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Abstract

CRF is a classical computer vision model which is also
useful for deep learning. There are two common CRF types:
sparse and dense. Sparse CRF connects only the nearby
pixels, while dense CRF has global connectivity. Therefore
dense CRF is a more general model, but it is much harder
to optimize compared to sparse CRF. In fact, only a certain
form of dense CRF is optimized in practice, and even then
approximately. We propose a new sparse non-local CRF:
it has a sparse number of connections, but it has both lo-
cal and non-local ones. Like sparse CRF, the total number
of connections is small, and our model is easy to optimize
exactly. Like dense CRF, our model is more general than
sparse CRF due to non-local connections. We show that
our sparse non-local CRF can model properties similar to
that of the popular Gaussian edge dense CRF. Besides effi-
ciency, another advantage is that our edge weights are less
restricted compared to Gaussian edge dense CRF. We de-
sign models that take advantage of this flexibility. We also
discuss connection of our model to other CRF models. Fi-
nally, to prove the usefulness of our model, we evaluate it on
the classical application of segmentation from a bounding
box and for deep learning based salient object segmenta-
tion. We improve state of the art for both applications.

1. Introduction
Many computer vision tasks produce so called pixel la-

belings, where each pixel is assigned a certain label from
a pre-defined set. CRF is a classical model [4, 14, 23, 28]
that allows enforcing various desired properties on a pixel
labeling. CRFs were used for various applications in com-
puter vision prior to deep learning [5, 8, 12, 22, 40, 48, 49]
and they are also used in conjunction with deep learn-
ing [2, 9, 10, 15, 17, 18, 20, 24, 43, 47, 61].

To model the desired properties for a pixel labeling, one
designs a set of interactions between pixels. Most often,
these interactions are between pairs of pixels, and they are
referred to as edges. These types of CRF are called pair-
wise. In this paper we address Potts pairwise CRF [38],

Figure 1. Top row: edge connectivity for sparse, dense and sparse
non-local CRF. For clarity, we show neighbors (in red) only for
one pixel (in yellow). Bottom row: bounding box segmentation
results. Sparse CRF cuts off the thin cat tail. Dense CRF strongly
connects the tail with the rest of the cat, and therefore preserves it.
Our sparse non-local CRF better connects the tail to the rest of the
cat using only a sparse set of connections, and also preserves it.

perhaps the most frequently used CRF model. Potts CRF
encourages pixels connected by an edge to be assigned to
the same label. We focus on binary pixel labelings, i.e. the
set of labels has size two. We call these labels the object and
the background, as binary CRFs are often used for object
segmentation. Binary pairwise Potts CRF can be optimized
exactly and efficiently with a graph cut [8].

In designing Potts CRF, we want to connect pixels that
are likely to have the same label. There are two common
connectivity types: sparse and dense. As nearby pixels are
likely to be in the same object, sparse CRF connects a pixel
to its immediate neighbors, usually on a 4 or 8 connected
grid, Fig. 1, left. The weight of the edge usually depends on
the color similarity between the pixels, since object bound-
aries tend to cause image edges. The properties of sparse
CRF are well understood, it encourages objects that align
with image edges and have a shorter boundary [7]. Sparse
CRF is known to have a shrinking bias [49], it tends to cut
off thin object parts and fill in narrow gaps, Fig. 1, bottom
left, preferring a shorter boundary.

To preserve thin parts, we need to connect them to the
rest of the object stronger. Dense CRF is based on ob-
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servation that not only nearby pairs, but any pair of pix-
els similar in color and/or position are more likely to have
the same label. Therefore, dense CRF connects each pixel
to all other pixels, Fig. 1, middle, and the edge strength
depends on similarity in color and proximity. This highly
connected CRF is expensive to optimize, and only Gaussian
edge dense CRF [22] is optimized, approximately, in prac-
tice. We will refer to Gaussian edge dense CRF as dense
CRF. Dense CRF preserves details better, Fig. 1, middle.

We observe that to preserve details, it is not necessary
to connect an object pixel to every other object pixel. A
sparser set of non-local connections between the object pix-
els is sufficient. Of course, we do not know in advance
which pixels belong to the object. As pixels of similar color
are more likely to be in the same object, these additional
non-local connections are chosen (sampled randomly) so
that they connect pixels of similar color. Intuitively, given
a pixel, to construct the connections, instead of casting a
wide “net” to all other image pixels like dense CRF, we cast
a targeted “net” towards pixels of similar color. Another
argument for a targeted net is that dense CRF uses limited
width kernels and many weights are negligible anyway.

