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Abstract

In many real-life image analysis applications, particu-
larly in biomedical research domains, the objects of inter-
est undergo multiple transformations that alters their visual
properties while keeping the semantic content unchanged.
Disentangling images into semantic content factors and
transformations can provide significant benefits into many
domain-specific image analysis tasks. To this end, we pro-
pose a generic unsupervised framework, Harmony, that
simultaneously and explicitly disentangles semantic con-
tent from multiple parameterized transformations. Har-
mony leverages a simple cross-contrastive learning frame-
work with multiple explicitly parameterized latent repre-
sentations to disentangle content from transformations. To
demonstrate the efficacy of Harmony, we apply it to disen-
tangle image semantic content from several parameterized
transformations (rotation, translation, scaling, and con-
trast). Harmony achieves significantly improved disentan-
glement over the baseline models on several image datasets
of diverse domains. With such disentanglement, Harmony is
demonstrated to incentivize bioimage analysis research by
modeling structural heterogeneity of macromolecules from
cryo-ET images and learning transformation-invariant rep-
resentations of protein particles from single-particle cryo-
EM images. Harmony also performs very well in disen-
tangling content from 3D transformations and can perform
coarse and fast alignment of 3D cryo-ET subtomograms.
Therefore, Harmony is generalizable to many other imag-
ing domains and can potentially be extended to domains
beyond imaging as well.

1. Introduction
In many real-life image analysis applications, particu-

larly in biomedical research domains (e.g., electron mi-
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croscopy, tomography, nanobody images, etc.), the appear-
ance of the objects of interests are affected by a sequence
of transformations. For instance, in single-particle cryo-
electron microscopy (cryo-EM) images, the shapes, trans-
lations, rotations, and projections of protein particles are
confounded [1]. In cryo-electron tomography (cryo-ET),
macromolecules are present in different orientations and
shifts in different subtomograms (3D cryo-ET subimages
each containing a macromolecule) [27,29]. A Magnetic res-
onance image (MRI) of brain can be differently scaled and
illuminated due to different imaging settings [23]. Conse-
quently, in these image analysis domains, images can be
encoded into and generated from a semantic content factor
that is specific to the shape of the object of interest and a se-
quence of parameterized transformations that are unspecific
to the shape of the object. This is referred to as disentan-
gling content and transformations in the highly non-linear
latent space of the images. Such content-transformation
disentangling can provide insights into the shape space
and transformation distributions inherent in the images [1]
and further facilitate several downstream analysis tasks like
image classification, image alignment, image translation,
and image extrapolation for the corresponding imaging do-
mains.

Disentangling semantic content from parameterized
transformations has not been widely studied until very re-
cently. Traditional disentangled representation learning
(DRL) methods [3,13,18] decompose data into various gen-
erative latent factors (e.g., face, color, hair, etc.), and do
not perform particularly well at content-transformation dis-
entangling [1, 5]. To this end, some explicit DRL meth-
ods [1, 5, 8, 17] have been proposed with satisfactory per-
formance. These explicit DRL methods constrain some la-
tent factors explicitly to represent generative factors that are
known to be inherent in the data beforehand. In the afore-
mentioned image analysis applications, the types of trans-
formations are usually known beforehand and can be esti-
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Figure 1. The full workflow of our proposed method ‘Harmony’. The encoder fθ infers the transformation factors k and semantic latent
distribution Φx for a input datum x. k is then used to transform x with a differentiable transformer and matched with the decoded output
generated from semantic latent factor zx drawn from a distribution PΦx proposed by decoder gϕ. A similar mechanism is adopted for a
randomly transformed datum x. Then corresponding transformed instances by learned transformation factors k and k′ are matched with
each other. In addition, the corresponding distributions Φx and Φx′ are contrasted with a KL loss. The transformation factors k, k′, and
the distributions Φx and Φx′ are all updated with gradient-descent while training.

mated using few parameters. In such cases, it is particularly
advantageous to use explicit methods that take into account
the prior knowledge when designing content-transformation
disentangling methods.

