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Figure 1. Real-world old films restored by our method. First row: original video frames. Second row: the restored frames. Third row: the
restored frames after further colorization. The quality of old films is considerably enhanced after restoration.

Abstract

We present a learning-based framework, recurrent trans-

former network (RTN), to restore heavily degraded old films.

Instead of performing frame-wise restoration, our method

is based on the hidden knowledge learned from adjacent

frames that contain abundant information about the occlu-

sion, which is beneficial to restore challenging artifacts

of each frame while ensuring temporal coherency. More-

over, contrasting the representation of the current frame

and the hidden knowledge makes it possible to infer the

scratch position in an unsupervised manner, and such de-

fect localization generalizes well to real-world degradations.

To better resolve mixed degradation and compensate for

the flow estimation error during frame alignment, we pro-

pose to leverage more expressive transformer blocks for

spatial restoration. Experiments on both synthetic dataset

and real-world old films demonstrate the significant supe-

riority of the proposed RTN over existing solutions. In ad-

dition, the same framework can effectively propagate the

color from keyframes to the whole video, ultimately yielding

compelling restored films. The implementation and model

will be released at https://github.com/raywzy/Bringing-Old-

Films-Back-to-Life.

*Corresponding author.

1. Introduction

Old film classics have the lasting power to strike the reso-
nance and fantasies of audiences today. Unfortunately, many
of them have become less popular because people are no
longer used to the low resolution and disturbing artifacts
caused by the photographic film aging. Film restoration
techniques have been developed to bring these old films
back to life, which nonetheless takes painstaking efforts.
The restoration nowadays is conducted digitally, where the
artists meticulously examine each frame, manually retouch
the blemishes, fix up the flickering and finally perform the
colorization frame by frame, so repairing the entire old film
brings insurmountable expenses. Hence, people desire an al-
gorithm that performs all of these tedious tasks automatically
such that old films can be revived in modern looking.

Old films typically suffer from mixed degradations,
which, to the best of our knowledge, only a few works aim
to solve. While one can sequentially apply dedicated mod-
els for restoration, the models designed for specific tasks
cannot generalize well to real-world degradations. Recently,
higher-order degradation models [41, 48] have been pro-
posed to characterize the real-world degradations, yet these
works mainly consider the photometric degradations, such
as blurriness and noises, rather than the structured defects
(e.g., scratches, cracks, etc.) that obstruct the most in old
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films. Closely related to our work, [37] attempts to address
complex degradations in vintage photos, yet its frame-wise
processing on old films does not yield temporally consis-
tent results. The DeepRemaster [14], in comparison, targets
video restoration as well as colorization, yet this work cannot
sufficiently leverage the temporal information with explicit
frame alignment and the spatial information with long-range
correlations, thus unable to fix up large cracked areas.

In this work, we seek to unify the entire film restora-
tion tasks with a single framework in which we conduct
spatio-temporal restoration. The key insight is that most
degradations in old films, especially structured defects, are
temporally variant, i.e., the structured defects occluded in
one frame may reveal its content in successive frames. There-
fore, we propose to repair the degradations by leveraging the
spatio-temporal context rather than relying on the halluci-
nation. Specifically, we propose a bi-directional recurrent
network (Figure. 2) which aggregates the knowledge of the
scene across adjacent frames, effectively reducing the film
flickering. The hidden state of the recurrent module embeds
the representation of the scene content. After the alignment,
the restoration for a specific frame fuses such hidden repre-
sentation as it offers useful knowledge of the film content
underlying the defects. Such a recurrent scheme brings
three-fold benefits. First, the film degradations, no matter
how severe they are, can be fully restored as long as the
information is well-preserved in other frames. Second, the
explicit maintenance of the hidden knowledge ensures that
the restoration for frames is temporally consistent in a long
period. More importantly, the structured defects can be local-
ized in an unsupervised manner because these areas show a
larger discrepancy between the representation of the current
frame and the hidden state. As opposed to [37] that requires
a defect segmentation network, such defect localization is
more generalizable to real-world old film degradations.