We develop a new sparse non-local CRF. It has local
connections like sparse CRF, and also sparse non-local con-
nections, randomly sampled from pixels of similar color.
Our model has detail preserving properties like dense CRF,
Fig. 1, right, but achieves this with a sparse set of con-
nections. Therefore our model is optimized globally and
efficiently [8]. Furthermore, our model is easier to inter-
pret than dense CRF. We discuss connections between our
model and dense CRF [22], OneCut [44], Pn-Potts [19].

We validate our model experimentally on traditional
segmentation from a bounding box and on deep-learning
salient object segmentation weakly supervised with image
tags, improving the state of the art in both applications.

2. Preliminaries: Binary Pairwise Potts CRF
The main task in CRF is to assign a label xp to each im-

age pixel p. We assume xp ∈ {0, 1}, where 0 is the back-
ground and 1 is the object. Let P be the set of all image pix-
els, and let x = (xp |p ∈ P) be the labels assigned to pixels
in P . For each pixel p there is a unary potential up(xp)
which is small if label xp is likely for p and large other-
wise. For binary segmentation, one way to obtain unary
terms is to ask a user for object and background seeds [5].
Any pixel p covered by an object seed is hard-constrained to
be the object by setting up(0) = ∞. Any pixel covered by a
background seed is similarly constrained to the background.
Perhaps the most popular method, widely used and imple-
mented is GrabCut [40]. The user provides a bounding box
for the object. Pixels outside the box are hard-constrained to
the background, and object/background appearance is mod-
eled from the inside and outside the box for the unary terms.

In addition to the unary terms, there is a pairwise poten-
tial for each pair of interacting pixels p, q

vpq(xp, xq) = wpq · [xp ̸= xq], (1)

where wpq > 0 and [xp ̸= xq] is equal to 1 whenever pixels
p, q are not assigned to the same label, and 0 otherwise.
Pairwise potentials encourage interacting pixels to have the
same label. Usually wpq is larger for pixels of similar color.

The best labeling x is found by minimizing the energy

E(x) =
∑
p∈P

up(xp) +
∑

(p,q)∈N

vpq(xp, xq), (2)

where N has all interacting pixels pairs. Usually N is a set.
For the simplicity of derivation in Sec. 3, we allow N to be
a multiset, i.e. it can have repeated elements.

When wpq ≥ 0 the energy in Eq. (2) can be optimized
exactly by a graph cut [8]. One sets up a graph with nodes
corresponding to image pixels, and edges corresponding to
pixel pairs in N . The edge weights are derived from the
pairwise terms in Eq. (1). In addition, there are two special
nodes called terminals s, t. All pixel nodes are connected to
s, t by an edge with weight derived from the unary potential
up. The optimal solution is found by a min-cut/max-flow
algorithm [6], see [8] for more detail. If N is sparse, then
optimization is efficient. If N is dense, then optimization,
while still polynomial, is impractical, as the size of N is
quadratic in the number of image pixels. Dense CRF [22]
uses mean field [21] to optimize Eq. (2) approximately.

3. Non Local CRF
In our sparse non-local CRF, we have both the standard

4-connected grid edges, and a sparse set of non-local edges.
We rewrite the energy in Eq. (2) to reflect this

E(x) =
∑
p∈P

up(xp)

+
∑

(p,q)∈Nl

vpq(xp, xq) +
∑

(p,q)∈Nnl

vpq(xp, xq), (3)

where Nl is a set of local edges, and Nnl is a multiset of
non-local edges. A multiset allows element repetition.

We describe the construction of Nnl in Sec. 3.1.
In Sec. 3.2 we discuss the properties of our sparse non-
local CRF. We discuss the connection of our model to dense
CRF [22], OneCut [44] and [19] in Sec. 3.3.

3.1. Choosing Non-local Edges

Our main idea is that to preserve fine details, it is not
necessary to connect each pixel densely. Instead, given a
pixel, we can find and connect it to a sparse subset of pixels
that are likely to have the same label. Given an object pixel,
it is likely that there are many other pixels of similar color
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bins per channel same label (%) dist density (%)

16 92.7 106.6 76.2
32 94.3 99.3 75.7
64 95.2 93.4 71.0
128 96.4 88.9 57.3

Table 1. Experimental evaluation of how likely non-local edges
are to stay within the object. See text for description.

in the same object. However there can be many pixels of
similar color, and connecting to all of them will not result
in a sparse CRF, leading to a costly run time.

Instead, our approach is to sample a sparse subset from
the set of pixels with similar color. To sample efficiently,
we quantize the color image into bins of equal width in each
channel. If two pixels are in the same bin, their color is sim-
ilar. For each pixel, we uniformly sample a desired number
of pixels from its color bin for the non-local edges.

