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(a) robust fusion (b) fast & temporally consistent motion (c) robustness to event sparsity

Figure 1. Comparison to state-of-the-art event- and image-based video interpolation method Time Lens [22]. Our method makes a series of

key innovations to address the limitations of current approaches. First, it uses feature-level multi-scale fusion which is robust to artifacts in

the fused images (a). Second, it computes continuous flow, parametrized by splines, which have inherent temporal consistency (b, bottom

right vs. left) and can be efficiently sampled, thereby significantly reducing computation for multi-frame interpolation (b). Finally, it

combines images and events to generate flow, even where few events are triggered, thereby mitigating artifacts as in (c). 

Abstract 

Recently, video frame interpolation  using a combination 

of frame- and event-based cameras has surpassed tradi- 

tional image-based methods both in terms of performance 

and memory efficiency. However, current methods still suf- 

fer from (i) brittle image-level fusion  of complementary in- 

terpolation results, that fails in the presence of artifacts 

in the fused image, (ii) potentially temporally inconsistent 

and inefficient motion estimation procedures, that run for 

every inserted frame and (iii) low contrast regions that do 

not trigger events, and thus cause events-only motion  esti- 

mation to generate  artifacts. Moreover, previous methods 

were only tested on datasets consisting of planar and far- 

away scenes, which do not capture the full complexity of 

the real world. In this work, we address the above problems 

by introducing multi-scale feature-level fusion and comput- 

ing one-shot non-linear inter-frame motion—which can be 

efficiently sampled for image warping—from events and im- 

ages. We  also collect the first large-scale events and frames 

dataset consisting of more than  100 challenging scenes with 

depth variations, captured with a new experimental setup 

based on a beamsplitter. We show that our method  improves 

the reconstruction  quality  by up to 0.2 dB in terms of PSNR 

and up to 15% in LPIPS score.  

Multimedia Material 

For videos, datasets and more visit https://uzh- 

rpg.github.io/timelens-pp/ .
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1. Introduction 

High-speed videography has captured the imagination 

of the public by producing stunning slow-motion footage 

of high-speed phenomena [1, 10,  22]. While historically 

this was only possible with specialized and expensive 

equipment, today this technology is coming to our smart- 

phones thanks to high-speed cameras and video frame- 

interpolation (VFI)  techniques. 

VFI techniques  generate high frame rate video by insert- 

ing intermediate frames between consecutive frames of a 

low framerate input video. To this end, they estimate image 

changes in the blind time between consecutive frames, a 

task that remains challenging, especially in the presence of 

large displacements and non-linear motion. Most existing  

VFI methods rely on the information contained in the origi- 

nal video to estimate these changes.  However, at low frame 

rates, image-based motion estimation  does not accurately 

capture inter-frame motion, especially in presence of large 

and non-linear motion. While using high frame-rate cam- 

eras can alleviate this problem, they are  typically expensive 

and produce excessive amounts  of data, which cannot be 

recorded for an extended amount of time. For example, the 

Huawei P40 can record only 0.5s of 720p video with 1920 

fps, which fills up its 2GB frame buffer. 

Event cameras address both of these problems. Instead 

of measuring synchronous frames of absolute brightness 

like standard cameras, they only measure asynchronous 

brightness changes at each pixel, which results in a sparse 

and asynchronous stream of events , each  encoding the posi- 

tion, time, and polarity (sign) of the measured change. This 

stream of events is simultaneously sparse, provides a low 

data bandwidth, and has a high temporal resolution on the 

order of microseconds capable of capturing high-speed phe- 

nomena, such as gunshots and popping water balloons1. 

The recently introduced Time Lens [22] leverages this 

compressed stream of visual information by combining a 

traditional camera with an event camera to perform video 

frame interpolation.  Its key innovation  lies in combining the 

benefits of warping-based and synthesis-based interpola- 

tion approaches through an attention mechanism. Warping-  

based  interpolation produces intermediate frames by warp- 

ing frames of the original video using  nonlinear motion  esti- 

mated from  events, while synthesis-based interpolation pro- 

duces intermediate frames by “adding” intensity changes 

captured by inter-frame events to the frames of the original 

video. Time Lens combines these two approaches because 

they  are complementary: while warping-based interpolation 

usually produces high-quality results, it suffers where mo- 

tion estimation  is unreliable due to violation of brightness 

constancy assumption. By contrast, the synthesis-based in- 

terpolation does not rely on brightness constancy and can

 

1https://youtu.be/eomALySSGVU 

easily handle objects with illumination changes such as, for 

example, fire, and water, however, it distorts fine texture due 

to the sparsity of events. 

