
GeoEngine: A Platform for Production-Ready Geospatial Research

Sagar Verma1,2, Siddharth Gupta2, Hal Shin2, Akash Panigrahi2, Shubham Goswami2, Shweta Pardeshi2,
Natanael Exe2, Ujwal Dutta2, Tanka Raj Joshi2, Nitin Bhojwani2

1 Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique
2 Granular AI

{sagar,akash,sid}@granular.ai

Abstract

Geospatial machine learning has seen tremendous aca-
demic advancement, but its practical application has been
constrained by difficulties with operationalizing performant
and reliable solutions. Sourcing satellite imagery in real-
world settings, handling terabytes of training data, and
managing machine learning artifacts are a few of the chal-
lenges that have severely limited downstream innovation.
In this paper we introduce the GeoEngine1 platform for re-
producible and production-ready geospatial machine learn-
ing research. GeoEngine removes key technical hurdles to
adopting computer vision and deep learning-based geospa-
tial solutions at scale. It is the first end-to-end geospatial
machine learning platform, simplifying access to insights
locked behind petabytes of imagery. Backed by a rigor-
ous research methodology, this geospatial framework em-
powers researchers with powerful abstractions for image
sourcing, dataset development, model development, large
scale training, and model deployment. In this paper we pro-
vide the GeoEngine architecture explaining our design ra-
tionale in detail. We provide several real-world use cases of
image sourcing, dataset development, and model building
that have helped different organisations build and deploy
geospatial solutions.

1. Introduction
In order to address many of humanity’s biggest chal-

lenges it is imperative that we develop a thorough under-
standing of our planet and how it is evolving. Satellite and
aerial imagery combined with geospatial machine learn-
ing offer an unparalleled source of objective global-scale
data. The past decade has seen a near eight-fold increase
in the number of earth observation satellites deployed to or-
bit, with similar growth in the availability of commercial

1https://apps.granular.ai/apps

Image Sourcing

Annotation

Trainable Dataset

7fe5fc5

24511e0

e20155f

V2 (hash:4cBad3)

V1 (hash:ds3dQ)

CodeV1 CodeV2

DatasetV1

DatasetV2

ParamsV1

ParamsV2

WeightsV2 WeightsV1

Model Training

V4

V3

V1

V2

Model Lifecycle
Management

Model Auditing
& Benchmarking

Passed

Acceptable

95% Confidence

GET /api/segment_house

GET /api/classify_property

GET /api/urban_change

GET /api/urban_change

Model Serving
Consume

Figure 1. MLOps pipeline for Geospatial ML.

aerial images obtained via fixed wing planes and balloons.
Moreover, small unmanned aerial vehicles (UAVs) in both
the retail and commercial markets are generating a plethora
of geospatial data. This recent increase in aerial data (e.g.
multispectral, SAR, LIDAR) as well as non-image geospa-
tial data (e.g. GPS) has radically changed the potential for
downstream applications. As such data becomes cheaper
and more readily available, corporations, governments and



citizens alike seek to leverage it to better understand our
planet and its inhabitants.

Along with this increase in raw image availability, meth-
ods in computer vision have seen remarkable development
driven in large part by the advancement of machine learn-
ing. Yet, despite this progress, tooling to support earth ob-
servation research is lacking. Researchers and developers
working on applying geospatial machine learning methods
on real world solutions are actively looking for an end-to-
end platform that can manage every aspect of geospatial re-
search. Much of the focus in geospatial research has been
solving problems and building novel solutions, while less
attention has been given to the underlying supporting infras-
tructure and protocols. While it is possible to achieve decent
performance and accuracy in research environments with
an ad-hoc methodology and environment, the challenge is
building an integrated geospatial machine learning solution
that can support production-scale data throughput.

The machine learning development lifecycle mirrors that
of software development, with four key stages: planning,
development, testing and deployment. Similarly, maintain-
ing ML systems requires similar ongoing care to that of con-
ventional software systems, from identifying faulty logic
and applying appropriate fixes to improving features and
performance. To carry out these processes, software devel-
opment relies on DevOps to streamline development while
continuously delivering new releases and maintaining qual-
ity. The workflow for machine vision models follows a sim-
ilar pattern. Where the two practices differ is the from tradi-
tional software development is in the environment where it
operates. These two development practices diverge when it
comes to the deterministic nature of software development
juxtaposed to the inherently probabilistic nature of com-
puter vision development. Further, as recent global events
have demonstrated, this planet is constantly changing, so
CV practitioners must expect that the real-world data that
powers their models will inevitably change as well.