Recently, some supervised and semi-supervised explicit
methods [8, 17] have been developed that disentangle con-
tent and parameterized transformation latent factors. But
these methods require labeled data, which makes them un-
desirable in the aforementioned image analysis domains
where labeled data is hard to obtain. The only notable unsu-
pervised method that explicitly disentangles contents from
parameterized transformations is SpatialVAE [1], which
uses a specialized decoder architecture to disentangle con-
tent from rotation and translation in 2D images. SpatialVAE
and its variants [16] have been applied to different imag-
ing domains, such as, astronomical images, electron mi-
croscopy, nanorod images, and etc and has been remarkably
successful. However, these methods [1, 16] do not provide
a generic framework as they can not disentangle semantic
content from other types of transformations (e.g., scaling,
contrast, etc.). Moreover, efficacy of these methods for 3D
images has been unexplored. Developing an unsupervised
generic framework for disentangling semantics and trans-
formations remains an open problem.

In this work, we develop a generic unsupervised frame-
work, Harmony (Figure 1), to explicitly disentangle seman-
tic content from multiple parameterized transformations.
Harmony takes a set of images as inputs without any label
information and learns disentangled latent representations
where one latent factor corresponds only to shape-specific
semantic contents of objects and the others correspond to
the different parameterized transformations of the objects.

To this end, like other explicit DRL methods [1,5,16], Har-
mony only uses types of transformations that are known to
be present beforehand. To perform DRL, Harmony explic-
itly constrains one latent factor to correspond to the seman-
tic content and others to represent transformation param-
eters of known transformation types. However, only us-
ing this constraint often results in trivial parameterization
of transformations and consequently poor disentanglement.
To avoid such trivial parameterization, Harmony incorpo-
rates cross-contrastive learning with data augmentations. It
creates an augmented version of the input image with the
known transformation types and enforces the decoded im-
ages to be similar to both the input and augmented im-
ages. For both images, it models the semantic latent fac-
tors as multivariate Gaussian distributions and enforces the
two distributions to be similar to each other. Harmony is the
first method to leverage cross-contrastive learning for unsu-
pervised content-transformation disentangling and achieve
remarkable success.

We experimented with Harmony to disentangle content
from multiple geometric transformations in two real single-
particle cryo-EM datasets and several simulated and real 3D
cryo-ET subtomogram datasets. To assess the generaliza-
tion ability of Harmony’s method, we used it to disentangle
contents from transformations in a randomly rotated, trans-
lated, and scaled version of MNIST digit dataset and disen-
tangle content from lighting condition transformation in a
variant of celebA facial image dataset. In all of our exper-
iments, Harmony demonstrated significantly improved re-
sults over baseline methods in both qualitative and quantita-
tive evaluations. In an ideal disentanglement setting, chang-
ing the semantic content factor would only alter the shapes

20647



of the objects that are specific to image class, whereas hav-
ing no effect on the transformations. Our experiments show
that, Harmony performs very close to the ideal setting. As
Harmony does not make any assumptions on input domain,
it can be used for many other image analysis applications
( astronomical images, nanobody image, etc.) and may be
leveraged for domains beyond imaging (e.g.,voice, speech,
etc.) as well.

Our primary contributions are as follows:

(i) We introduce a generic framework, Harmony, to dis-
entangle semantic content from multiple parameter-
ized transformations without requiring any image as-
sociated labels. We, for the first time, used cross-
contrastive learning to accurately disentangle semantic
content from transformations.

(ii) As an application of Harmony, we disentangle seman-
tic content from multiple geometric and lighting con-
dition transformations in various imaging datasets with
significant improvement over baseline methods.

(iii) By disentangling content from transformations with
Harmony, we resolved transformation-invariant repre-
sentations of proteins from 2D single-particle cryo-EM
images. We learned more accurate representation than
previous methods with improved efficiency.

(iv) We, for the first time, disentangled transformation pa-
rameters from 3D images and applied it to model struc-
tural heterogeneity of extremely noisy real and simu-
lated 3D cryo-ET subtomograms. Harmony can also
perform coarse and fast unsupervised groupwise im-
age alignment of cryo-ET subtomograms.