Motivation . Despite its impressive performance com- 

pared with pure image-based methods,2 previous work suf- 

fers from several drawbacks.First, to combine warping- and 

synthesis-based interpolation it relies on image-level fusion 

which can fail in the presence of artifact in one of the in- 

puts, as shown in Figure  1(a), where  “after-image” artifacts 

from synthesis interpolation are propagated to the final re- 

sults. Second, it relies on non-parametric motion estima- 

tion, that runs independently for each  inserted  frame  with a 

computational  cost of O  (  N  )  , where N  is the number of in- 

serted frames and produces potentially temporally  inconsis- 

tent motion estimates.  Third, to leverage information  about 

non-linear motion  it relies on events-only motion estima- 

tion, which leads to artifacts in low contrast areas without 

events (see Figure  1(c)). 

This work addresses all of these open challenges. Our 

method makes a key innovation in terms of motion estima- 

tion,  visualized in Fig. 2. Instead of using  linear  (b) or 

chunked linear  flow from events (c), we use both images and 

intermediate events (a) to predict a continuous flow field (d). 

By doing so our flow method is inherently temporally con- 

sistent  and can be efficiently reused for multi-frame inser- 

tion. Additionally,  we introduce a novel multi-scale fusion 

module that fuses event  and image features on feature-level 

instead of image-level, thereby limiting ghosting artifacts. 

We make the following contributions in this work: 

1. We  introduce a novel motion spline estimator , which 

produces non-linear continuous flow from events and 

frames. It is temporally consistent and can be effi- 

ciently  sampled, enabling the interpolation  of N  in- 

termediate frames with O  (1)  instead of O  (  N  )  com- 

putation. Moreover, leveraging images also produces 

accurate flow in the absence of events. 

2. We  introduce a multi-scale feature fusion module with 

multiple encoders and joint decoder with a gated com- 

pression mechanism that selects the most informative 

features from each encoder at each scale and improves 

fusion of warping- and synthesis-based interpolation 

results. 

3. We  compare our approach on an existing  dataset and a 

new large scale hybrid dataset containing 123 videos 

collected with a beamsplitter setup that has temporally 

synchronized and aligned events and frames. We com- 

pare our method on multiple benchmarks including 

this new dataset and found an up to 0.2 dB improve- 

ment in terms of PSNR and up to 15% improvement in 

perceptual score [30] over the prior art, across datasets.

 

2https://youtu.be/dVLyia-ezvo
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2. Related Work 

Frame-based video interpolation is a well studied topic 

with an abundance of prior work [9, 15–20,  27]. It aims 

at reconstructing intermediate latent frames at arbitrary or 

fixed timestamps using consecutive frames of the original 

video, called keyframes. Most image-based frame interpo- 

lation methods adopt one of four approaches: While direct 

approaches [10], regress intermediate frames directly from 

keyframes, kernel-based approach [17, 18], apply convolu- 

tional kernels to keyframes to produce the latent frame, and 

phase-based [14] approaches, estimate the phase decompo- 

sition of the latent frame. The most popular approach is 

warping-based [9, 15, 16, 19, 20, 27] and it explicitly esti- 

mates the motion between keyframes and then warps and 

fuses keyframes to produce the latent frame. This fusion is 

usually done  on the image level, using  visibility masks [9] 

or, more recently on the feature-level [1, 16]. The majority 

of works tackling VFI are image-based and thus suffer from 

two major limitations. First, they rely on image-based mo- 

tion estimation, which is only well defined when brightness 

constancy is satisfied. Secondly, they can not capture pre- 

cise motion dynamics in the blind time between keyframes 

and often resort  to a simplistic linear motion assumption. 

Motion Estimation: Indeed, motion estimation, has 

predominantly been studied in the linear case, where cor- 

respondences between pixels are  assumed to follow linear  

trajectories. However, in the case of rotational camera ego- 

motion  and non-rigid  object motion, this  assumption is usu- 

ally violated. Only few works use more complex motion 

models, such as quadratic [26] or cubic [2,3]. While [2,26] 

directly regress polynomial coefficients, [3] parametrize the 

pixel trajectories in terms of 2-D knots, using  B-Splines. 