Spatially, we need a module to account for the slight mis-
match during the frame alignment. As such, we propose to
leverage the Swin Transformer [25] — even if the hidden
representation is not accurately aligned, the interaction of
the corresponding pixels can still be modeled through self-
attention. Indeed, we observe more stabilized training of
the recurrent module due to the use of attention. Besides,
thanks to the superior expressivity, the transformer blocks
offer improved restoration ability for mixed degradations
which would be hard to resolve using a specialized Con-
vNet [34, 46]. Thus, the proposed network makes the best
of the recurrent module and transformers: the memorization
nature of recurrent modules benefits the temporal coherency
whereas the long-range modeling capability of transformers
helps the spatial restoration, which significantly outperforms
strong baselines on synthetic datasets, and yields unprece-
dented quality when restoring real old films.

Moreover, we show that the same framework can be easily

Figure 2. Pipeline overview. Our method follows a bi-directional
RNN architecture. R: Spatial restoration. F : Feature aggregation.
D: Pixel reconstruction decoder.

adapted for film colorization as well. We follow the coloriza-
tion pipeline favored by artists that only a few keyframes
undergo manual colorization, whose color is then propagated
to the rest frames. Our method performs favorably over the
leading colorization methods, effectively propagating the
color from keyframes to the whole video. As shown in Fig-
ure. 1, our method unifies the restoration and colorization,
and demonstrates the capability of reviving the old films as
if they were captured by yesterday.

2. Related Works

Image Restoration Traditional methods [2,3,7,43] mostly
use model-based optimization to restore degraded images,
where various image priors are imposed to find suitable so-
lutions. Recently, CNN-based methods have shown remark-
able capability for restoration through learning mappings
between low-quality and high-quality paired images. How-
ever, these works only focus on a single type of degradation
like denoising [27, 49, 50], super-resolution [17, 21, 42, 52],
inpainting [24, 39, 45], etc., whereas real-world images are
plagued with a compound of degradations. Although some
methods [23, 41, 48] start to improve the results of real set-
tings via constructing degradation models, they mainly focus
on unstructured defects and leave the scratches or dirt on
the old medium unfixed. Considering this issue, Wan et

al. [37, 38] propose a comprehensive solution for old photo
restoration by restoring the global and local artifacts in the
latent space. Although impressive results can be achieved,
they cannot handle the artifacts for dynamic scenes well.
Video Restoration Most existing methods explicitly esti-
mate the dense correspondence among input frames, then
reconstruct the clean target frame via CNNs for video de-
noising [6, 35], video deblurring [33, 53] or video super-
resolution [4,11,40]. However, they barely consider the real-
world mixed degradations and only have limited generation
capability. Another research line, video inpainting [8,16,44],
tries to synthesize plausible contents for the missing regions
of each frame conditioned on global information. Yet, these
works assume a fixed inpainting mask prescribed by users,
whereas the defect areas in old films are typically unknown
and temporally varying.
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Figure 3. The framework of temporal aggregation module F and spatial restoration transformer R in once recurrent forward propagation.
Backward propagation follows the same paradigm.

Old Film Restoration Traditional approaches [9, 13, 18,
32] focus on removing the structured artifacts with a detec-
tion network followed by an inpainting pipeline, but these
works rely on hand-crafted features without a semantic under-
standing of the video content, which limits their inpainting
effects. Moreover, focusing on structured defects while ig-
noring photometric degradations (e.g., blurriness and noises)
makes their overall restoration results less appealing. Subse-
quently, Iizuka et al. propose DeepRemaster [14], a fully 3D
convolutional method, to restore the old films. This method
works well on restoring the artifacts of synthetic videos, but
it fails to generalize well on restoring real-old films, espe-
cially the ones with large cracked areas because it lacks
special designs for complex mixed degradation and fails
to sufficiently leverage the long-term temporal information
from adjacent frames with 3D convolution.

3. Method

Let xT

1 ⌘ {x1,x2, . . . ,xT } be a sequence of old film
frames, where T is the video length. Our target is to
train a deep neural network to automatically restore spatial-
temporal deterioration. To comprehensively mitigate the
issues of old films, like illuminance flicker, physical struc-
tural pollution, or quality degeneration, we propose recurrent
transformer networks (RTN), whose details are elaborated
in Sec. 3.1. Since the training of RTN requires supervi-
sion, we subsequently introduce a data simulation method
in Sec. 3.2, which could convert consecutive video frames
acquired by modern cameras to corresponding degraded ver-
sions. In Sec. 3.3, we further extend the proposed framework
to reference-based video colorization. Lastly, we introduce
how to optimize RTN in Sec. 3.4.