2. Related Works
Disentangled Representation Learning: Learning disen-
tangled representation factors or independent factors of data
is a well studied problem in data science [4, 14, 15, 21,
24, 26]. Recently, several variational-autoencoder (VAE)
based deep generative methods, e.g., β-VAE [13], Factor-
VAE [18], TC-β-VAE [3], DIP-VAE [19], etc., have shown
promising results in disentangling factors in the highly non-
linear latent space of data thanks to the ability of deep mod-
els to tackle non-linearity. These methods do not use any
prior knowledge on the generative factors, but rather inter-
pret them using latent traversals after learning the model.
As contents and transformations are both generative factors,
in principal, these methods can be used to implicitly dis-
entangle semantic contents and transformations. However,
it has been shown that implicitly disentangling content and
transformation in such way gives very poor disentanglement
in practice [1, 5].
Content-style disentanglement: A specific version of the
DRL problem related to our work is content-style disentan-

glement (CSD), where images are decomposed into con-
tent specific and style specific factors. Though there ex-
ists a large number of methods for CSD, the most rele-
vant method to our work is Deforming Autoencoder [25]
and U-VITAE [5] which explicitly disentangles appearance
(content) and perspective (style) using two different latent
spaces in an unsupervised way. They experimentally disen-
tangled content from 2D translations and rotations by con-
sidering them as implicit parts of a style factor. Despite
achieving some success, the disentanglement of transforma-
tions with respect to contents remain implicit and is hard to
interpret. In contrast, Harmony explicitly disentangles con-
tent and transformations in the same latent space which is
easily interpretable.

Disentangling content and transformations: For unsu-
pervised explicit disentangling of content from transforma-
tions, a very recent yet pioneering work is SpatialVAE [1],
that explicitly disentangles content from two parameter-
ized transformations (rotation and translation) in 2D im-
ages. SpatialVAE exploits the fact that rotation and trans-
lation are present as generative factors in many real-life
2D image datasets, but does not require any labeled data.
It is a VAE-based architecture with rotation and transla-
tion specific prior constraints on the rotation and transla-
tion latent factors respectively. SpatialVAE parameterizes
the pixel intensity distribution at a spatial coordinate ex-
plicitly as a function of the Euclidean coordinates and thus
makes the image reconstruction term differentiable with
respect to the latent rotation and translation parameters.
Afterwards, Kalinin et. al developed a rotation-invariant
VAE architecture, rVAE, to disentangle rotational dynam-
ics from nanorod images [16]. SpatialVAE and its vari-
ants has achieved remarkable success in disentangling 2D
rotation and translation from single particle cryo-EM, as-
tronomical, and nano-particle images. Nevertheless, these
frameworks are not directly applicable by design to other
kinds of transformations e.g., scaling, contrast, etc. More-
over, these methods depend on euclidean geometries that
often do not work for 3D image objects.

Contrastive Learning: One of the building blocks of Har-
mony is the use of contrastive learning. Contrastive learn-
ing is a technique for learning feature representations us-
ing similarity and dissimilarities present in an unlabeled
dataset. Contrastive learning techniques involve maximiz-
ing a similarity score between semantically similar images,
‘positive pairs’, while simultaneously minimizing a similar-
ity score between all semantically dissimilar images, ‘neg-
ative pairs’. Recent works [2, 6, 28] have achieved state of
the art performance on ImageNet without the need for neg-
ative examples. Similarly, Harmony performs contrastive
learning without negative examples to avoid trivial parame-
terization of transformations while disentangling.

20648



3. Method
3.1. Disentangled Representation Learning

DRL aims to learn a map h : X → Z, where X is an in-
put space and Z is a disentangled intermediary representa-
tion space. In content-transformation disentangling, trans-
formations are treated as a group action T acting onX . The
transformation parameter space, K, is treated as a group
with a corresponding group action T ′ : Z × K → Z to
carry out the transformation [12]. Higgens et al. [12] define
the intermediary representation, Z, to be disentangled with
respect to the subgroup decomposition,K = K1×· · ·×Kn,
if the following conditions hold:

• There is a decomposition Z = Z1 × ...× Zn s.t. ki =
k′i ⇒ T ′(z, k)i = T ′(z, k′)i

• h is equivariant between actions T and T ′ performed
on X and Z

Under this decomposition, for every i ̸= j, the output z′i =
T ′
i (zi, ki) is unaffected by changes to parameter kj .