Fitting these non-linear models requires multiple frames 

and long time  windows, and thus they still fail to model 

high-speed and non-linear  motion between keyframes. 

Use of Additional Sensors: To capture this motion, in- 

formation from additional sensors with  high temporal res- 

olution can be used. In particular [6, 19] uses an auxiliary 

low resolution, high-speed camera to provide these addi- 

tional cues, and combine them with high-resolution images. 

However, additional high-frame-rate image sensors increase  

data  rate requirements.  This is a fundamental limitation of 

frame cameras to capture high-speed motions, since they 

oversample the image, leading to wasteful data acquisition. 

Event Cameras: are sensors that ideally address this 

limitation since they mitigate this oversampling by only 

providing data at locations with intensity changes, and do 

this for each pixel independently. The works in [7, 13, 22,  

25,29] have used an auxiliary event camera for VFI, demon- 

strating high accuracy and low bandwidth. Time Lens [22], 

generates frame interpolations from a warping-based and 

synthesis-based module and fuses them on the image-level 

using learned alpha blending parameters. By combining the 

advantages of both, it can handle both regions with bright- 

ness constancy and those with illumination changes where  

optical flow is ill-defined. [29] improves the fusion part by 

performing progressive multi-scale, feature-level fusion. 

However, [29] aligns keyframes to the latent frame using  

flow, computed  from original keyframes, and thus can not 

capture non-linear inter-frame dynamic. Instead, [22] com- 

putes flow from events, capturing non-linear inter-frame dy- 

namic, and directly predicts a series of non-parametric lin- 

ear flow between keyframes and the latent frame. However, 

this model does not take into account the continuous na- 

ture of events, and since flow is non-parametric it cannot 

be reused and must be recomputed. While this leads to a 

significant  run-time increase, it also leads to temporal in- 

consistency, which manifests in wobbling textures. Finally, 

since flow  is computed from events, it is sparse and inaccu- 

rate in low contrast regions that do not trigger events. 

In this work, we combine the advantages of [22] and [29] 

while addressing their limitations. Firstly, we make a key 

innovation in terms of motion estimation, visualized in Fig.  

2. Instead of using linear (b) or chunked linear flow from 

events (c), we use both images and intermediate events 

(a) to predict a continuous flow  field (d), based on cubic 

splines, similar to [3]. See Fig. 2  for a visualization of their 

differences. The resulting flow has several advantages: (i) 

it is non-linear, capturing high-speed and highly non-linear 

dynamics with microsecond resolution, (ii) it is dense, thus 

producing flow, even where few events are present and (iii) 

it can be efficiently reused during multi-frame insertion, re- 

sulting in low inference time and high temporal consistency. 

3. Method 

Problem formulation. We are given as input proceeding 

I0  

and following I1  

key frames acquired at time  0 and 1 , and 

event sequence E0  →  1  

consisting of events triggered during 

the time interval t  ∈  [0 ,  1]  , and our goal is to insert one or 

more latent frame(s) Ît  

at  some time t  ∈  [0 ,  1]  between the 

key frames. Similar to previous works, we represent events 

as a voxel grid [32]. We will  use Va  →  b  

to denote the voxel 

grid formed  by converting events between times ta  

and tb. 

System overview . The overall system is shown in Fig- 

ure 3 and key contributions are highlighted with a thick  con- 

tour. Our system  first generates multi-scale warping inter- 

polation features  in two steps. First image I0  

is encoded 

using a warping encoder, resulting in multi-scale features. 

These features are then remapped to the time of the latent 

frame using splines S0  →  1, derived from the voxel grid V0  →  1  

and images I0  

,  I1, resulting in { C
w  

0  →  t  

,  C
w  

1  →  t  

} .  The warp- 

ing interpolation features  are combined  with  synthesis in- 

terpolation features { C
s  

0  →  t  

,  C
s  

1  →  t  

} computed from I0  

and 

I1, using a newly proposed multi-scale feature fusion mod- 

ule and produces latent frame Ît  

at time t  . The system 

performs symmetric processing for I0  

and I1, therefore we
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Method

 

BS-ERGB

 

HS-ERGB [22]

 

1 skip

 

3 skips

 

7 skips

 

PSNR ↑ LPIPS ↓

 

PSNR ↑ LPIPS ↓

 

PSNR ↑ LPIPS ↓

 

FLAVR [10]

 