In Tab. 1 we validate experimentally the connection be-
tween labels and colors on GrabCut [40] dataset. For each
p, we draw one random pixel q from the same color bin as
p. We remove any self-edges and edges between nearest
neighbors. In column 3, We compute the average percent-
age of cases when pixels p, q have the same label. We repeat
for different number of bins. The percentage of pixels that
have the same label increases with the number of bins, but
even with 16 bins, this percentage is larger than 90. This is
a strong evidence that choosing at random from quantized
color bins is effective for connecting the same label pixels.

In column 4 we compute the average edge length. It in-
creases with an increased number of bins, but is large for all
cases, indicating that our edges are non-local. Finally, in the
last column of Tab. 1 we show edge density, defined as the
percentage of edges left after we remove the nearest neigh-
bors and self-edges. As the number of bins increases, the
number of pixels inside each bin gets smaller, and we are
more likely to sample the originating pixel or its neighbor.
The density drops drastically after 64 bins. In practice, we
use 32 or 64 bins, it offers a good balance between having
a high percentage of same-class pixels and a good density.

Next we question whether the random nature of the
edges effects the results negatively, as each time we ap-
ply our CRF, the non-local edge multiset Nnl is different.
However, since the majority of the edges connect the same
label pixels, the difference in the result is small. Our goal
is to create enough non-local connections inside an object
to preserve detail, but these connections do not have to be
regular. For our deep learning application, edge random-
ness may even be beneficial as it provides a more diverse
training set. Note that randomness is frequently used to im-
prove CNN training, for example dropout [42]. We evalu-
ate the effect of edge randomness on applications in Sec. 4.
Here we provide an illustration in Fig. 2. It shows non-local
edges chosen for a highlighted (green) pixel on four consec-

Figure 2. Top row: non-local random edges for the green pixel on
four consecutive runs of bounding box segmentation. Bottom row:
corresponding segmentation result. Despite a significant variation
in connectivity, the results are almost identical.

utive runs of segmentation from a bounding box. Non-local
edges vary significantly, but the results are almost identical.

The next question is how many edges to sample for each
pixel. More edges connect stronger, but increase computa-
tion. From applications in Sec. 4 we find that from 2 to 8
edges works well, and more edges is not necessarily better.

When sampling non-local edges, we can use more than
one image quantization, and for each pixel, sample edges
from each quantization. The advantage is that random edges
from more than one quantization are more interconnected
inside an object that spans a large set of smoothly varying
colors. Indeed, with a single quantization, random edges
form a disconnected graph. Of course, with local edges, all
pixels are inter-connected. Still, there are examples a dis-
connectedness random edges causes problems that can be
fixed with two quantizations, see supplementary materials.

Finally, we note that sampling edges is used in other
work, for example for randomized minimum graph cut com-
putation [16], or for graph sparsification [34].

3.2. Sparse non-local CRF properties

Since our non-local edges are randomized, given a la-
beling x, we should talk about the expected value of the
energy E(x) in Eq. (2). The unary terms and the local pair-
wise terms are not randomized. Furthermore, the properties
of the local pairwise terms are well understood [7], they en-
courage segments with shorter boundary length. Below we
discuss the properties of our randomized non-local connec-
tions. Let Enl(x) be the part of the energy in Eq. (3) that
comes from non-local pairwise terms

Enl(x) =
∑

(p,q)∈Nnl

vpq(xp, xq), (4)

We will derive its expected value, Ēnl(x). Let Ipq ∈ {0, 1}
be an indicator random variable. When we sample edges
at pixel p, if pixel q is selected then Ipq = 1. Otherwise
Ipq = 0. Let us denote the expected value of Ipq by Īpq .
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It is sufficient to consider the case of one particular quan-
tization, as multiple quantizations result in a sum of the cor-
responding energy expectations. Similarly, it is sufficient to
consider the case of one random edge per pixel. Suppose
there are m color bins indexed by 1, ...,m. Let Bj be the
set of pixels in bin j. We have Īpq = Pr(Ipq = 1). Since
pixel q is sampled from the same bin where p is located, if
pixels p, q are not in the same bin, then Pr(Ipq = 1) = 0.
Otherwise, Pr(Ipq = 1) = 1

nj
, where nj is the number

of pixels in Bj . Given a labeling x, the expected non-local
pairwise energy is

Ēnl(x) =
∑
p∈P

∑
q∈P

Īpqvpq(xp, xq)

=
∑

j∈{1,...,m}

∑
p∈Bj

∑
q∈Bj

vpq(xp, xq)

nj

=
∑

j∈{1,...,m}

∑
p∈Bj

∑
q∈Bj

xq ̸=xp

wpq

nj
, (5)

where the last equality holds since we assumed Potts model
(Sec. 2), so vpq(xp, xq) = 0 if xp = xq , and wpq otherwise.