The apparent similarities of these two development prac-
tices has led to an increasing drive to build development
operations (DevOps) systems for machine learning. Ma-
chine learning operations (MLOps) platforms systematize
the process of building and training experimental ma-
chine learning models and translating them into produc-
tion. MLOps platforms for computer vision can serve multi-
ple purposes, with some common functions including: data
sourcing and broadcasting, image data management, dataset
development, model metadata and artifact management,
model validation and operationalization. Unfortunately, of
the platforms that support machine vision problems today,
none fully support geospatial research. Along with com-
plexities specific to geospatial data, such as sensor and im-
age qualities and map projection, problems around data rep-
resentation, data access limitations, and performance issues

with working with large geospatial images make these plat-
forms ill-suited for geospatial research.

In this paper we introduce a new MLOps tool fo-
cused solely on geospatial machine learning. GeoEngine
creates and manages large annotated datasets, converts
them into analysis-ready datasets, launches efficient train-
ing pipelines, stores and versions training artifacts, and
deploys geospatial model APIs for real-world consump-
tion. There are additional features that are oriented towards
geospatial and remote sensing research problems as well as
in-production solutions, such as: live sourcing satellite im-
agery, rendering analytical data to maps and managing vec-
tor data for time-series datasets.

2. Existing MLOps Tools
There are fewer computer vision machine learning plat-

forms that support end-to-end machine learning research
from dataset sourcing to end products. Researchers and
academics widely use different tools for different tasks in
a machine learning pipeline. In case of geospatial machine
learning this is widely the case due to lack of platforms that
support tighter integration with geospatial data and down-
stream GIS and analysis tools. In this section we discuss
the different tools used to create and manage datasets, train
models, manage artifacts and life-cycles, and deploy mod-
els. We also discuss some of the tools that do in fact support
end-to-end automation of machine learning research.

2.1. Dataset Creation and Management

While there exist several tools designed for image an-
notation, few fully support geospatial data. Tools like La-
belMe [33], VIA [8], VoTT [24], and CVAT [34] allow
annotation of non-georegistered images. These tools have
empowered computer vision community with large datasets
that have helped accelerate computer vision research. La-
belBox [35] and Scale AI [18] are two widely used com-
mercial tool that have limited geospatial support, with basic
support for web map service (WMS) images. While this
presents a challenge when labelling multi-temporal data,
these tools do have a fantastic set of active learning features
for AI-assisted data annotation.

QGIS [29] is a widely used open source app that is
mostly used to analyze geospatial data. The tooling does
support annotating shapes but is very limited in managing
complex annotation workflows. ArcGIS [31] is a widely
used commercial tool similar to QGIS in terms of features
and limitations. PulseSatellite [23] is a web based collabo-
rative tool where analysts can annotate few images and then
use Mask R-CNN [13] to automate annotation of large ar-
eas. This tool is very limited in terms of importing images
and types of problems supported. V-RSIS [14] is collabora-
tive tool which allows users to annotate WMS images from
Google Maps.



Tool Goespatial Data Model Training Model Lifecycle Auditing & Benchmarking Serving

QGIS [29] Yes Limited No No Limited
ArcGIS [31] Yes Yes No No Limited
Descartes Labs [17] Yes Yes No No No
Orbital Insight [19] Yes No No No No
UP42 [11] Yes Yes No No Yes

GeoEngine Yes Yes Yes Yes Yes

CVS [3] No Yes No No Yes
Aoto ML Vision [5] No Yes Yes Limited Yes
TPOT [26] No Yes No Limited No
Auto-Sklearn [9, 10] No Limited No Limited No
MLBox [32] No Yes No Limited No

Algorithmia [16] No Yes Yes Yes Yes
Kubeflow [12] Limited Yes Yes Yes Yes
Azure ML [2] No Yes Yes Yes Yes
Gradient [28] No Yes Yes Yes Yes

Table 1. Comparison of GeoEngine with other geospatial , Auto ML , and MLOps platforms.