3.2. Method Overview and Notation

At a high level, our method relies on an autoencoder-
like architecture (Figure 1). Specifically, consider a sample
space X , a transformation parameter space K, a latent dis-
tribution parameter space Ψ, and a latent space Z. Harmony
first applies an encoder network fθ : X → K×Ψ on a sam-
ple x ∈ X to encode transformation parameters kx ∈ K
and ψx ∈ Ψ where (kx, ψx) = fθ(x). These encoded
parameters are used to construct two outputs xk, xz ∈ X .
The first output is constructed by applying a transformation
function T : X × K → X to produce xk = T (x, kx).
The second output is constructed using a two step process.
Latent parameters zx are drawn from the encoded latent
probability distribution Pψx

. These parameters are then de-
coded using a decoder network gϕ : Z → X to produce
xz = gϕ(zx).

Harmony is trained to produce instances xk and xz that
are similar to each other. This is done through penal-
izing a reconstruction loss or dissimilarity score between
xk and xz , but this loss alone does not encourage con-
sistency across transformations and results in trivial trans-
formation parameters. For example, assuming an identity
transformation parameterized by k(id) ∈ K, the decoder
fθ could feasibly learn to always output k(id). In effect,
this would change the method into a standard autoencoder-
like architecture, which would not disentangle semantic
representation from transformations. Some VAE-based
DRL methods [1, 5] have addressed this issue by apply-
ing transformation-specific priors on the latent space that
worked as an inductive bias. On the contrary, we have used
a concept of similarity to avoid the trivial paramaterization
of transformations.

3.3. Avoiding Trivial Parameterization of Transfor-
mations

We call two samples x and x′ semantically similar if
there exist k ∈ K and k′ ∈ K such that x′ ≈ T (x, k)
and x ≈ T (x′, k′). To achieve a setting where contents
are disentangled from transformations, Harmony incentives
xz to be a transformation-invariant sample, x(p) that is con-
sistent across different transformations from K. To accom-
plish this, Harmony creates a semantically similar sample x′

for each x, by transforming x with a random k ∈ K. Then
it uses a siamese like branch to create x′z′ and x′k′ from x′

with the same encoder and decoder. Finally, it uses a new
dissimilarity score between xk and x′k′ to make them close
to a transformation invariant sample x(p). With the other
two dissimilarity scores (between (xz , xk) and (x′z′ , x

′
k′ )),

the model eventually learns to achieve the disentanglement
goal where xz = x(p). This mechanism helps avoid trivial
solutions and works to create an inductive bias in the trans-
formation space.

We show in supplementary section S1 that for a fixed
sample x when D(2) is chosen to be the sum of squared
errors in expectation this is equivalent to minimizing 2 ·
Vx [xk] where xk is a transformed instance of x. Intuitively,
to minimize this variance, for every transformed instance of
x, the encoder must learn to propose transformations k such
that for every x, xk is ‘close’ to some prototypical sample,
x(p). Furthermore, all transformations k ∈ K are trans-
formations, thus we have every output xk is both ‘close’ to
x(p) and retains the same semantic meaning as the original
x. So, in effect, the encoder, fθ, must learn to transform any
already transformed instance of x, xk, to be ‘close’ to x(p),
thus disentangling x from the transformations in K.

3.4. Encouraging proximity of semantic latent dis-
tributions of homogeneous classes

When x and x′ are two similar input samples, we want to
enforce proximity in the semantic latent space. By assum-
ing there is an x(p) for x and x′ and imposing the assump-
tion with the D(2) loss between the transformed samples
obtained from each of x and x′, we indirectly encourage the
proximity of the semantic latent factors zk and zk′ of x and
x′. To further increase proximity in the latent space, we in-
troduce a per dimension KL divergenceDKL (PΨ||PΨ′) be-
tween the encoded semantic latent distributions of x and its
similar instance x′ to our objective function. In our exper-
iments, PΨ and PΨ′ are both multivariate gaussians, which
allows for efficient computation of the per-dimension KL
divergence between PΨ and PΨ′ .