Eq. (5) has the following intuitive interpretation. Since
wpq large for similar pixels, wpq is a measure of similarity
between p, q. The innermost sum is for a fixed p in bin j,
and it adds up the similarity of p and all other pixels in bin
j that do not have the same label. This sum is normalized
by the number of pixels in bin j. Thus the inner sum is low
when pixels in bin j with a label different from p are the
least similar to p. The outermost two sums add up these
quantities (organized by bins) over all pixels in the image.
Thus the expected energy is lower when the two parts (ob-
ject and background) are dissimilar in colors.

Fig. 3 illustrates how our model preserves details. It
shows a green object with the main part and a thin “tail”.
Three labelings are shown: the first one preserves the ob-
ject, the second and last remove two and six tail pixels, re-
spectively. With just local edges, pairwise energy decreases
from left to right, and so if the unary terms are weak, the
last labeling that erases the tail is preferred. For non-local
edges, the pairwise energy increases from left to right, coun-
teracting the shrinking bias of local terms. Depending on
their relative weight, the tail may be preserved. Note that we
put all non-local connections from the tail to the main ob-
ject part. Since the main part is usually larger and edges are
sampled uniformly, it is likely that the tail connects mostly
to the main part. Herein is a key to preserving thin parts
with a sparse set of non-local connections: they are sparse
but likely to connect to where it is important to connect.

3.3. Connection to Other CRF Models

Connection to Dense CRF

(a) (b)

Figure 3. (a) illustrates how non-local connections help to preserve
thin structures, wpq = 1 for simplicity. (b) color separation terms

We now discuss connection to dense CRF [22]. Despite
its wide use, the properties of dense CRF are not well un-
derstood. There is some analysis in [12, 46], but it is under
certain assumptions. By relating our model to dense-CRF,
we can understand the properties of dense CRF better.

Dense CRF connects every pair of pixels p, q with a
weight which is Gaussian in the color and position of p, q.
Let us quantize an image as in our approach, and let us con-
sider only the edges of dense CRF that are between pixels
in some fixed bin. Let the set of pixels in that bin be B, and
its size be n. Suppose we have some labeling x. Let Ed

B(x)
be the pairwise dense CRF energy of this labeling restricted
only to the pixels in B and let Ēnl

B (x) be our expected non-
local energy in Eq. (5) when restricted only to the pixels in
B, derived similar to Eq. (7):

Ed
B(x) =

∑
p∈Bj

∑
q∈B

xq ̸=xp

wpq vs. Ēnl
B (x) =

∑
p∈Bj

∑
q∈B

xq ̸=xp

wpq

n
.

These expressions are identical, except we normalize by n.
Both discourage splitting bin B among different labels, but
if a split happens, dissimilar parts are preferred. Our crite-
rion does not grow as large due to normalization by n, sim-
ilar to normalized cut [41]. So when it is indeed necessary
to split a bin, our criterion allows it more easily, compared
to dense CRF. The difference is most pronounced if all the
edge weights are approximately equal. In this case, dense
CRF has a quadratic penalty in n for splitting bin B into
two equal parts, while our penalty is linear, less costly.

The downside of normalization by n is that separating
one or a few pixels from the rest of the bin is cheap if n is
large, even if these pixels are similar to the rest of the bin.
Thus our results could potentially be more noisy, but this
noise can be counteracted by the local pairwise terms in Nl.
Connection to OneCut

OneCut [44] proposes an energy similar to that in Grab-
Cut [40] but tractable. GrabCut energy consists of two parts.
The first part is a standard sparse CRF that encourages im-
age edge alignment. The second part encourages an object
and background to be equal in size and have a small ap-
pearance overlap. This second part is NP-hard, and is op-
timized iteratively and approximately by GrabCut. OneCut
replaces the second hard to optimize part with a color sep-
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aration term that encourages an object and background to
have a small appearance overlap, and a ballooning term to
prevent a trivial (empty object) solution. These new terms,
together with the standard sparse CRF term, can be opti-
mized exactly without iteration, in “one cut”.

The color separation term in OneCut is based on quan-
tizing an image. Let an image be quantized into m bins
indexed from 1 to m. Let the size of bin j be nj , and let
sj(x) be the number of pixels in bin j that have label 1 in
labeling x. OneCut color separation term is

Ecs(x) =
∑

j∈{1,...,m}

min{sj(x), nj − sj(x)}. (6)

For each bin, the smallest cost is when all pixels are as-
signed to the same label, and the largest cost is when the
bin is equally split between the object and background.