25.95 0.086

 

20.90 0.151

 

27.42 0.031 

DAIN  [1]

 

25.20 0.067

 

21.40 0.113

 

29.82 0.022 

Super Slowmo [9]

 

- -

 

22.48 0.115

 

30.05 0.103 

QVI [26]

 

- -

 

23.20 0.110

 

26.28 0.143 

Time  Lens [22]

 

28.36 0.026

 

27.58 0.031

 

33.48 0.017 

Ours

 

28.56 0.0222

 

27.63 0.026

 

33.09 0.016

 

Table 1. Quantitative comparison of our method with frame- and 

hybrid frame+event-based methods in terms of PSNR (higher is 

better) and  LPIPS (lower is better). For on the HS-ERGB dataset 

[22] we average the score over the close and far subsets. 

the network to learn motion from events than images, and 

therefore  in presence of a single  encoder network simply 

converges to a local minimum and mostly ignores images. 

4. Experiments 

Next, we justify our design for multi-scale fusion and 

spline motion estimation modules with a series of ablation 

studies. Then, we compare our VFI method to other state- 

of-the-art image and event-based methods on several bench- 

mark datasets, including our newly introduced  Beam Split- 

ter Events & RGB (BS-ERGB) dataset. 

All experiments are done using the PyTorch frame- 

work [21]. We use the Adam optimizer [12], batch size 4 

and learning rate 10−  4, which we decrease by a factor of 10 

every 12 epochs. We train each module for 27 epochs. For 

training, we use a large-scale dataset with synthetic events 

generated from the Vimeo90k septuplet dataset [27] using 

the video to events conversion method [5]. 

We train the motion spline and multi-scale fusion module 

separately and then fine-tune them together. Firstly, we train 

the motion module with L1  

and SSIM losses with weights 

0.15 and 0.85. Then, we freeze the motion network and 

train the fusion network with LPIPS [30] and L1  losses with 

weights 1.0 and 2.0. For training each module we also use 

multistage training, which firstly trains each encoder sep- 

arately with dummy decoders and then freezes encoders 

and training decoders, and finally trains the module. This 

training procedure significantly boosts  the performance of 

our method. Due  to the time  limitations, we don’t  use this 

method in ablations, if not stated explicitly. For  real data, 

we fine-tune our entire  network with the losses that we use 

for training the fusion module. To measure the quality of in- 

terpolated images we use  peak  signal-to-noise ratio (PSNR) 

and structural similarity (SSIM) [23] metrics and LPIPS. 

4.1. Ablation studies 

Next, we ablate the various  components of our method. 

For ablation studies, we randomly sample 4k training exam- 

ples and 500 validation examples from the Vimeo90k [27] 

dataset. We first ablate the motion estimation module, and 

then the fusion module. For the motion module we calculate 

errors in non-occluded  areas of warped frames. For  fusion, 

we compute the error of final  interpolated frames. Results 

are summarized in Table  2 for the motion module, and in 

Table  3 for the fusion module.

 

Method 15 frames[ms]

 

SSIM PSNR [dB]

 

Importance of Spline Flow

 

Linear 200

 

0.856 26.83 

Non-parametric 2700

 

0.877 28.20 

Spline (ours) 220

 

0.863 27.41

 

Importance of Images

 

Images

 

0.808 24.51 

Events

 

0.853 26.82 

Images and Events (ours)

 

0.863 27.41

 

Comparison with State-of-the-art

 

EV-FlowNet

 

0.756 22.31 

Time Lens Flow

 

0.866 27.22 

Ours

 

0.879 28.10

 

Table 2. Ablation for motion estimation module: while spline 

motion benefits run-time performance for multiple frame inter- 

polation, using images and events  boosts accuracy. Compared to 

methods Time  lens flow  [22] and  EV-FlowNet [31], our method 

achieves superior performance.

 

Method

 

SSIM PSNR [dB]

 

Importance of Fusion

 

Warping

 

0.886 29.42 

Synthesis

 

0.868 29.77 

Synth. & warping (ours)

 

0.912 31.87

 

Importance of Gating

 

No gating

 

0.907 31.67 

Gating (ours)

 

0.912 31.87

 

Comparison with State-of-the-art

 

Time Lens Fusion

 

0.906 31.25 

Ours

 

0.919 32.73

 

Table 3. Ablation studies for fusion module: combining synthe- 

sis and warping features boosts performance, as does gated com- 

pression mechanism. Compared to image-level fusion in [22], our 

method achieves superior performance. 