3.1. Proposed Framework

Temporal Recurrent Network Most of the time, the
frames of old films are plagued with severe quality degra-
dation due to the improper storage environment of the film

material and the abrasion caused by mechanical protruding
parts of old-fashioned projectors. More seriously, sometimes
several frames are totally damaged where only fuzzy struc-
tures remain. Hence, it is necessary to leverage the long-term
temporal clues to remove the occurred degradations and then
render reasonable contents.

Towards this goal, we propose a recurrent architecture
for the temporal modeling of old films because of the huge
benefits of learned hidden representation and its powerful
long-term propagation ability. Specifically, for timestamp
t, we estimate the optical flows ft�1!t between two input
frames xt�1 and xt. Then the previous hidden state st�1

could be aligned to time t by warping function W . Mean-
while, we leverage a convolutional encoder E to project input
frame xt into feature map E(xt) which shares the same spa-
tial dimension with propagated state, then the newly restored
state st could be obtained as follows,

st = R" � F"(E(xt),W(st�1, ft�1!t)), (1)

where F aggregates the states between history and current
feature, and R further recovers and boosts the hidden repre-
sentation, which will be described in the next section.

Due to the irregular exposure time of early movie cameras,
the global brightness or colors may vary from one frame to
the next, which is called the flicker phenomenon. The flicker
is more challenging in our case because the content of old
film itself is flickering whereas the flicker in typical video
restoration tasks is mainly caused by frame-wise processing.
Therefore, we need to aggregate the information from frames
in a long period. To ensure that bidirectional information
contributes equally, we also learn the backward hidden state
s̃t by considering the knowledge of future frames,

s̃t = R# � F#(E(xt),W(s̃t+1, ft+1!t)). (2)

Combining the bidirectional states st and s̃t, we reconstruct
the final pixel-level output via a convolutional decoder.

yt = D(st
a s̃t) 2 RH⇥W , (3)
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where a denotes the concatenation operation along the chan-
nel dimension. To this end, we have known how to effec-
tively propagate the temporal information by an RNN, and
the overall system pipeline is shown in Figure. 2.
Spatial Transformer Restoration After blending the hid-
den state and current feature, we need another spatial net-
work to perform the frame-wise restoration. CNN has been
a de-facto standard to most video processing tasks due to
its efficient locality and excellent pattern restoration ability.
However, the same locality property does not apply to old
film restoration considering the following several aspects: 1)
Old films contain many non-spatial homogeneous degrada-
tions like dust, dirt, or scratches, which require the network
to explore long-range context information for plausible in-
painting. 2) Since old films always deteriorate excessively,
the estimated position-wise correspondence between frames
may contain errors. If we still use CNN for spatial restora-
tion, the consequent results are extremely unstable training,
which has been verified in our experiments. In such cases,
we need a mechanism to compensate for the inevitable esti-
mation errors of optical flow.

To alleviate the above-mentioned issues, we propose to
employ a powerful transformer network for spatial restora-
tion. The problem is the quadratic computational cost of
transformer architecture, which makes it difficult to model
high-dimensional data. To efficiently process old films
for high-resolution images, we adopt two modifications.
Let’s denote the fused representation derived from F(·) as
h 2 RH⇥W⇥C . First, we use strided convolutions to down-
sample the spatial resolution by a factor of 2. Second, instead
of directly modeling all the correlations among HW

4 tokens,
we follow Swin Transformer [25] and employ the window-
based attention and shifted strategy to improve the efficiency
further. More specifically, in each layer of transformer, given
one feature representation z 2 RH

2 ⇥W

2 ⇥C , we partition it
into several non-overlapping M⇥M local windows. In each
local window, we project the tokens into queries Q, keys K
and values V respectively through MLPs. Then the attention
could be computed as follows,