Now we turn to our expected non-local energy in Eq. (5).
Let us set wpq = 1 for all non-local edges. Then Eq. (5) is

Ēnl(x) =
∑

j∈{1,...,m}

( ∑
p∈Bj

xp=0

∑
q∈Bj

xq=1

1

nj
+

∑
p∈Bj

xp=1

∑
q∈Bj

xq=0

1

nj

)

=
∑

j∈{1,...,m}

( ∑
p∈Bj

xp=0

sj(x)

nj
+

∑
p∈Bj

xp=1

nj − sj(x)

nj

)

= 2 ·
∑

j∈{1,...,m}

sj(x)(nj − sj(x))

nj
(7)

In Fig. 3(b) we plot sj(x)(nj−sj(x))
nj

in red, dropping
subindexes and x for clarity, together with Eq. (6) in blue.
Clearly, Eq. (7) is also a color separation term, of a slightly
different shape, and similarly to Eq. (6) it encourages object
and background to have small appearance overlap.

Thus with wpq = 1 for non-local connections, our ex-
pected energy is almost the same as in [44]. However, our
wpq can vary, and we can design color separation terms that
are more general than the cardinality-only ones in Eqs. (6)
and (7). Note that the construction in [44] does not allow
more general color separation terms. Thus we generalize
and improve OneCut, see Sec. 4.2.
Connection to Pn Potts In [19] they develop Pn Potts
model, which is a high-order CRF. Although our model is
pairwise, it is related to Pn Potts. In [19] the motivation is
to find spatially coherent clusters and penalize cuts across
clusters. In contrast, our motivation is to connect each pixel
to a sparse set of color neighbors that are not necessarily
spatially close. However, we can interpret our model as pe-
nalizing cuts across our (non-local) clusters as well, Eq. (5).
It is important to note that our penalty for cutting a cluster
is different from [19]. First of all, it is probabilistic and has
only expected cost. Moreover, that cost depends on dissim-
ilarity between the two parts: the penalty is lower when two

parts are dissimilar (according to pairwise differences). In
contrast, the cost in [19] is deterministic and it depends on
the cardinality of two parts. The Pn Potts in [19] cannot
model dissimilarity of two parts.

4. Experimental Results
We now evaluate our sparse non-local CRF on three ap-

plications. Two applications are in the classical setting
of segmenting an object from a bounding box, GrabCut,
Sec. 4.1 and OneCut, Sec. 4.2. The last is a deep learning
application for weakly supervised (no pixel precise ground
truth) salient object segmentation, Sec. 4.3.

4.1. GrabCut

GrabCut [40] segments an object from its bounding box.
It starts by modelling the unary terms in Eq. (2) for the ob-
ject from the inside and the background from the outside of
the box using negative log-likelihood of GMM. Then the
energy in Eq. (2) is minimized, and the unary terms are
re-estimated from the segmented object/background. This
process is iterated until convergence.

We use negative log likelihoods of normalized color his-
togram of quantized image (16 bins) for unary terms [5,48].
For the local edges in Nl in Eq. (3), we use [5]

wpq = λl · e
−∥Cp−Cq∥2

2σ2
col . (8)

For non-local edges our first choice is Gaussian weights

wpq = λnl · e
− ∥p−q∥2

2σ2
pos

−∥Cp−Cq∥2

2σ2
col , (9)

where Cp is the color of pixel p. Dense CRF have to use
Gaussian weights since their approximate optimization de-
pends on bilateral filtering [36]. We do not have any re-
striction on edge weights except non-negativity. Our second
choice, which we call distance weights is

wpq = λnl ·
1

∥p− q∥2
e
−∥Cp−Cq∥2

2σ2
col . (10)

With distance weights wpq decreases less quickly as the
edge length increases, compared to Gaussian weights
in Eq. (9). To remove sensitivity to image size, we nor-
malize all coordinates to the range (1, 100).

When optimizing the energies of the type in Eq. (2), it is
important to set the relative weights of the unary and pair-
wise terms appropriately. Choosing the right balance is not
trivial and may be image dependent. If the unary terms are
unreliable, more weight should be placed on the pairwise
terms, but too much weight may result in an empty solution
with everything assigned to the background.

