vector w € {0,1}2, and a gaze heatmap vec-



tor I, € [0, 1]Ho*We where H, and W, denote the spatial
resolution of the output gaze heatmap.

The output embedding for each HGT query is decoded to
one HGT instance by several multi-layer perception (MLP)
branches. Specifically, we use two one-layer MLP branches
fn and f, to predict the human confidence (whether the
predicted bounding box is a human or not) and watch-
in-out confidence, respectively. Meanwhile, a three-layer
MLP branch fj;, is set to predict human-head-bounding-
box as well as a five-layer MLP branch f}, to predict the
gaze heatmap. We use a softmax function for all one-layer
branches and a sigmoid function for box and heatmap pre-
diction.

3.3. Loss Calculation

The loss calculation is composed of two stages: the bi-

partite matching between ground-truths and output predic-
tions of the proposed network, and the loss calculation for
the matched pairs.
Bipartite matching. We follow the training procedure of
DETR [1] and use the Hungarian algorithm [14] for the bi-
partite matching, which is designed to obviate the process of
suppressing over-detection. First of all, we pad the ground-
truth of HGT instances with @ (no instance) so that the size
of ground-truths set becomes N,.

As illustrated in Figure 2, the model outputs a fixed-size
set of N, HGT instance predictions, and we denote them as
O =o0'i=1,2,---,N, Meanwhile, we use T' = t*,i =
1,2,---M,21,P2, -+ , DN, m to represent the ground-
truths, where M is the real number of HGT instances in
an image. Then, the matching process can be denoted as
an injective function: wr_,o, where w(i) is the index of
predicted HGT instance assigned to the i-th ground-truth.
We define the matching cost as:

N,

q
Ecost = Z Cmatch (tz7 Ow(z))’ (5)
K3
where L, qrcn (', 0°(*)) is a matching cost between the i-th
ground-truth and the w(4)-th prediction.

Specifically, the matching cost £qzcn (t°, 0%(*)) consists
of four types of cost: the head-box-regression cost Ly, is-
head cost L}, watch-in-out cost £,, and gaze heatmap cost
Ly. Lyoq is box regression loss for human head box, and

the weighted sum of GIoU [23] loss and L1 loss is used:
— GloU(t],0l,)),  (6)

where the superscript b refers to the bounding box. Besides,
the £;, and L£,, are respectively defined as:

Lyoz = t? - 02,(1)

Ly = —0% (k) st t5(k) = 1,
Lo, = (k) st. t9(k) =1,

)
®)

where ¢ € {0,1}? and w € {0, 1}* are one-hot vector for
is-head and watch-in-out, respectively. We use Lo loss for

w
TOuw(i)
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heatmap cost L,:

g

w(i) ) )]
On this basis, we design the following matching cost for
HGT prediction:
Lonaten(t';0°") = B1Loow + B2Ln + B3Lw + BaLy.  (10)
We then leverage the Hungarian algorithm to determine

the optimal assignment @ among the set of all possible per-
mutations of NV, elements 2 N, It can be formulated as:

(1)

Ly =

9 _
t; —o

w = arg minLos¢-
wGQNq
Loss function. After the optimal one-to-one matching be-
tween the ground-truths and the predictions is found, the
loss to be minimized in the training phase is calculated as
Eq. (10). The hyper-parameters are set as same as they does
in matching process.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We train and test our model on both GazeFol-
lowing [21] dataset and VideoAttentionTarget [4] dataset.
Specifically, we use every single frame in VideoAttention-
Target dataset as input during the training process, without
considering the temporal information. Therefore, to avoid
overfitting, for every five continuous frames from the train-
ing set of VideoAttentionTarget which have no obvious ap-
pearance differences, we randomly select one for training
since they have almost the same gaze target. For testing, we
still use all images in the testing set.

Moreover, one of objectives of our proposed model is
to predict the locations of different individuals. Therefore,
the head locations in existing dataset annotations are no
longer used as inputs but as ground-truths. Besides, pre-
vious works predict the gaze target for different subjects in
an identical scene on a case-by-case basis, which results in
each image being assigned with M annotations, and M is
the number of people in an image. Unlike that, we merge
the annotations of the same image into the same format as
COCO [17] object detection since we aim to predict them
all at one time.