3.5. Objective function

Given a data sample x, we compute the distance be-
tween the instance reconstructed from the semantic content,
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xz , and the instance transformed by the proposed transfor-
mation parameters, xk. This loss enforces that the recon-
structed instance xz is similar to the transformed instance
xk, which serves two main purposes. First, it incentivizes
xz to be similar to a transformed instance xk that is in the
same semantic group as x. So, in effect, this forces the net-
work’s reconstruction to be both semantically meaningful
and semantically similar to the original x. Second, mak-
ing xz similar to xk indirectly makes xz similar to anything
that xk is similar too. Further we include a KL divergence
between PΨ and PΨ′ , the semantic latent distributions of x
and x′ respectively. This loss encourages proximity of the
semantic distributions of homogeneous objects in the latent
space. Combining the losses, yields Harmony’s objective
loss as follows:

L(x, x′) =γ[D(1)(xz, xk) +D(2)(xk, x
′
k′) +D(3)(x′k′ , x

′
z′)]

+DKL (PΨ||PΨ′)

Here, the hyperparameter γ helps avoid training instability
that may be caused by the per dimension KL divergence
loss. While training, γ is usually set proportional to M

N ,
where N is the batch size and M is the number of training
data points. The experimental analysis on the effect of γ on
disentanglement is provided in supplementary section S3.3.
Our entire framework is depicted in figure 1.

We note that our loss only indirectly penalizes represen-
tations of xz and x′z′ that are far apart. We don’t explicitly
include a loss term, D(4)(xz, x

′
z′) or D(4)(zx, z

′
x′), because

we experimentally observed that this loss introduces diffi-
culty in escaping local minima.

3.6. Regularisation of Transformations

Harmony is designed to disentangle any parameterized
transformation that does not alter the semantic meaning of
the datum. Therefore, while training, we restricted the do-
main of transformations that can alter the semantic meaning
of datum (e.g., scale, shift) by using appropriate activation
functions. Moreover, our implementation of T includes a
grid generator with a bilinear kernel. The kernel weights
are shared across two branches of Harmony, which causes
implicit regularization of transformation parameters.

4. Experiments & Results
The experimental setup, implementation and training de-

tails are provided in supplementary section S3.1 and S3.2.

4.1. Evaluation Metrics

The evaluation of DRL methods is still mostly qualita-
tive and no quantitiative metric is universally despite some
are commonly used. Nevertheless, Locatello et al. [22]
showed that all the evaluation metrics are highly correlated.
As we have access to the discrete class labels as ground

truth factors for evaluation purpose, a feasible approach is
to evaluate how well our semantic latent factor can predict
the ground truth class labels. In such scenario, SAP score
is the one of the most acceptable metrics by the commu-
nity [20]. SAP score simply denotes the difference between
the top two predictivity scores for ground truth factor by
individual latent factors. SAP score for content identity dis-
entanglement can be defined as follows:

SAPscore = argmax
i∈[N ]

P (c|z(i))− argmax
j ̸=i∈[N ]

P (c|z(j))

Here, c is content identity, z is the N dimensional latent
factor, and P (c|z(i)) is the predictivity of content identity
by ith dimension of the latent factor. For measuring pre-
dictivity we used a non-linear K-Nearest Neighbor (KNN)
algorithm, similar to U-VITAE [5]. We report SAP score
along with maximum predictivity of content from semantic
latent factor P (c|z) in our quantitative evaluations.

A. 2D single-particle cryo-EM images

First, we tested Harmony against two negative stain
noisy single-particle cryo-EM image datasets to learn
transformation-invariant structures of the corresponding
protein particles. Among the two cryo-EM image datasets
used in our experiments, one contains the StrepMAB-
Classic antibody and the other contains the CODH/ACS
protein complex. The model was trained in a setting sim-
ilar to the setting used by SpatialVAE [1]. The details of
the dataset and training are provided in the supplementary
section S2.1 and S5.2 respectively.

From the latent manifold generated by Harmony (Fig-
ure 2), it is evident that Harmony learns a transformation
invariant representation of the protein particles and simul-
taneously generates better resolution pose normalized par-
ticle images from the set of noisy cryo-EM images. Figure
2 shows the interpolated protein image generated from the
content latent manifold by Spatial-VAE and Harmony along
with sample input images for both the CODH/ACS and anti-
body datasets. Spatial-VAE occasionally captures structure
in the image background and sometimes learns inconsistent
representations for the antibody dataset. But for Harmony
implementation, we did not face such issues. (Figure 2).