We develop a method for avoiding an empty solution.
Let x0 be an empty labeling, i.e. x0

p = 0 for all p. Let x̂
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GrabCut OneCut
Gaussian wpq Distance wpq

# edges one quant two quant one quant two quant

2 .920 (.0023) .921 (.0031) .922 (.0035) .926 (.0024) .905 (.0014)
4 .922 (.0019) .920 (.0032) .923 (.0028) .927 (.0011) .905 (.0015)
8 .920 (.0022) .920 (.0032) .926 (.0029) .928 (.0012) .906 (.0014)
16 .919 (.0029) .919 (.0028) .925 (.0030) .928 (.0007) .908 (.0014)
32 .919 (.0026) .920 (.0029) .925 (.0027) .928 (.0005) .908 (.0014)

Table 2. Experimental evaluation of the variation in performance
for GrabCut and OneCut. Mean Fβ scores (higher is better) over
20 trials for the GrabCut dataset, and std in parenthesis.

be a reasonable non-empty solution. We want to ensure that
the parameter setting is s.t. our energy in Eq. (3) is lower for
a reasonable non-empty labeling than for an empty one, i.e.
E(x̂) < E(x0). If this holds, we proceed to optimization.
If E(x̂) > E(x0), we add a “balooning” term to our energy

Eb(x) = λb

∑
p∈P

(1− xp).

where λb is just sufficiently large to ensure E(x̂)+Eb(x̂) <
E(x0) +Eb(x0). Computing such λb is a simple algebraic
manipulation, given in the supplementary materials.

To find a reasonable non-empty x̂, we sort pixels inside
the box by their preference for the foreground, and hard-
constraint the top r fraction of them to the foreground. In
practice, we set r = 1/6. Then we perform optimization
of Eq. (3) and the resulting solution is x̂.

Our empty solution avoidance is implementable when-
ever it is possible to compute an exact energy of a labeling
and to find a globally optimal solution. Therefore we also
apply empty solution avoidance to our re-implementation
of GrabCut with sparse CRF, to ensure that our improve-
ment is not just due to avoiding empty solutions. For dense
CRF [22], one cannot efficiently compute the exact labeling
energy, so our empty solution approach is not applicable.

We now discuss parameter settings. Prior work [12,
40, 44] chooses parameters that work well for the grabcut
dataset [40], and with the exception of [12], they report per-
formance only on the GrabCut dataset. Since there are only
a handful of parameters, the overfitting problems with such
approach are minor, at least compared to deep learning. But
an overfitting does happen. For a fair comparison to prior
work, we also tune parameters on GrabCut dataset, but we
report performance on two other datasets, keeping parame-
ters fixed to those tuned on GrabCut dataset.

For evaluation we use GrabCut dataset [40], which has
50 images with bounding boxes. We also use MSRA1K [1]
and ECSSD [53] datasets, 1,000 images each. These are
salient object datasets without bounding boxes. As in [12],
we construct boxes from the ground truth segmentations.
ECSSD is more challenging than the other two datasets.

Since our approach is based on random edges, we test
the variation in performance over different runs, and the de-

pendence on the number of edges sampled per pixel, and on
one or two quantizations. When we increase the number of
edges, we divide λnl in Eqs. (9) and (10) by the number of
edges to keep the overall relative weight of non-local pair-
wise terms the same. We use GrabCut dataset, and test both
Gauss and distance edges, Eqs. (9) and (10). In each case,
we perform 20 runs over the dataset and compute the mean
and std of Fβ . The results are in Tab. 2. The std is low in
all cases, which means that our results are stable over dif-
ferent runs. For Gaussian weights, there is no significant
variation in performance between one or two quantizations
and the number of edges. For distance edges, there is an
improvement when using more edges, up to 16. The results
with two quantizations are also better than with one quan-
tization. For further experiments, we use 2 quantizations, 2
edges for Gaussian, and 8 edges for distance weights.

In Tab. 3, left, we compare to methods that use Fβ met-
ric1 . GrabCut1 is the original method [40], with GMM
modeling. GrabCut2 is our own implementation of Grab-
Cut, with the same unary and local pairwise potentials as in
our method, and with our empty solution avoidance strat-
egy. DenseCut1 are the results from [12], who develop
a GrabCut algorithm with sparse CRF replaced by dense
CRF2. DenseCut2 is our implementation of GrabCut with
dense CRF instead of sparse CRF. Next we have our sparse
non-local CRF GrabCut implementations for Gaussian and
distance edges. Pn-Potts is the model in [19]3. Our models
are better in all but one case, and significantly better on a
more difficult ECSSD dataset.

Dense GrabCut2 and ours (gauss, dist) is a direct com-
parison between dense CRF and our sparse non-local CRF,
as the only difference between these is the CRF type. Our
performance may be better due to a better model (less heavy
penalty for splitting color bins), or due to better optimiza-
tion (global minimum vs. approximation), or both.