2.2. Model Training and Management

Most MLOps platforms principally operate downstream
of dataset creation tools. With such platforms, one can be-
gin to achieve continuous training. Paradigmatically sim-
ilar to continuous integration, continuous training enables
users to systematically iterate and improve on models with-
out impacting system stability. The model registry helps
users achieve this task by maintaining model images, source
code versioning, and model artifacts.

Polyaxon [25] addresses many challenges related to ML
training, from data versioning to efficient resource provi-
sioning and experiment management. It is a kubernetes-
based platform that ships with a user interface for access-
ing experimentation logs and metrics. It supports team-
level collaboration and integrates with many tools, from
data management to notifications. MLFlow [22] offers sim-
ilar functionality, with a focus on creating reproducible
”Projects” that can be migrated from development to pro-
duction environments. It also creates abstractions to support
native model deployment for most popular frameworks.

While Weights and Biases (WandB) [38] is designed
with a strong developer-first focus, it is strongest in an aca-
demic context. WandB focuses on ease of integration and
setup, and its strong experiment observability features make
it optimal for training. Similar to Weights and Biases, Nep-
tuneAI [20] provides experiment tracking functionality, but
stops short of data storage. It does offer a comprehensive set
of charting features along with support for major charting
libraries, enabling users to integrate it into existing work-
flows, rather than serving as a replacement. It also supports
experiment optimization such as hyper-parameter tuning.

2.3. Model Deployment and Life Cycle Manage-
ment

Once a vision model has been created, the final steps in
operationalizing that model are to test and deploy it to a
dedicated serving environment. Certain serving platforms
also attempt to support model development and training,
while others focus exclusively on model hosting. While
some systems can be hosted on-premise, this can be costly
and difficult to manage at scale. As such, most serving
platforms focus on cloud-based hosting, with kubernetes-
based hosting being a natural choice for its scaling proper-
ties. Tools like BentoML [4] and Seldon [15] can facilitate
deployment, while other tools serve to manage the underly-
ing requirements, from hardware provisioning to data man-
agement. BentoML provides a unified deployment frame-
work that serves as a connector between machine learning
frameworks and serving platforms. Seldon provides pow-
erful data structures to let users package their models for
cloud deployment. Seldon also ships with Kubeflow and is
supported by any Kubernetes environment.

Model monitoring is not a commonly found feature in
such platforms, but would be beneficial as it would let one
tweak and improve a model in production continuously. In a
highly developed MLOps workflow, this should be an active
process. There are three aspects to monitoring:

• Technical/system monitoring checks if the model in-
frastructure is served correctly or not.

• Model monitoring validates the predictions’ accuracy.

• Business performance monitoring comes down to
whether the model is helping the business or not.



2.4. Automation

Tools discussed above can be used for a single com-
ponent or a few components of a ML pipeline. Often it
is required to automate the entire process right from col-
lecting and managing data to deploying it and monitoring
it in production. Such tools can be categories into Au-
toML and MLOps automation. Various AutoML frame-
works automate various steps of the machine learning life-
cycle. SageMaker [1], VisionAI [6], Azure Machine Learn-
ing [2], Kubeflow [12], Algorithmia [16], and Gradient [28]
are widely used in academia and industry. It can be ob-
served in Table 1 that tools that support geospatial data
are not MLOps oriented, most of them do not even sup-
port model training. Auto ML and MLOps tools are very
good for model training and serving part. All of them lack
geospatial data integration with limited exception of Kube-
flow.

SageMaker serves many of the most commonly used
models along with data management built on Amazon cloud
infrastructure. It also offers ancillary human-in-the-loop
services like data labeling. It’s general purpose nature and
managed approach does make it challenging to employ with
certain workflows, particularly when there exist complex
follow-on processes and/or visualization requirements.

VisionAI is another Google hosted machine vision plat-
form slightly more focused in scope than SageMaker, but
still designed for a broad spectrum of machine vision ap-
plications. Similar to SageMaker, it can benefit from a tight
integration with Google Cloud Platform’s data management
and computing resources. The hosted nature of VisionAI
might limit its viability for sophisticated operators requir-
ing more control.

AzureML much like SageMaker, Azure’s hosted offer-
ing for ML management is a general-purpose artifact man-
agement and training platform, with similar limitations and
benefits.

Kubeflow is an effort to make it simpler to connect
compute-intensive operations in machine learning with
cloud resources managed within Kubernetes. Kubeflow,
supports ML pipelines through Argo, a Kubernetes work-
flow manager, and supports model deployment as pack-
aged APIs across a broad range of native and third-party
systems. Kubeflow in limited capacity can interact with
Google EarthEngine to support geospatial machine learn-
ing.