Decoupling the orientations and shifts from the images
and inferring the transformation-invariant shape of a struc-
ture is a crucially important task in single-particle shape
analysis in cryo-EM. Harmony serve as a fast and useful
tool to this end.

B. 3D cryo-electron subtomogram images

Next, we validated Harmony for shape analysis of macro-
molecules in 3D cryo-ET images. Unlike cryo-EM, cryo-
ET enables 3D visualization of a single cell in its near na-
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Figure 2. Learning Transformation Invariant Representation of
proteins from cryo-EM images using Harmony. (a) shows exem-
plary cryo-EM images of CODH/ACS protein dataset, interpolated
protein conformations from semantic latent manifold learned by
Spatial-VAE and Harmony respectively. (b) shows the similar cor-
responding images from the antibody protein dataset.

tive state. To this end, a 3D cryo-ET image (called a tomo-
gram) contains visualization of all subcellular particles in-
side a cell simultaneously whereas cryo-EM single-particle
2D images only image a single particle. On the other hand,
due to direct imaging in crowded cytoplasmic native envi-
ronment and spatial anisotropy, cryo-ET images are noisier
than cryo-EM.

To perform analysis on the macromolecular struc-
tures, cubic sub-volumes each containing a single macro-
molecule are extracted from the whole tomogram. These
sub-volumes are called subtomograms. Some important
subtomogram-level analysis tasks are grouping semanti-
cally similar subtomograms, aligning, and averaging them
to get better resolution structures of the macromolecules.
These tasks are challenging because the 3D subtomograms
are extremely noisy and the macromolecules are minuscule
structures residing in random orientations and shifts inside
the noisy subtomograms. Disentangling the orientation and
shifts from the shape of macromolecules in 3D subtomo-
grams has the potential to significantly improve the shape
analysis of particles and performing the aforementioned
downstream analysis tasks in an unsupervised manner.

However, a well performing method for disentangling
contents and transformations is notably missing for 3D im-
ages, despite there existing a few promising methods [1, 5]
for corresponding tasks in 2D images. For a quantitative
comparison with Harmony, we extended Spatial-VAE [1]
for 3D images. However, such an extension was non-
trivial. As spatial-VAE generates images by conditioning
them on 2D spatial coordinates, we used 3D spatial coordi-
nates while extending it to 3D images. But doing that alone
gives very poor performance on cryo-ET subtomograms.
We incorporated a convolution-only encoder architecture in
our 3D-Spatial-VAE extension to make it work for subto-

Dataset SNR Harmony 3D Spatial-VAE
SAP P (c|z) SAP P (c|z)

Simulated [30] 100 0.494 0.996 0.409 0.997
0.1 0.384 0.861 0.382 0.858

0.05 0.169 0.63 0.286 0.65
0.03 0.064 0.527 0.013 0.478
0.01 0.003 0.47 0.009 0.46

Rat Neuron [7] 0.01 0.268 0.999 0.011 0.69

Table 1. Quantitative results on disentangling semantic identity of
macro-molecules from parameterized 3D affine transformations in
cryo-electron subtomograms.

mograms. However, since 3D space is much larger than 2D,
conditioning on 3D co-ordinates makes 3D-Spatial-VAE
very slow. Despite using the same encoder architecture in
Harmony, the training remains fast due to dependence on
fewer parameters. Therefore, Harmony framework is easily
extendable to 3D transformation disentangling.

We tested 3D Harmony and our implementation of 3D-
Spatial-VAE against five realistically simulated benchmark
datasets with varying signal to noise ratios (SNR) [30] and
a real cryo-ET subtomogram dataset [7]. Details on the
datasets are provided in the supplementary section S2.2.