Evaluation metric. In this work, we have to evaluate the
performance of proposed model in terms of both gaze target
detection and human position detection.

For the former, we follow the standard evaluation proto-
cols, as in [4, 21], to report the results in terms of AUC and
L, distance. AUC: The final heatmap provides the predic-
tion confidence score which is evaluated at different thresh-
olds in the ROC curve. The area under curve (AUC) of
the ROC is reported [4]. Distance: Lo distance between
the annotated target location and the prediction given by the
pixel having the maximum value in the heatmap, with im-
age width and height normalized to 1. Specifically, since the



GazeFollowing VideoAttentionTarget

Method AUCT Average Dist.| Min Dist.], AUCT L2 Dist.) AP?

mAPt mAPt

Default Real Default Real Default Real Default Real Default Real Default Real

Random 0.504 0391 0484 0533 0391 0487 0.104 0505 0247 0458 0592  0.621  0.349 0.091
Center 0.633 0446 0313 0495 0230 0371 0.117 — — — — — — —
Fixed bias — — — — — — — 0.728 0522 0326 0472 0.624 0510 0.130
Judd [12] 0.711 — 0.337 — 0.250 — — — — — — — — —
GazeFollow [21] 0.878 0.804 0.190 0233 0.113 0.124 0457 — — — — — — —
Chong [3] 0.896 0.807 0.187 0207 0.112 0.120 0.449 0.830 0.791  0.193 0214 0.705 0.651 0374
Zhao [30] — — 0.147 — 0.082 — — — — — — — — —
Lian [16] 0.906 0.881 0.145 0.153 0.081 0.087 0.469 0.837 0.784  0.165 0.172 — — 0.392
VideoAttention [4] 0.921 0902 0.137 0.142 0.077 0.082 0483 0860 0.812 0.134 0.146  0.853  0.849 0.420
DAM [7] 0.922 — 0.124 — 0.067 — — 0.905 — 0.108 — 0.896 — —
HGTTR (ResNet-50) — 0.917 — 0.133 — 0.069  0.547 — 0.893 — 0.137 — 0.821 0.514
HGTTR (ResNet-101) — 0.905 — 0.138 — 0.065 0.541 — 0.904 — 0.126 — 0.854 0.523

Table 1. Quantitative comparisons on the GazeFollowing and VideoAttentionTarget sets. As the existing methods require to take as
input both scene and head images, we report the results of them in ‘Default’ and ‘Real’ set, respectively. Specifically, ‘Default’ refers to
use the head location that carefully labeled in existing dataset, while ‘Real’ represents to apply an additional head detection network to

predict the head location for real world applications.

ground truth for GazeFollowing may be multimodal, the L,
distance is the Euclidean distance between our prediction
and the average of ground-truth annotations. Besides, the
minimum distance between our prediction and all ground-
truth annotations is also reported. In addition, the average
precision (AP) is used to evaluate the performance for is-
watching-outside prediction.

For the latter, we use the commonly used role mean av-
erage percision (mAP) to examine the model performance
on both datasets. Specifically, a HGT detection is consid-
ered as true positive if and only if it localizes the human
and detects gaze target accurately (i.e. the Interaction-over-
Union (I0U) ratio between the predicted human-head-box
and ground-truth is greater than 0.5 while the Lo distance
for gaze target detection is less than 0.15).

4.2. Implementation Details

The experiments are conducted on two popular back-
bone: ResNet-50 and ResNet-101 [9]. Both Transformer
encoder and decoder consist of 6 layers with a multi-head
self-attention of 8 heads. We initialize the network with the
parameters of DETR trained with the COCO dataset. The
model is trained for 150 epochs using AdamW [19] opti-
mizer with batch size of 16. Specifically, the initial learning
rate of the backbone network is set as 10~° while that of
the others is set as 104, the weight decay is equal to 10~%.
For the hyper-parameters of the model, we set a; and o
as 1.0 and 2.5, respectively. The weights (81 — (4) for dif-
ferent cost functions in the loss are set as 2, 1, 1, 2, respec-
tively. The number of HGT instance queries N, is 20 for all
datasets. Both learning rates are decayed after 80 epochs.
All experiments are conducted on 8 NVIDIA GTX 2080TI
GPU.