3. GeoEngine Architecture

This section explains different components of Geo-
Engine that enables its user to create large datasets from
scratch, manage model training and deploy real world solu-
tions.

3.1. Europa: Data Annotation Tool

Europa was conceived to satisfy a more niche commu-
nity of users within the annotation tooling landscape. As
such, while Europa shares many features common to alter-
native applications, the features of Europa have primarily
evolved around usages more pertinent to geospatial prob-
lems. At a high level, Europa aims at solving the following
goals:

• To readily ingest image sources, public or private.

• To support a broad array of remote sensing and vision
problems.

• To deliver high-quality model training data.

• To share datasets adhering to open and reproducible
standards.

Of the various remote sensing and vision problems,
change detection is a notably challenging requirement. It re-
quires the ability to track changes in a given area-of-interest
across multiple dates, which requires the ability to swap the
image context in which the annotation is situated.

To create high quality annotations, we must ensure that
the application can support several key features. Firstly, it
must allow for sufficiently large datasets. Secondly, it must
support a multitude of image types, different bands, and as
mentioned above, multi-date image sets. Lastly, a system-
atic validation process is essential in both training annota-
tors and correcting mistakes during the annotations.

In addition to the annotation process, the application
should allow for easy sharing and importing of datasets.
This feature would allow users to quickly begin testing hy-
potheses and further improve existing imported or anno-
tated datasets.

3.2. Neso: Image Sourcing Tool

Neso is a microservice which provides capability
through REST endpoints to query and download satellite
and aerial images. It interacts with several geospatial im-
age providers to automate the retrieval of geospatial images
in a structured and minimal way. Neso also provides the
functionality of adding private images via custom AWS and
Google Storage buckets. Europa uses Neso internally to
allow its users to search for images for annotations tasks.
Dione and Titan use Neso to get historical and future tasked
images for inference workflows and dashboard visualiza-
tions.

3.3. Atlas: Training Data Management Tool

When an annotation task is created on Europa, all the im-
ages are available in our platform in two different formats.
One format is Cloud Optimized GeoTiffs (COGs) which is



Figure 2. A typical geospatial research-to-production workflow on GeoEngine.

used by Europa to render images as maps. Other is the orig-
inal raw format that Neso acquires. After annotations are
complete, we need to use the annotations and raw images to
make a trainable dataset. Atlas can be invoked by Phobos
CLI to create trainable datasets in an asynchronous manner.
For very large datasets it may take several hours depending
upon how much resource is allowed to be used. Atlas cre-
ates and serves the trainable datasets in an efficient manner.
Atlas has been designed to scale linearly with dataset size

while using cheap compute instances. A single trainable
dataset can be simultaneously used by hundreds of mod-
els under training. Atlas can serve thousands of users and
petabytes of training data at any given time. Atlas enables
researchers to share their datasets in trainable format openly
as POSIX file URLs. This is very much required for repro-
ducible machine learning.



3.4. Arche: Experiment Management Tool

Arche enables users to deploy geospatial machine learn-
ing development workflows to the cloud. Working in con-
cert with Phobos, Arche packages and deploys user-defined
models to the cloud for training. Further, it fetches rele-
vant training data efficiently, piping analysis-ready image
and training data to experiments without the need for man-
ual data management.

With Arche, each deployment- and experiment-related
event is logged, including run-time details, experiment
hyper-parameters, and performance metrics. This enables
maximal user control and observability into the model train-
ing life-cycle, which is particularly important when models
have hardware requirements the necessitate training in the
cloud. Arche also versions each data and machine learn-
ing asset, facilitating model reproduction in production en-
vironments and allowing for iterative model improvement.
Through Arche, model training overhead and complexity is
significantly reduced. By maximizing utilization and con-
trol of our owned or cloud-leased hardware, cost can further
be reduced.

3.5. Phobos: Geospatial AI Python Library

Phobos is a utility library that serves multiple functions
during the model discovery and development phases of re-
search. First, it assists in exporting annotations from Europa
and pre-processing raw images into trainable datasets. It
also generates boilerplate code for new geospatial machine
learning projects. This boilerplate code enables researchers
to write minimal code and focus on actual model develop-
ment. This boilerplate is highly configurable and allows
training locally as well as in the cloud using multiple GPUs
and multiple nodes. This means that experimentation can
be prepared and debugged locally prior to complete training
in the cloud. This functionality is readily accessible within
python as well as from the Phobos command-line interface
(CLI).