Att(Q,K,V) = f(QK>/
p
d+B)V, (4)

where Q,K,V 2 RM
2⇥d, f(·) is the softmax operation

and B is the learnable relative positional embedding. De-
spite higher efficiency, the local attention would inevitably
hurt the global modeling capability. To solve this problem,
we also involve the cross-window connections with a cyclic
shift. With stacking the consecutive transformer block, the
model is able to perceive global context information for bet-
ter degradation restoration and compensation of flow errors.
Learnable Guided Mask Intuitively, to restore the con-
taminants lying on frames, we could first localize the exact
mask positions of such structured defects and then perform
video inpainting. This scheme sounds reasonable, but ac-

tually infeasible here due to the following two aspects: 1)
Similar to [37], we also tried to train an extra detection
model to distinguish the structured degradations. Nonethe-
less, the generalization capability of this detection model is
extremely deficient, especially for real-world data. The un-
derlying reason is that, unlike single images, the diversities
and variations of old film contaminants are larger. Although
mixing some real-world paired data in training may alle-
viate this problem, the labeling cost is too large to afford,
especially for video data. 2) Instead of losing all pixel infor-
mation, by contrast, the dirt in one frame may be transparent,
whose preserved contents may guide us for better restoration.

Motivated by that the contaminants mostly have large mo-
tion, shape and material variations across different frames,
our solution is to learn a soft guided mask by contrasting
the hidden state and current frame features in an unsuper-
vised manner. More specifically, as shown in Figure. 3,
given warped clean state W = W(st�1, ft�1!t), which
has aggregated all available information from frame 0 to
frame t� 1, we employ a shallow network M to regress the
blending mask M conditioned on current features E(xt),

M = M(E(xt)
a W) 2 RH⇥W⇥1, (5)

where M(·) is composed of several convolutions and sig-
moid function. With the learned soft mask, we aggregate the
temporal priors and current frames by the following method,

F (E (xt) ,W) = E (xt) ·M+W · (1�M). (6)

3.2. Video Degradation Model

To train the RTN, designing a realistic video degradation
model to generate paired data is essential. We achieve this
target by involving the following degradation procedures.
Contaminant Blending To model the scratches, dirt or
dust of old films, we collect 1k+ texture templates from the
Internet, which are further augmented with random rotation,
local cropping, contrast change, and morphological opera-
tions. Then we use addition, subtract and multiply blending
modes with various levels of opacity2 [0.6, 1.0] to combine
the scratch textures with the natural frames.
Quality Degradation As mentioned before, most old
films suffer from blurring, noise and unsharpness due to
long-term storage and usage. Hence, we also downgrade
the overall video qualities from these aspects. 1) Gaussian
noise and speckle noise with � 2 [5, 50]. 2) Isotropic and
anisotropic Gaussian blur kernels with covariance matrix

⌃ = R


�2
1 0
0 �2

2

�
RT , where R denotes the rotation ma-

trix whose rotation angle ✓ 2 [0,⇡], and �1,�2 2 (0, 1) con-
trol the standard deviation of two principal axes respectively.
3) Random downsampling and upsampling with different
interpolation methods. 4) JPEG compression whose level
is in the range of [40, 100]. 5) Random color jitter through
adjusting the brightness2 [0.8, 1.2] and contrast2 [0.9, 1.0].
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Figure 4. Examples of rendered video frames with degradation.
Temporal Frames Rendering Unlike the degradation of
a single photo, where we could inject these defects randomly,
one observation of old films is a similar degradation pattern
is shared across frames, which makes sense since most of
the frames of one video potentially experience the same
mechanical abrasion. Hence, we first define a set of template
parameters for each video. Then we further apply predefined
parameters with slight perturbations on consecutive temporal
frames to achieve more realistic rendering. The synthetic
data example is shown in Figure. 4.

3.3. Video Colorization

To make the restored old films more vivid, an effective
solution is to colorize the videos further. Due to the ill-posed
property of colorization, the automatic algorithms always
struggle to generate appealing results [22]. A more practical
scenario is, given one frame which has been colorized, how
to propagate the known information to all the rest frames,
meanwhile preserving the spatial-temporal coherence. Thus
we further extend our RTN to the video colorization task un-
der this setting, with only several minor modifications. First,
we adjust the input color space from RGB to LAB, and only
predict the chrominance channels given black-white frames.
Second, to further prevent the color fading of long-term
propagation, following [47] we search the correspondence
between two frames via comparing the semantic similarity
to get a coarse colorization result. Then the coarse AB chan-
nel will be concatenated with gray input and sent into the
RTN. With the temporal propagation and spatial refinement
capability of RTN, the reference-based colorization could
achieve more stable performance.