In Tab. 3, right, we compare to methods that use the er-
ror rate in the box. From the traditional methods, only [25]
performs better, but they use different boxes more suited for
their tight box prior. A deep learning method [52] trained
on MSCOCO [30] performs the best, as expected. Our ap-
proach is less than 2 points behind [30], despite not requir-
ing pixel precise ground truth.

Qualitative comparisons are in Fig. 4. Observe fine de-
tails in our results (d,e), especially compared to sparse CRF
(b). Our running time is 1.2 and 2.1 seconds per image with
Gaussian and distance edges in matlab implementation. Our

1Fβ =
(1+β2)precision×recall

β2×precision+recall
, with β2 = 0.3, as in prior work.

2We report their published metrics for GrabCut and MSRA1K datasets,
and the result from running their code https://githubmemory.
com/repo/Juseong-Bang/densecut--windows-master on
ECSSD dataset

3In [19], they multiply cardinality by cluster quality learnt from pixel
precise ground truth. Using ground truth would be unfair for comparison,
so we base cluster quality on color variance. All other aspects are the same.
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GrabCut MSRA1K ECSSD

sparse GrabCut1 .909 .945 NA
sparse GrabCut2 .897 .956 .868
dense GrabCut1 .932 .959 .829
dense GrabCut2 .872 .950 .837
Pn Potts .911 .957 .857

ours (gauss) .919 .966 .892
ours (dist) .928 .961 .880

GrabCut

OneCut [44] 6.7
TightBox [25] 3.7
Kernel [45] 7.1

deepCut [52] 3.3

ours (gauss) 5.5
ours (dist) 5.1

Table 3. Experimental evaluation of GrabCut algorithm. Left:
methods that use performance metric Fβ score, higher is better,
right: methods using error rate in the box.

Figure 4. Comparative result for the GrabCut application: a) input
image with the bounding box; b) GrabCut with sparse CRF, our
implementation; c) DenseCut [12], their implementation; d) our
sparse non-local CRF with distance edge weights; e) our sparse
non-local CRF with Gaussian edge weights; f) ground truth.

model parameters are in the supplementary materials.

4.2. OneCut

As discussed in Sec. 3.3, we can approximate One-
Cut [44] with our sparse non-local CRF by setting all wpq

weights for non-local edges to 1. However, it is more inter-
esting to generalize their color separation term by setting
wpq weights to depend on color difference between pix-
els. This way the color separation term is not just based
on cardinality, i.e. the number of pixels split between the
labels in a color bin, but also on the color similarity of pix-
els split across a bin. Intuitively, this makes sense since if
we do have to break some color bin, it is better to break it so

Figure 5. Comparative results for the salient object segmentation.
Last column is with scribbles, a stronger form of weak supervision
than the other results shown.

that more similar colors stay together. We use the weights
in Eq. (8) for the non-local edges, but with a a smaller σcol,
compared to the local edges. The variation of performance
depending on the number of edges is in Tab. 2, right. Unlike
GrabCut, using more edges is better. We use 16 edges and
64 bins in practice. For the GrabCut dataset, the unmodi-
fied OneCut Fβ = 0.897, and for our version with the more
general color term, Fβ = 0.908. Running time is 2.3 sec in
matlab. For more results, see the supplementary materials.

4.3. Salient Object Segmentation

We apply sparse non-local CRF for image tag weakly
supervised salient object segmentation based on deep learn-
ing. In this setting, a dataset known to contain salient ob-
jects is given but without pixel precise ground truth.

We modify the approach in [47]. They develop a loss
function that works well for training salient object segmen-
tation CNN without pixel precise ground truth. Sparse CRF
is the most important part of their loss function. They also
experiment with dense CRF but find that it does not work,
perhaps due to the difficulty of minimizing the loss function
of their type4. We take their approach but replace sparse
CRF with our sparse non-local CRF. We use CNN architec-
ture from [47]5, Unet [39] with ResNeXt [51] fixed features
pretrained on Imagenet [13] and train 256 × 256 images.
See the supplementary materials for the details of our mod-
ification the loss function in [47] and training parameters.

We use datasets DUTS [50], DUTO [54], ECSSD [53],
MSRAB [31], THUR [11], SED2 [3], SOD [33], Pas-
calS [29], and HKU-IS [27]. In addition to Fβ , for fair

4Note that using dense CRF in a loss function is different from using
dense CRF as part of architecture. Since there is no pixel precise ground
truth, having dense CRF in architecture does not help in designing a loss
function useful for training in weakly supervised setting.