Phobos library provides the necessary training compo-
nents to populate the project:

• grain allows users to configure their project hyperpa-
rameters and other information using a YAML file.

• transforms can be used to do image preprocessing
tasks like augmentations and satellite image specific
processing.

• loss module contains widely used losses. Currently
Phobos supports 43 different losses for image classifi-
cation, segmentation and detection tasks. It also allows
users to easily use custom defined loss functions.

• metrics module contains widely used metrics. Cur-
rently Phobos supports 21 different metrics for image

classification, segmentation and detection tasks. It also
allows users to easily use custom defined metrics.

• io provides representation for model/network input
and output structure. It supports multiple input struc-
ture for tasks like multi-sensor fusion and multiple out-
put structure for multi-task like problems. It also sup-
ports processing of raw images and annotations into
trainable datasets.

• runner is the core module that manages training it-
erations/epochs. It has all the functionalities around
multiple node and multiple GPU training and metrics
computation and logging of metrics into Arche.

3.6. Dione: Model Deployment Tool

In order to rely on a mission-critical model there must
be a clear demonstration that the model works under real-
world conditions. Dione exposes a series of tests that can
be conducted to evaluate a model’s performance under a
broad range of conditions. Through this ”test-bay” users
can benchmark their model’s performance before using it
in mission-critical environments. Dione enables model au-
diting by providing a sandbox test-bay where models devel-
oped under lab conditions can be performance benchmarked
and tested against real-world conditions. For instance, a
model designed to track infrastructure development in Pak-
istan may not be well suited for the environment and ge-
ography of Sudan. With Dione, users see what a model is
”graded” for and where there might be blind spots that the
model is not equipped to address. Dione supports following

• Benchmarking provides a means for users to under-
stand the context in which a model will perform well,
and critically, when it will not.

• Deployment of trained models as production APIs so
that they can be consumed by user for real time anal-
ysis on historical and future satellite image streams.
Model pruning [37] and quantization are used to make
inference efficient.

• Grading allows users to understand and generate re-
ports on how well a model performs with different
inputs (the spatial and spectral properties of the im-
agery),

• Ongoing Validation allows users to preemptively ad-
dress issues of model performance degradation over
time.

3.7. Titan: Analysis Dashboard

Titan attempts to take geospatial models one step fur-
ther, enabling non-technical users to deploy inference work-
flows and investigate model outputs. By mapping geospatial



machine learning operations to business needs, Titan effec-
tively bridges the gap between domain awareness and tech-
nical requirement. In the Titan platform, users can select
and deploy model APIs based on model performance and
applicability to the user’s query. Once the model API is
available, the user can interrogate imagery. Thanks to Geo-
Engine’s cluster management, models are capable of auto-
scaling to support global-scale analytical requirements.

Titan workflows supports Region-of-Interest (RoI) sub-
scriptions, enabling users to run models against dynami-
cally fetched imagery for their desired location at a regu-
lar interval (daily, weekly, monthly). Imagery is fetched via
Neso based on model and user requirements, obviating the
need for manual data acquisition for one-off or recurring
analysis. One can execute these workflows through both
the Titan UI and Titan API, while associated client libraries
enable the downstream consumption of the resulting output
data, making it trivial to bring resultant model data into ex-
ternal environments for visualization, analysis and decision-
making.

4. GeoEngine in Production

Metrics Value

Satellite Sources 21
Aerial and UAV Sources 5

Annotated Datasets 16
Annotated Pixels 95 billions
Annotated Area 695 thousands
Annotated Polygons 1.1 million

Imported Open Datasets 56
Enriched Open Datasets 6

Total Pixels 2.3 trillions
Total Area 6.95 millions
Total Polygons 120 millions

Table 2. Europa Usage Statistics.

Metrics Value

Vision Backbones 372
Loss Functions 43
Metrics 21

Problems Types 17
Total Projects 79
Total Experiments 7318
Average Experiments Per Project 43

Table 3. Phobos and Arche Statistics.