We tested Harmony and our 3D-Spatial-VAE against
these datasets. For the real dataset and simulated datasets
(with SNR > 0.03), Harmony achieved remarkable dis-
entanglement performance (Table 1) with high predictiv-
ity of macromolecular identity from semantic latent fac-
tor. For simulated datasets, Harmony and our implemented
3D-Spatial-VAE achieve similar results, while both perform
very poor in extremely low SNR (≤ 0.03). Though the
two models performed similar in simulated datasets, their
performance noticeably differed in the real dataset. From
the latent manifold learned by our implementation of 3D-
Spatial-VAE, the heterogeneity of ribosome and proteasome
subtomograms are limited for real dataset (Figure 4). But,
in the latent space manifold learned by Harmony (Figure 4),
the semantic difference between ribosome and proteasome
subtomograms is clearly evident along its only one dimen-
sion of semantic latent factor. Thus, Harmony can model
the transformation-free structural variability of a set of real
subtomograms without requiring any templates or estima-
tions on the number distinct macromolecules beforehand.
By disentangling 3D transformations from subtomograms,
Harmony can also perform coarse and fast subtomogram
alignment (Figure 3).

C. MNIST digit images

To validate the generalizability of Harmony to datasets of
other imaging domains and other types of transformations,
we tested Harmony against a randomly rotated, translated,
and scaled version of the MNIST dataset. For better qualita-
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Figure 3. Unsupervised coarse and fast subtomogram alignment
with Harmony (in simulated SNR 100 dataset) (a) shows the 2D
central slice representation of sample input 3D subtomograms. (b)
shows the corresponding representations of the decoded subtomo-
grams. The subtomograms are ordered by class, for better visual-
ization. The order and labels were not used during training.

Figure 4. Mapping structural heterogeneity of macromolecules
in cryo-ET subtomograms with Harmony (c) and 3D-Spatial-VAE
(b). (a) shows 2D central slice projections of some sample subto-
mograms.

tive visualization, we randomly picked one image per each
digit class and created 3000 randomly rotated, translated,
and scaled instances of each image. From Figure 5, it is
evident that Harmony disentangles full affine matrix (rota-
tion, translation, scaling) from the semantic content and au-
tomatically align the semantically similar images (images
of same digit) in the dataset. These results demonstrate Har-
mony’s ability to ‘harmonize’ semantically similar objects
in the images out of the multiple parameterized transforma-
tions in a generic image analysis datasets.

We reported quantitative scores for disentangling con-
tent from affine transformations using Harmony and other
related models in Table 2. Except Deforming Autoencoder
[25] and U-VITAE [5], all the methods tend to disentan-
gle latent factors in the same latent space. Deforming Au-
toencoder and U-VITAE uses separate latent spaces to sep-
arate content and diffeomorphic transformations. So, for
calculating SAP for these two methods, the difference be-
tween predictivity for two latent spaces were calculated. For
all other methods, including Harmony, the difference be-
tween predictivity for different latent factors in the same
latent space was calculated. Harmony achieves the high-
est predictivity and second highest SAP score. The results

(a) (b) (c)

Figure 5. Unsupervised Groupwise Image Alignment using Har-
mony (a) Exemplary input images of randomly rotated, translated,
and scaled versions of mnist digits (b) Corresponding decoded im-
ages generated by Deforming Autoencoder [25]. (b) Correspond-
ing decoded images generated by Harmony (with one dimensional
semantic latent factor). The ordering of class digits is done for
visualization and such information is not used in training.

Method SAP score P (c|z)
PCA [9] 0.065 0.486

FastICA [14] 0.099 0.500
β-VAE [13] 0.017 0.46
β-TC-VAE [3] 0.001 0.356

Spatial-VAE [1] 0.002 0.359
Deforming Autoencoder [25] 0.25 0.92

U-VITAE [5] 0.731 0.828
Harmony 0.55 0.944

Table 2. Quantitative results of disentangling content from affine
transformations (rotation, translation, scaling). Except Deforming
Autoencoder [25] and U-VITAE [5], all methods use one latent
space and SAP scores were calculated for latent factors on that
space. Those two methods use two latent spaces and scores was
calculated between two latent spaces.

demonstrate the efficacy of Harmony in disentangling con-
tent from parameterized affine transformations. In addition,
we used Harmony to disentangle rotation and translation in
the whole MNIST dataset and provided the results in sup-
plementary section S5.1. We observed that interpolated dig-
its obtained from semantic latent space of Harmony is dis-
entangled from translations and rotation.