3.4. Learning

The ultimate target of our method is to generate temporal-
coherent, higher-quality and visual-pleasant videos given
consecutive frames from old films. To accomplish these
objectives, we apply the following losses.
L1 Loss The pixel-wise reconstruction loss L1 penal-
izes the difference between restored results and GT frames.
Specifically, let ŷt denote target clean video frame and yt

denote the generated frame by our method at time t, we have

L1 =
1

T

TX

t=1

kyt � ŷtk1 . (7)

Perceptual Loss To further improve the visual quality of
the restored frames, we also adopt the perceptual loss [15]:

Lperc =
1

T

TX

t=1

X

p2P

!p

���yt

p
� �ŷt

p

�� , (8)

where �yt

p
and �ŷt

p
denote the activation from the pth layer

of pretrained VGG19 network. P denotes the selected set
(relu2 2 to relu5 2) of layers to compute the perceptual
loss, and !p controls the importance of different layers. The
loss is accumulated over all frames in the generated video.
Spatial-Temporal Adversarial Loss Adversarial train-
ing, whose main principle behind it is to process a zero-sum
game between a generator and a discriminator, has shown
promising results in many tasks [10, 37]. For the old film
restoration task, we adopt the Temporal-PatchGAN as sug-
gested in [5] to enhance both perceptual quality and spatial-
temporal coherence. Specifically, we employ a discriminator
D composed of 3D convolutions to distinguish each spatial-
temporal feature as real or fake by hinge loss,

LD = Ey⇠Y [ReLU(1�D(y))]+Eŷ⇠Ŷ
[ReLU (1 +D(ŷ))] ,

(9)
where Y and Ŷ are the restored frames of RTN and clean
video frames respectively. Then we use RTN to fool the
discriminator by:

LG = �Ey⇠Y [D(y)]. (10)

Full Objective Combining all the above losses, the the
overall objective we aim to optimize is

Ltotal = �1L1 + �pLperc + �GLG. (11)

We empirically set the weights for different losses as: �1 =
1.0, �p = 1.0 and �G = 0.01. For the video colorization
task, we calculate the L1 loss in LAB color space and use a
differentiable operator to convert LAB space to RGB space
to compute the perceptual loss and adversarial loss.

4. Experiments

4.1. Implementation

We train the proposed RTN for 20 epochs using the
ADAM optimizer [19] with (�1,�2) = (0.9, 0.99). The
learning rate is set to 2e-4 for both generators and discrimi-
nators in the first 20 epochs, with linear decay to zero there-
after. We employ the off-the-shelf method RAFT [36] for
flow estimation, whose parameters are fixed during the first
5 epochs, and then jointly optimized with other modules
together using lr = 2.5e-5. During optimization, we ran-
domly crop 256 patches from REDS [30] dataset and apply
the proposed video degradation model on the fly. The batch
size is set to 4 and the whole training takes ⇠ 2 days on 4
RTX 2080Ti GPUs.
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Method PSNR" SSIM" LPIPS# Ewarp #
Input 19.982 0.699 0.456 0.0167
Old Photo+TS [20, 37] 21.962 0.768 0.315 0.0041
BasicVSR [4] 23.363 0.808 0.328 0.0053
Video Swin [26] 22.758 0.774 0.319 0.0061
DeepRemaster [14] 20.634 0.728 0.427 0.0066
DeOldify [1] 20.051 0.708 0.436 0.0149
Ours 24.465 0.840 0.192 0.0019

Ours w/o bi-direction 24.251 0.831 0.207 0.0036
Ours w/o soft mask 24.297 0.827 0.243 0.0025
Ours w/o transformer 24.342 0.830 0.229 0.0023

Table 1. Quantitative restoration comparisons on synthetic dataset.
Our method achieves better performance on all metrics.