4.1.1 Motion Estimation Module 

Visualization of Spline Motion . We  visualize the output of 

our spline estimator in Figure  6 (right, in yellow). By com- 

bining images with events, it can model the highly non- 

linear trajectory of a soccer ball. Events are an integral 

part of modeling non-linearity since when they are  removed 

(blue, right), the flow module defaults to using images alone 

and predicts linear motion. 

Importance of Spline Motion.  We compare against linear 

motion and non-parametric motion in Table 2. The results 

suggest that non-parametric motion estimation achieves 

higher accuracy (28.20 dB vs. 27.41 dB) but has a much 

higher run time (2700 ms vs. 220 ms) for 15 flow predic- 

tions since it needs  to run for each  inserted frame, while 

spline motion  can be efficiently re-sampled once computed.
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Figure 6. Spline motion visualization. The left image shows 

ground truth image sequence with close-ups (animation can be 

viewed in Adobe). The right image shows motion estimated by 

proposed motion spline estimator from images & events (green) 

and from  images only (blue). 

This difference becomes especially noticeable when insert- 

ing multiple frames. By contrast, linear motion estimation 

has a low run time but also low performance. 

Importance of Images . We train two variations of our 

motion module: one using only events, and one using only 

frames and report results in Table 2. We note that combin- 

ing both sensor inputs achieves the best results, boosting 

performance by 0.6 dB or 2.9 dB compared to single-sensor 

inputs. This underlines the complementarity of their infor- 

mation: while events provide non-linear motion cues, im- 

ages provide information where events are missing. 

Comparison to State-of-the-art . We compare against op- 

tical flow methods EV-FlowNet [31] and the optical flow  

module from Time Lens [22], which both predict non- 

parametric flow only from events. The resulting warping 

error in terms of PSNR is in Table 2. Our method outper-  

forms  the runner up [22] by 0.88 dB in terms of PSNR. Note 

that here we use multistage training explained in Section  4. 

4.1.2 Multi-scale Fusion 

Gated Compression. We firstly confirm the importance of 

gated compression by training the fusion network without 

gated compression. As shown in Table  3 ( Importance of 

Gating ), gated compression improves the fusion module. 

Next, in Figure 7 we show channel-wise averaged weights 

predicted by the gated compression module shown in Fig- 

ure  4 for synthesis and warping features on each scale for a 

specific example. We conclude that: (i) synthesis features 

are used for non-rigid objects, such as fire, while warping 

features are used for rigid objects, such as the bottle (com- 

pare 1 & 2); (ii) areas occluded in the closer left frame I0  

are filled from the right frame I1  

(e.g. see 3 & 4); (iii) on

 

Figure 7. Gated compression weights visualization. The top figure 

shows key frames and latent interpolated frame. The bottom figure 

shows average weight prediction  by gated compression for syn- 

thesis and warping features on each scale (smaller weight shown 

in colder colors).For details, please refer to “gated compression 

weight” mini-section in Section  4.1.2  

Table 4. Details of proposed BS-ERGB dataset compared to simi- 

lar GEF dataset. [24]

 

BS-ERGB Ours) GEF [24]

 

Event Camera 970  ×  625  190  ×  180  

№ sequences 123 20 

Scene dynamic high-speed low-speed 

RGB Camera 970  ×  625  , 28 fps 1520  ×  1440  , 20 fps 

Camera motion moving & static moving & static 

Seq. length 100-600 frames 200-250 frames

 

a finer scale warping interpolation features are preferred to 

synthesis features. 

Importance of Fusion: We first study the effect of com- 

bining synthesis and warping features during fusion, which 

we show in Table  3. We see that combining features from 

both modules boosts performance by 2.1 dB. 

Comparison to State-of-the-art: We also compare 

against the image-level fusion module from [22]. As shown 

in Table 3 multi-scale feature-level fusion performs better 

by 1.48 dB. Note that for this final comparison we use mul- 

tistage training explained  in Section  4. 

4.1.3 Beamsplitter Events and RGB dataset 

We  built  a new hybrid setup,  that uses a FLIR 4096 ×  2196 

RGB global shutter camera and a Prophesee Gen4 

1280 ×  720 Event  camera mounted on a rigid case with a 

50/50 one-way mirror to share incoming  light. With this
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