GeoEngine has been evolving steadily since its incep-
tion back in January 2021. It started with development of
minimal version of all components. Then the focus shifted
on maturing Europa, Phobos and Arche. In this section we
discuss the current status of GeoEngine and provide some
quantitative details on usage statistics of the various com-
ponents. We also discuss some projects from dataset devel-
opment to model training and deployment.

4.1. Current Status

Table 2 provides statistics of Europa. Through the ef-
forts of our annotation team we have been able to build out
16 datasets by sourcing satellite and aerial imagery from
26 different sources. In the past year we have annotated
659K square-km of area resulting in 1.1 million polygons.
This has given us 95 billions pixels worth of data across
16 different use cases involving segmentation, object detec-
tion, 3D registration, multi-sensor fusion, multi-task learn-
ing, change detection, and other non-conventional modeling
operations.

We have performed experiments on all the datasets avail-
able in our platform. Table 3 shows feature and usage statis-
tics of Phobos and Arche. All projects have been trained and
managed on Arche and were created using Phobos library.
Phobos has enabled us to rapidly iterate through catalogued
models using available loss functions and metrics to train
and in doing so judge thousands of experiments.

4.2. Open Source Datasets

We have imported 56 open source geospatial datasets in
Europa. This gave us an opportunity to validate some of
the open source datasets. We identified several mistakes
in annotations in 6 imported open source datasets namely
XView [21], OSCD [7], OSCD MultiDate [27], QFabric
[36], and FloodNet [30]. We then fixed and enriched these
datasets with more labels and better polygon boundaries.
Figure 3 shows QFabric dataset imported in Europa for val-
idation and debugging. These datasets along with other im-
ported open source datasets are freely available on our plat-
form. We plan to import all open source geospatial datasets
and keep validating and extending them for public usage.
We believe this practice will lead to higher quality densely
rich datasets that will dramatically accelerate geospatial ma-
chine learning research.

4.3. Open Source Projects

We have 79 geospatial machine learning projects that
area publicly available with all the experiments. All version
information, license and authorship data, code, datasets, and
model artifacts are available publicly. Figure 4 shows list
of experiments performed on the original version of QFab-
ric dataset. This combined with openly available datasets



Figure 3. Fixing and enriching QFabric annotations on Europa.

Figure 4. Experiments on QFabric dataset performed on Arche.

make GeoEngine a very powerful and beneficial platform
for industry and academia alike.

5. Expectations and Future Goals

This paper presents GeoEngine, a geospatial machine
learning platform that enables researchers and developers
to manage large geospatial projects. GeoEngine is quali-
tatively compared with existing MLOps platforms. Design
choices are considered based on what is lacking in existing
tools and what is required by remote sensing researchers
and developers. We also provide a walk-through exam-
ple and the current status of different components of Geo-
Engine.

The goal of this paper and the associated demo is to
introduce GeoEngine to geospatial researchers and devel-

opers in academia and industry. We are actively working
on importing all open source datasets into GeoEngine and
then validating and enriching those datsets. We are con-
tinuously building bigger datasets on varied problems and
making them open source.

On the modeling front we are introducing wide array of
backbones trained on bigger geospatial datasets. From the
feature perspective a lot of novel research is going on active
learning, concept drift, model certification, etc which might
result into new exciting features. User experience research
is being done to continuously improve ease of use. We hope
that the geospatial and computer vision community gets to
use our platform under free tier and help us evolve it into
a state-of-the-art geospatial research platform by providing
valuable feedback and critique.



References
[1] Amazon. Sagemaker. https://aws.amazon.com/sagemaker/.

4
[2] Microsoft Azure. Azure ml. https://azure.microsoft.com/en-

in/services/machine-learning/. 3, 4
[3] Microsoft Azure. Custom vision service.

https://azure.microsoft.com/en-in/services/cognitive-
services/custom-vision-service/. 3

[4] BentoML. Bentoml. https://www.bentoml.ai/. 3
[5] Google Cloud. Automl vision.

https://cloud.google.com/vision/automl. 3
[6] Google Cloud. Vision ai. https://cloud.google.com/vision. 4
[7] Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch,

and Yann Gousseau. Urban change detection for multispec-
tral earth observation using convolutional neural networks.
In IEEE International Geoscience and Remote Sensing Sym-
posium. IEEE, 2018. 7