4.3. Comparison to State-of-the-Art

We first show the main quantitative comparison of our
HGTTR with the latest HGT detection methods in Table
1. Specifically, since the cropped head image and the head
location are essential for existing methods, we report the re-
sults of them on two different settings: ‘Default’ and ‘Real’.
For ‘Default’, we directly utilize the carefully labeled head
locations in existing dataset annotations. Meanwhile, we
employ an additional head detector to automatically gen-
erate the head positions and feed the predicted results into
existing models for real world applications, and the results
are reported as ‘Real’. Following [4], we fine-tuned a SSD-
based [18] head detection network with the head annota-
tions in existing dataset. As can be seen from the table,
HGTTR outperforms existing state-of-the-art methods on
all datasets. HGTTR with the ResNet-50 backbone yields
a significant gain of 6.4 mAP compared with VideoAtten-
tion [4] and 7.8 mAP compared with GazeFollow [21] on
the GazeFollowing datasets. Moreover, HGTTR performs
better on the VideoAttentionTarget dataset. This can mainly
attribute to two main reasons: 1) VideoAttentionTarget is a
larger dataset than GazeFollowing, which is important for
transformer-based methods. 2) There are more than one
humans in each image of VideoAttentionTarget while ev-
ery image in GazeFollowing contains only one person. As
our model outputs a fixed number of HGT instances, fewer
instances in an image imply a higher value of fault posi-
tive (FP). In terms of gaze target prediction, our HGTTR
still has outstanding performance. For VideoAttentionTar-
get dataset, we achieve a gain of 8§ AUC compared with
VideoAttention for ‘Real’ setting.

4.4. Ablation Study

In this section, we conduct extensive experiments to val-
idate the effectiveness of our proposed HGTTR. The abla-
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Figure 3. Performance of different methods on different spatial
distributions of HGT instances on VideoAttentionTarget.

tion experiments are conducted with ResNet-50 backbone
model, and the results are reported on the VideoAttention-
Target dataset.

4.4.1 Model components

Self-attention. As the most important component in trans-
former, self-attention has great ability to capture long range
contextual information. In [4], attention mechanism has
been simply applied to merge the features of head branch
and scene branch, which achieved attractive performance.
We first investigate in which cases self-attention especially
achieves superior performance compared with the existing
methods. To this end, we split HGT instances into bins of
size 0.1 on the basis of L distance between the center of
a human’s head and his gaze target, where the height and
width of image have been normalized. The AUC of differ-
ent methods in each bin is shown in Figure 3, where the
results of Lian [16] and VideoAttention [4] are reported in
‘Default’ setting. The relative gaps of the performance be-
tween HGTTR and the other two methods become more ev-
ident as the distance grows. It indicts that gaze target detec-
tion tends to become more difficult as the distance grows.
Besides, it is especially difficult for existing methods to deal
with the distant cases while HGTTR has relatively better
performance. The possible reason for such result is that ex-
isting methods rely on limited receptive fields for the fea-
ture aggregation. They are weak in capturing long range
contextual information or easily be dominated by irrelevant
information in the distant cases. On the contrary, the fea-
tures of HGTTR are more effective thanks to the ability of
self-attention to adaptively extract image-wide contextual
information.

Decoder. A decoder is essential to transform the manually
defined HGT queries () into a set of HGT instances with
the features generated by the encoder. As each layer of the
decoder is identical in the architecture, it is a coarse-to-fine
process where each layer takes the predicted results of the
previous layer as input to further produce more precise pre-
dictions. As shown in Figure 4, HGTTR can achieve bet-
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Figure 4. Performance of the model with different numbers
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creases.

B B2 Ps  Bs | AUCT LyDist| mAP}
1 1 1 1 0.864 0.142 0.492
1 2 2 1 0.857 0.148 0.487
2 1 1 2 | 0.893 0.137 0.514

Table 2. The effects of different cost functions in matching pro-
cess.

ter performance with more decoder layers, especially for
‘AUC’ and ‘L, Dist.’. A possible explain for this result
is that the decoder can learn some potential relationships
among different HGT instances with more self-attention
mechanisms. For example, people in an identical scene
more tend to have a similar gaze target.