Method PSNR" SSIM" LPIPS# FID #
Input 27.100 0.945 0.189 110.559
DeOldify⇤ [1] 26.271 0.937 0.149 59.686
DeepExemplar [47] 30.064 0.952 0.091 37.971
DeepRemaster [14] 29.253 0.950 0.127 40.385
Ours 32.838 0.977 0.065 31.992

Table 2. Quantitative colorization comparisons on REDS [30]
dataset. DeOldify⇤: Non-reference based video colorization.

4.2. Setup

Baseline Methods We conduct comprehensive experi-
ments by comparing RTN with the following approaches:

• Old Photo Restoration [37] + TS [20]: We adopt a state-
of-the-art old photo restoration [37] algorithm for per-
frame processing and generate coherent video through
blind temporal smoothing [20].

• BasicVSR [4]: An advanced RNN-based method, tailored
for high-quality video super-resolution.

• Video Swin [26]: A fully transformer-based architecture,
which performs attention mechanisms in both spatial and
temporal dimensions to capture global correlations.

• DeepRemaster [14] is a state-of-the-art old film restoration
method using 3D convolutions, which also supports video
colorization given one referenced frame.

• DeOldify [1]: An open-source tool for restoring old films.

For fair comparison, we re-train BasicVSR [4] and Video

Swin [26] from scratch, and fine-tune DeepRemaster [14]
using the same training data as ours. For Old Photo Restora-

tion [37] and professional restoration tool DeOldify [1], we
directly utilize their pre-trained models for inference.
Evaluation Metrics 1) We employ peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) to
measure the low-level discrepancy between the restored out-
put and the ground truth for synthetic data. 2) To better
match the judgment of human perception, we also calculate
the learned perceptual image patch similarity (LPIPS) [51].
3) We involve the temporal warping error Ewarp follow-
ing [20] to measure the temporal consistency of the restored
frames. 4) Since the restoration ground truth for old films

Method NIQE# BRISQUE#
Input 18.9907 53.6776
Old Photo+TS [20, 37] 17.5110 48.1470
BasicVSR [4] 17.6842 62.7381
Video Swin [26] 18.9462 52.4758
DeepRemaster [14] 17.9697 49.9638
DeOldify [1] 17.9062 51.2813
Ours 15.4254 42.1422

Table 3. Quantitative restoration comparisons on real old films.

is unavailable, two non-reference frame quality assessment
metrics NIQE [29] and BRISQUE [28] are used to evalu-
ate the algorithm performance on real-world data. 5) For
the video colorization task, we also adopt Fréchet Inception
Distance (FID) [12] to measure the semantic discrepancy
between the colorized output and the natural colorful frames.

4.3. Results

Quantitative Comparisons We report quantitative re-
sults on both synthetic dataset and real-world old films. We
create the synthetic data by blending random degradations
with clean frames of DAVIS [31] dataset, which contains
large camera motions and scene diversities. As shown in
Table. 1, among these baselines, BasicVSR [4] obtains good
PSNR and SSIM performances. However, because video
SR mainly considers unstructured degradation, the visual
restored results become over-smooth while directly training
with various defects, which is also indicated by the descent
of LPIPS. Moreover, although per-frame old photo restora-
tion [37] followed by temporal smoothing [20] pipeline has
acceptable results on LPIPS and Ewarp, the PSNR and SSIM
inevitably decrease without leveraging the temporal clues
well. By contrast, our method outperforms the baselines on
all metrics. The same conclusion still holds on real-world
experiments, where we collect 63 old films from the internet
for evaluation. In Table. 3, the NIQE and BRISQUE results
of our method are significantly better than others, which
demonstrate the powerful ability of RTN to restore old films.
Qualitative Comparisons We further conduct qualitative
comparisons in Figure. 5. As we can see, the old photo
restoration method [37] only resolves a small proportion of
the structured degradations since this method is designed for
image restoration and does not leverage temporal informa-
tion. Besides, DeOldify [1] could remove some noise but
leave many other degradations unsolved. VideoSwin [26] re-
covers some textures through exploring the spatial-temporal
correlations but struggles to remove the existing contami-
nants well. DeepRemaster [14], as the state-of-the-art old
film restoration method, is capable of handling slight dust
and scratches. Nonetheless, their method could not render
reasonable contents while meeting severe abrasion like the
first and the last columns of Figure. 5, meanwhile failing to
produce sharp textures given blurry frames. With the elab-
orately designed modules, the restored videos by our RTN
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Figure 5. Qualitative restoration comparisons on real-world old films. Our method could handle complicated degradations of old films.