D. CelebA RGB Facial Images

We further demonstrate that Harmony can also disentangle
lighting condition transformations from semantic contents.
To this end, we created a specialized version of the CelebA
dataset with 10,000 images of ten distinct facial identity
affected by different contrast factors. The details of the
dataset creation is provided in the supplementary section
2.4. We provided the latent place scatter-plot obtained for
the contrast disentangling dataset using Harmony and other
baseline models in Figure 6 with a visualization of some
exemplary input images. From the latent plots (Figure 6),
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the disentangling of facial identity and contrast is evident
for Harmony, where traversing along one latent factor (plot-
ted on y-axis) only affects the content and the other latent
factor (plotted on x-axis) affect the contrast. None of the
latent space plot for other baseline methods show such dis-
entanglement. It is to be mentioned that Spatial-VAE [1] or
U-VITAE [5], the well-performing methods for affine trans-
formation disentangling, can not be used for contrast disen-
tangling by design. These results justify Harmony’s wide
applicability and efficacy as a generic method.

Figure 6. Disentangling Facial Identity from contrast (lighting
condition symmetry transformation) from facial image dataset.
The latent space plot for Harmony, FastICA, vanilla-VAE, and β-
VAE are provided along with sample input images of the facial
contrast dataset. Each color in the latent space plot corresponds to
a distinct facial identity. In Harmony latent space, traversing along
the y-axis (semantic latent factor) only changes the facial identity,
while being unaffected by contrast. This disentanglement is not
observed in latent space of the other methods.

We have also performed ablation experiments to assess
the contribution of the cross-contrastive module and the KL
loss component in objective function. The results (provided
in the supplementary section S4) indicate their importance
in disentangling content from transformations.

5. Discussion & Limitations
Despite Harmony showing pioneering results in dis-

entangling 3D cryo-ET data, the disentanglement perfor-
mance becomes poor in extremely low SNR (≤ 0.03) con-
ditions. This may be caused by the sum of squared errors
loss used between images. In future work, noise-robust net-
works and loss functions can be incorporated with Harmony
to solve this problem. Moreover, despite Harmony can cap-
ture discrete conformational variability of macromolecules
when the conformations have sufficient structural differ-
ence, their ability to capture subtle or continuous confor-
mational differences is still not as good as template-based
supervised methods HEMNMA-3D [10] or TomoFlow [11].

From our experiments we observe that the performance

of Harmony is sensitive to the choice of encoder-decoder
architecture in some specific datasets. This isn’t surprising
given the variety of datasets we used in our experiments.
Furthermore, although Harmony separates semantic con-
tent and transformations along different latent factors very
well, there exists some cross-semantic class overlap. In fu-
ture work, this issue can be resolved by incorporating con-
trast with semantically dissimilar samples with a reasonable
strategy.

6. Conclusion

Disentangling images into a shape specific content fac-
tor and shape-unspecific parameterized transformations is a
critical task in many biomedical image analysis domains.
In this work, we present Harmony, a novel unsupervised
generic framework that can disentangle semantic content
from multiple parameterized transformations. It operates by
using cross-contrastive learning and the explicit decomposi-
tion of latent space into content and transformation factors.
We used Harmony to decouple protein shapes from orienta-
tions and shifts in real cryo-EM images and recover struc-
tural heterogeneity of macromolecular shapes in 3D cryo-
ET subtomograms. By disentangling content from trans-
formations, Harmony can perform coarse and fast unsuper-
vised groupwise alignment of cryo-ET subtomograms. Har-
mony is further tested against datasets of more generic im-
age analysis domains, e.g., MNIST and face images. Our
experiments show that Harmony can successfully disentan-
gle semantic content from affine transformations (rotation,
translation, scaling) and a lighting condition transformation
(contrast). These promising results demonstrate that, Har-
mony is not just an impactful contribution to bioimage anal-
ysis research, but also an important step toward for fully
utilizing disentangled representation learning for separating
content and transformations in image analysis domains and
domains beyond imaging (e.g, speech, text) as well.
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