Moreover, we visualize the decoder attention map for the
predicted HGT instances in Figure 5 . The heatmap high-
lights both the human heads and their gaze targets, which
indicts that our HGTTR reasons about the relations between
human and scene from a more global image context.
Matching strategy. Our proposed matching cost function
consists of four main aspects: human head location L.,
whether a predicted bounding box is a human or not (Is
Head) L}, whether the gaze target is located in the scene
image or not (Watch Outside) £,, and the predicted gaze
heatmap L,. Specifically, L., and L, are localization
losses while £, and L,, are classification losses. In this
case, we conduct ablation study to further find the relative
importance in matching: location first or classification first?
In Eq. (10), 51 to B4 denote the different weights for each
matching cost function. As shown in Table 2, the best result
is obtained under 81 = 4 = 2 and 2 = (B3 = 1, which
suggests that localization plays a relatively more important
role than classification during the matching process.

4.4.2 Importance of pairwise detection

We redefine the gaze following task to detect the human
head locations and their gaze targets, simultaneously. In this



Figure 5. Visualization of attention maps in the decoder for the predicted HGT instances. The images are randomly selected from
the testing set of VideoAttentionTarget. As can be seen from the figure, our method has great ability to capture long range dependence. In
addition, it can be seen from the figure that different HGT instances may share little common pattern (the last column), which indicts that

an unique matching process is essential.

Blur Gaussian Noise Brightness Normal
Method Fine-tuned | FPS AUC mAP AUC  mAP AUC mAP AUC  mAP
SSD-based [18] x 2 0.729  0.302 0.706  0.298 0.738 0315 0.789  0.405
v 2 0.774 0.371 0.767  0.362 0.784 0.376 0.812 0.420
U X 3 0.757 0.336 0.744  0.328 0.764 0.341 0.804 0.409
v 3 0.784 0.385 0.781  0.325 0.796  0.392 0.818 0.424
HeadHunter [26] X 1 0.782 0.341 0.750  0.332 0.773  0.352 0.796 0.412
v 1 0.787 0.389 0.789  0.384 0.804 0.410 0.819 0.424
X 16 0.806  0.442 0.792  0.438 0.813 0.451 0.893 0.514
1SRy S(ennd) v 16 0.872 0.487 0.864  0.481 0.881 0.496 — —

Table 3. Performance of different human head detectors. We manually degrade the original images in the testing set with several
common distortion types. Specifically, ‘Fine-tuned’ refers to that the training set is also augmented with these distortion types and the
pre-trained head detector is further fine-tuned with the head locations in annotations. ‘Normal’ denotes that no degeneration image is used.

subsection, we mainly analyze the necessity of this strategy.

Model robustness. As existing methods take both scene
and human head images as inputs, an additional human head
detector is essential for them. However, performance of
gaze target prediction would then be seriously influenced
by the precision of the head detector in this way. As shown
in Table 3, we applied several different head detectors to
analyze model performance in different conditions. In real
world applications, such as video surveillance, blur, noise,
and brightness variation are the most common types of im-
age degradation. It can be seen from the table, pairwise de-
tection strategy is not only more efficient, but also more ro-
bust with better performance under different degradations.
First, using an additional head detector is a sub-optimal so-
lution since existing models are trained with head locations
that are carefully and manually labeled so that they are very
sensitive to the results of the head detector. Secondly, while
noise can be addressed to some extent by data augmentation
in real world applications, head detector is hard to fine-tune
since it is impossible to manually generate annotations of
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head locations. On the contrary, we solve HGT detection
in an absolute end-to-end manner, which does not require
head location as input. Moreover, as shown in the table,
HGTTR has better robustness with different image degrada-
tions. The possible reasons are that Transformer inherently
has great ability to against noises and pairwise detection is
not as sensitive to image degradations as two-stage meth-
ods.