[8] A. Dutta, A. Gupta, and A. Zissermann. VGG image anno-
tator (VIA). http://www.robots.ox.ac.uk/ vgg/software/via/,
2016. 2

[9] Matthias Feurer, Katharina Eggensperger, Stefan Falkner,
Marius Lindauer, and Frank Hutter. Auto-sklearn 2.0:
Hands-free automl via meta-learning. 2020. 3

[10] Matthias Feurer, Aaron Klein, Jost Eggensperger, Katha-
rina Springenberg, Manuel Blum, and Frank Hutter. Effi-
cient and robust automated machine learning. In Advances
in Neural Information Processing Systems 28 (2015), pages
2962–2970, 2015. 3

[11] UP42 GmbH. Up42. https://up42.com/. 3
[12] Google and Community. Kubeflow.

https://www.kubeflow.org/. 3, 4
[13] Kaiming He et al. Mask r-cnn. ICCV, pages 2980–2988,

2017. 2
[14] Dongyang Hou et al. V-rsir: An open access web-based im-

age annotation tool for remote sensing image retrieval. IEEE
Access, 7:83852–83862, 2019. 2

[15] Alex Housley et al. Seldon. https://www.seldon.io/. 3
[16] Algorithmia Inc. Algorithmia. https://algorithmia.com/. 3, 4
[17] Descartes Labs Inc. Descartes labs.

https://descarteslabs.com/. 3
[18] Scale AI Inc. Scale ai. https://scale.com/. 2
[19] Orbital Insight. Orbital insight. https://orbitalinsight.com/. 3
[20] Neptune Labs. Neptune ai. https://neptune.ai/. 3
[21] Darius Lam, Richard Kuzma, Kevin McGee, Samuel Doo-

ley, Michael Laielli, Matthew Klaric, Yaroslav Bulatov, and
Brendan McCord. xview: Objects in context in overhead
imagery. arXiv preprint arXiv:1802.07856, 2018. 7

[22] LLC LF Projects. Mlflow. https://www.mlflow.org/. 3
[23] Tomaz Logar et al. Pulsesatellite: A tool using human-ai

feedback loops for satellite image analysis in humanitarian
contexts. In AAAI, pages 13628–13629, 2020. 2

[24] Microsoft and community. Visual object tagging tool: An
electron app for building end to end object detection models
from images and videos, 2018. 2

[25] Mourad Mourafiq et al. Polyaxon.
https://github.com/polyaxon/polyaxon. 3

[26] Randal S. Olson et al. Tpot.
http://epistasislab.github.io/tpot/. 3

[27] M. Papadomanolaki, S. Verma, M. Vakalopoulou, S. Gupta,
and K. Karantzalos. Detecting urban changes with recurrent
neural networks from multitemporal sentinel-2 data. In IEEE
International Geoscience and Remote Sensing Symposium,
pages 214–217, 2019. 7

[28] Paperspace. Gradient. https://gradient.run/. 3, 4
[29] QGIS Development Team. QGIS Geographic Information

System. Open Source Geospatial Foundation, 2009. 2, 3
[30] Maryam Rahnemoonfar, Tashnim Chowdhury, Argho

Sarkar, Debvrat Varshney, Masoud Yari, and Robin Mur-
phy. Floodnet: A high resolution aerial imagery dataset
for post flood scene understanding. arXiv preprint
arXiv:2012.02951, 2020. 7

[31] CA: Environmental Systems Research Institute Redlands.
Arcgis desktop: Release 10, 2011. 2, 3

[32] Axel Aronio De Romblay. Mlbox.
https://mlbox.readthedocs.io/. 3

[33] Bryan C. Russell et al. Labelme: A database and web-based
tool for image annotation. In IJCV, 2007. 2

[34] Boris Sekachev et al. opencv/cvat: v1.1.0, 2020. 2
[35] Labelbox Development Team. Labelbox, 2022. 2
[36] Sagar Verma, Akash Panigrahi, and Siddharth Gupta. Qfab-

ric: Multi-task change detection dataset. In Earthvision
Workshop Computer Vision and Pattern Recognition (CVPR
2021), page 10, 2021. 7

[37] Sagar Verma and Jean-Christophe Pesquet. Sparsifying net-
works via subdifferential inclusion. In Proceedings of the
38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research,
pages 10542–10552, 2021. 6

[38] Weights and Inc. Biases. Weights and biases.
https://wandb.ai/. 3