effectively overcome these issues. Please refer to the supple-
mentary material and video demo for more comparisons.
Colorization Comparisons In this section, we show the
video colorization comparisons with other baselines. The
gray version of the subset of REDS [30] is adopted as the
test set. For each video, we predict the colors of the first

50 frames by taking the 100th frame as the colorization
reference. We choose two state-of-the-art reference-based
methods DeepExemplar [47] and DeepRemaster [14], and
one old film colorization tool DeOldify [1] as baselines.
Quantitatively, although DeepRemaster [14] leverage the
reference image, perceptual metrics like LPIPS and FID in
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Input [1]⇤ [14] [47] Ours
Figure 6. Qualitative video colorization comparisons. [1]⇤: Col-
orization without reference frame.

Table. 2 are not satisfactory. DeepExemplar demonstrates
better performance compared with others, but color bleeding
frequently appears like in Figure. 6, which hurts the coloriza-
tion quality a lot. Although our method is not specifically
designed for video colorization, the combination of spatial
transformer and temporal RNN solves this task well.

4.4. Ablation Study

Temporal Bi-directional RNN We first consider chang-
ing the bi-directional RNNs into a unidirectional setting.
To ensure the fairness of this setting, we further increase
the parameter number of other networks to match the bi-
directional setting. Even so, the temporal consistency still
vastly downgrades as shown in Table. 1, which demonstrates
the importance of perceiving both past and future temporal
information while restoring the flicker artifact of old films.
Learnable Guided Mask Next, we replace the learnable
soft mask with a direct channel-wise concatenation opera-
tion for the aggregation of the previous hidden state and the
current frame feature to show its significance. Without such
crucial spatial clues, the network could not distinguish the
original content and contaminant artifacts well, as shown
in Figure. 8, thereby failing to restore the structured degra-
dations, which is consistent with the performance drop on
the SSIM metric in Table. 1. Moreover, we also visualize
the learned soft mask of real-world old films in Figure. 7.
Although this structured degradation is never seen in the
training and occupies a large portion, the predicted mask is
very accurate and effective to advance restoration.
Spatial Transformer Last but not least, we employ a CNN-
based architecture instead of transformer layers to perform
the spatial restoration. In this setting, the training becomes
very unstable due to the underlying error of flow prediction
and limited receptive field of convolutions. Therefore, we
pick the best checkpoint ahead of the occurrence of gradient
explosion for evaluation. Compared with the baseline, which
uses a unidirectional network and transformer, although the
low-level metrics like PSNR and SSIM maintain similar
performance, the perceptual score, i.e. LPIPS, drops a lot
due to defective spatial restoration. Besides, we also show
its qualitative result in Figure. 8, where the scratches are not

Input Mask Output
Figure 7. Visualization of the learned guidance mask. The soft
mask could effectively help resolve the structured degradations.

Input w/o learnable mask w/o transformer

w/o bi-direction Full model GT
Figure 8. Visual results of each ablation study.

handled well without the help of the spatial transformer even
though this baseline is contaminant-aware.

5. Conclusion and Limitation

In this paper, we present a recurrent transformer network
to solve the mixed degradations of old films by leveraging the
temporal modeling of recurrent neural network and the spa-
tial modeling of transformers. Extensive visual comparisons
and quantitative evaluation demonstrate that our approach
performs well on both synthetic data and real old films. We
also extend the RTN to achieve better reference-based video
colorization compared with prior baselines.

However, there are still some limitations waiting to be
resolved: a) The model may fail to distinguish the contam-
inant from the frame content due to their ambiguity like
the black lines, which are amplified since they are wrongly
recognized as the smoke of the scene; b) GAN may synthe-
size inadequate high-frequency details and artifacts; c) It is
challenging to restore severely degraded frames with barely
recognizable content. We will explore these challenges in
the future work.

(a) (b) (c)
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