Model efficiency. Another advantage of pairwise detection
is high efficiency. Using human head images as input, as
existing methods do, limits the ability of the model to pre-
dict different people’s gaze targets at the same time. As
shown in Figure 6, as the number of individuals in an iden-
tical scene increases, the inference time of existing methods
grows extremely. The main reason is that existing methods
can predict only one human’s gaze target at a time, and the
detection process has to be conducted repeatedly when there
are more than one human in a same image. On the contrary,
our proposed method has no such limitation and the infer-
ence time is almost not inflected by the number of humans.



=®= VideoAttention
GazeFollow
=@= HGTTR

Inferance Time (s)

e S —S

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Num. of Humans in an Image

110 lj5
Figure 6. Inference time of different models with different
numbers of humans in an image.

In this paper, our HGTTR is designed to detect up to 20 peo-
ples gaze targets at a time. In real world applications, the
model can be easily fine-tuned to increase the number of
maximum detectable humans by simply changing the value
of hyper-parameter [V,.

4.5. Qualitative Analysis

Practical application. To evaluate our model’s perfor-
mance in practical applications, we randomly selected
15,000 pictures from the DL Gaze dataset [16], which
records the daily activities of 16 volunteers in 4 different
scenes, and the ground-truth is annotated by the observers
in the videos. All models are only trained with the VideoAt-
tentionTarget dataset. In addition, an additional human head
detector is also employed for existing methods. The quan-
titative results are presented in Table 4. Without bells and
whistles, our HGTTR outperforms all state-of-the-art meth-
ods by a significant margin.

Shared attention detection. With the ability to detect gaze
targets of different people at a same time, our methods are
inherently suitable for inferring shared attention in social
scenes. Following [4], the results are reported in terms
of accuracy for interval detection of shared attention and
Ls distance for location prediction on the VideoCoAtt [6]
dataset. This dataset has 113,810 test frames that are anno-
tated with the target location when it is simultaneously at-
tended by two or more people. As can be seen from Table 5,
our model has demonstrated potential value of recognizing
higher-level social gaze.

4.6. Discussion

It is our belief that defining HGT detection task as si-
multaneously detecting human head locations and their gaze
targets is more reasonable, since manually labeled head lo-
cations are unavailable in practical applications. Moreover,
joint detection could benefit both of these two tasks with
the essential contextual information modeling. However, as
a typical Transformer-based method, HGTTR suffers from
slow convergence, since it takes long training epochs to
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Methods | AUCT LyDist] Ang| mAP}
Gazefollow [21] 0.792 0.213 27.9°  0.407
Lian [16] 0.813 0.167 19.7°  0.441
VideoAttention [4] | 0.842 0.145 16.9°  0.476
HGTTR | 0912 0.121 12.7°  0.538

Table 4. Performance in practical application. Specifically,
‘Ang.’ refers to the angle between ground-truth gaze direction and
the predicted one.

Methods Accuracyt Lo Dist.]
Random 50.8 286
Fixed bias 52.4 122
GazeFollow [21] 58.7 102
Gaze+Saliency [20] 59.4 83
Gaze+Saliency+LSTM [10] 66.2 71
Fan [6] 71.4 62
Sumer [25] 78.1 63
VideoAttention [4] 83.3 57
HGTTR 90.4 46

Table 5. Shared attention detection results on the VideoCoAtt
dataset. The interval detection is evaluated in terms of prediction
accuracy while the location task is measured with Lo distance.

learn attention weights to focus on sparse meaningful loca-
tions. A possible solution to this issue is designing a more
flexible self-attention mechanism with more considerations
on this task, like deformable DETR [33]. We will devote
more studies on this in the future work.

Broader impacts. The proposed method predicts human’s
gaze target. As a human-centric task, it may has some is-
sues about privacy protection when being applied practi-
cally, which warrants more policy reviews when using this
work in real world applications.

5. Conclusion

We have presented an new Transformer-based method

for the task of gaze following detection. Our model is de-
signed to allow detect all people’s head positions as well as
their gaze targets simultaneously. Without the limitation of
taking head image as input, our model achieve higher effec-
tiveness and efficiency. Extensive experiments validate its
strong performance as well as the potential for understand-
ing gaze behavior in naturalistic human interactions. We
hope our method will be useful for human activity under-
standing research.
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