5https://github.com/morduspordus/SingleClassRL
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MSRAB ECSSD DUTO PascalS THUR SED2 SOD
Fβ mae Fβ mae Fβ mae Fβ mae Fβ mae Fβ mae Fβ mae

SBF [58] - - .787 .085 .583 .135 .680 .141 - - - - .676 .140
USD [60] .877 .056 .878 .070 .716 .086 .842 .139 .732 .081 .838 .088 .798 .118
WSI [26] .890 .067 .837 .110 .722 .101 .752 .152 - - - - .751 .185
DeepUSPS [35] .903 .040 .874 .063 .736 .063 - - - - .845 .070 - -
SparseCRF [47] .885 .046 .894 .056 .753 073 .833 .090 .725 .078 .836 .096 .825 .126

ours (gauss) .902 .042 .898 .042 .767 .070 .842 .089 .729 .077 .853 .090 .812 .132
ours (dist) .907 .039 .902 .056 .771 .070 .841 .090 .734 .075 .876 .080 .810 .135

Table 4. MSRA training dataset: comparison to other image tag weakly supervised salient object segmentation methods. Performance
metrics are Fβ (higher is better) and mae (lower is better).

MSRAB ECSSD DUTO PascalS SOD DUTS
maxFβ mae maxFβ mae maxFβ mae maxFβ mae maxFβ mae maxFβ mae

WSS [50] .877 .076 .856 .104 .687 .118 .778 .141 .780 .170 - -
MSW [57] .890 .071 .878 .096 .718 .114 .790 .134 .799 .167 - -
sparseCRF [47] .873 .055 .893 060 .756 .074 .845 .087 .825 .130 .800 .061

ours (gauss) .875 .051 .910 .049 .785 .067 .861 .076 .845 .115 .833 .050
ours (dist) .878 .051 .909 .053 .793 .066 .864 .079 .840 .120 .840 .050

Table 5. DUTS training dataset: comparison to other image tag weakly supervised salient object segmentation methods. Performance
metrics are maxFβ (higher is better) and mae (lower is better).

ECSSD DUTO PascalS HKUIS THUR DUTS

Fβ mae Fβ mae Fβ mae Fβ mae Fβ mae Fβ mae

scribbles1 [59] .880 .061 .750 .068 .813 .140 .870 .047 .714 .077 .777 .062
scribbles2 [56] .900 .049 .758 .060 .823 .078 .896 .038 .755 .069 .823 .049
boxes [32] .860 .072 .686 .081 - - .853 .058 - - .736 .079

ours (gauss) .905 .049 .781 .067 .859 .076 .912 .035 .731 .075 .827 .049
ours (dist) .909 .053 .790 .066 .862 .079 .915 .037 .745 .070 .839 .049

Table 6. DUTS training dataset: comparison to [56, 59], who use
scribbles, and [32] bounding boxes, both much stronger forms of
weak supervision. Performance metrics are Fβ (higher is better)
and mae (lower is better).

comparison with prior work, we also use maxFβ , the max-
imum Fβ across the binary maps of different threshold, and
mae [37], the average absolute per pixel difference between
the predicted saliency and ground truth. Some prior work
trains on MSRAB [31], some on DUTS [50], we train on
MSRAB and DUTS, and compare correspondingly.

For fair comparison, we re-train sparseCRF [47] on
256× 256 images, getting results better than those reported
in [47], where they train on 128 × 128 images. For other
prior work, we either use the numbers they report, or run
their code. For our sparse non-local CRF, we evaluate both
Gaussian and distance weights. The quantitative compar-
ison is in Tab. 4 for methods that train on MSRAB, and
in Tab. 5 for methods that train on DUTS. In Tab. 6 we also
compare to [56, 59], who use scribbles, and to [32], who
use boxes, both much stronger supervision. In most cases,
our methods take both the first and second place, even when
comparing with stronger supervision. When our models do
not take the first place, it is only by a small margin, except
for THUR dataset for comparing with scribble supervision

Figure 6. Some failure examples for GrabCut application. From
left to right: input image, ground truth, our results, dist weights.

in terms of Fβ . The qualitative results are in Fig. 5. Observe
the fine detail preservation. In some cases our results have
details more accurate than the ground truth, for example, in
the top row, the space between the woman’s arm and her
body is properly segmented by our methods, but absent in
ground truth, and in row 4, we segment the grass peeking
through the bend of the horse knee, absent in ground truth.
Limitations

Our model is limited to attractive (wpq > 0) pairwise
potentials, as our sampling strategy would not be effective
for repulsive [55] potentials. While effective at preserv-
ing fine details, our model, like dense CRF, is more prone
than sparse CRF to connect fine spurious details to the ob-
ject, see Fig. 6. Thin structures similar to object in color are
added. Adding spurious fine detail is less of a problem for
CNN based salient object segmentation, as object appear-
ance is learned over a large training dataset.
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