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Abstract

In visual search, the gallery set could be incrementally
growing and added to the database in practice. However,
existing methods rely on the model trained on the entire
dataset, ignoring the continual updating of the model. Be-
sides, as the model updates, the new model must re-extract
features for the entire gallery set to maintain compatible
feature space, imposing a high computational cost for a
large gallery set. To address the issues of long-term visual
search, we introduce a continual learning (CL) approach
that can handle the incrementally growing gallery set with
backward embedding consistency. We enforce the losses of
inter-session data coherence, neighbor-session model co-
herence, and intra-session discrimination to conduct a con-
tinual learner. In addition to the disjoint setup, our CL so-
lution also tackles the situation of increasingly adding new
classes for the blurry boundary without assuming all cat-
egories known in the beginning and during model update.
To our knowledge, this is the first CL method both tackling
the issue of backward-consistent feature embedding and al-
lowing novel classes to occur in the new sessions. Extensive
experiments on various benchmarks show the efficacy of our
approach under a wide range of setups1.

1. Introduction
Continual learning (CL) aims to learn new tasks while

keeping the functions learned from the old sessions. The

technology has been rapidly evolving; nevertheless, the ac-

tive research area in CL focuses on image classification but

ignores the demand for image retrieval (aka visual search).

For obtaining powerful feature representations in image re-

trieval, most works [37,44,57,67] still require a model to be

trained on an entire dataset simultaneously instead of in an

incremental manner. However, a practical visual search sys-

tem should be capable of continually learning from new ma-

terials while consolidating the old knowledge to cope with

the data accumulated with time.

* indicates corresponding author.
1Code: https://github.com/ivclab/CVS
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Figure 1. Illustration of the proposed approach with the general
incremental setup. Our solution allows the new gallery set of seen

and unseen classes freely and incrementally added to the database

with respect to the widely adopted disjoint and the recent blurry
setups. In addition, it also considers backward compatible embed-

ding for a session sequence. This avoids the gallery embeddings of

old and new sessions from being separated in incompatible feature

spaces. Thus, our approach is more practical for real retrieval ap-

plications. Semi-transparent icons represent the data points from

the previous sessions collected so far.

As data grows, despite updating the model by simply

fine-tuning, many observations [11, 69] reveal that catas-

trophic forgetting happens. A series of strategies have been

developed in CL to address the problem [11, 29, 43]. The

methods can make a single deep model capable of updating

itself successively while avoiding disappointing overall per-

formance. However, there are still several ongoing issues.

First, many works in CL emphasize the disjoint setup

where the data from the old class will not show during train-

ing in a new task (or session). The task boundary arising

over classes restricts the usage of CL since many retrieval

systems need to collect extra data of the seen labels for im-

proving their models in new sessions. Although recent stud-

ies (e.g. [2,4]) allow the class overlapping among the tasks,

the blurry setup in these works assumes that all the class la-

bels in the future sessions are pre-given in advance; only the

instance ratios in the classes vary with the session (Fig. 1).

This kind of data scenario is impractical for most visual-

search applications (e.g., in an e-commerce system, the new
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product arrives over season). Moving toward a more gen-

eral setup is desirable to fulfill real-world scenarios.

Second, a model updated from new data will deploy on-

line in retrieval. An essential step is to re-extract the feature

embedding from previous gallery images to maintain a con-

sistent feature space on the pairwise distance measurement.

For visual search on large-scale data, feature re-extraction

is computationally intensive. Thus, an ideal design for con-

tinual visual search is that an updated model only extracts

features for incoming gallery data while keeping the previ-

ously generated feature representations unchanged. How-

ever, it leads to the further difficulty of pairwise similarity

measurement in uneven feature spaces. Motivated by this,

we argue that current CL studies lack consideration for fea-

ture compatibility between the ongoing and previous data.

Hence, designing a CL algorithm with backward consistent

feature embedding is demanded.

To address the above issues, we introduce a novel

CL approach, namely, CVS (Continual-learner for Visual

Search), for a generally incremental setup of visual search.

CVS can learn effective feature representations with back-

ward consistency. For learning new knowledge, our learner

obtains discriminating features for the current task. We

introduce a cross-task gallery embedding consistency con-

straint that keeps the currently learned features compatible

with the representatives from the obsolete gallery features.

For consolidating old knowledge while keeping feature con-

sistency, we develop a metric-based knowledge distillation

to draw together the embedding from the different feature

spaces. By coordinating the components, CVS can achieve

continual visual search with backward-compatible feature

embedding effectively. Also, we conduct extensive exper-

iments under various incremental data distributions, espe-

cially for the general-incremental setup, to validate the ef-

fectiveness of CVS. The main characteristics include:

General Incremental Setup: We introduce a new CL sce-

nario to simulate real-world visual search application sys-

tems. It includes the previous disjoint and blurry setups as

special cases and tackles the general setting that the classes

in a coming session can be either seen or unseen before.

Backward Consistent Feature Space Learning: Our

learner can learn discriminative features for unseen classes.

It can also maintain the distance metric learned effective for

the seen classes in both new and old sessions, where the old-

session features can be kept unchanged without the need to

be re-extracted every time in a visual search system.

Extensive experiments on multiple datasets under incre-

mental data distributions show that our method achieves

state-of-the-art results. Fig. 2 shows our system diagram.

2. Related Work
We briefly review the recent progress of image retrieval

in Section 2.1. We then summarize the CL and describe its
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Figure 2. Overview of the proposed approach for CL in General-

Incremental setup with backward embedding consistency for a

long-term learning. We enforce the three losses for a contin-

ual learner: intra-session discrimination loss to learn discrimina-

tive representation with mainly the current-session data, neighbor-

session model coherence loss to regulate the current model with

the previous-session model for backward compatible embedding,

and inter-session data coherence with mainly the current-session

data and replayed embedding of all previous sessions for long-

term embedding consistency. Semi-transparent icons represent the

data points from the previous sessions collected so far. Note that

we omit the replayed data to simplify the illustration.

challenge on similarity-based visual search in Section 2.2.

2.1. Image Retrieval

Image retrieval ranks the gallery images in order given

the query image. Previous studies rely on either descriptors

by local feature aggregation [23, 39, 49] or low-level visual

clues [5,35,62] and then perform a nearest neighbor search.

The modern way utilizes embeddings from the neural net-

work (i.e., neural mapping) instead because the learnable

descriptors show superior accuracy [10, 36, 45, 50, 51, 67]

and compact storage [7, 30, 64, 65]. To derive the neural

mapping, metric learning optimizes the model in a pair-

wise manner or pointwise manner. Pairwise methods de-

rive the discriminating space where positive pairs become

closer and negative pairs repel each other. A fair bench-

mark [44] shows the state-of-the-art results of the pairwise

method. However, an issue is that the complexity of the

sample mining grows in magnitude when the number of

samples in a group is beyond two, (e.g., triplet loss [45] and

quadruplet [10]). Even though many studies [17, 57–60]

delve into the mining issue, sampling the informative pairs

is intrinsically hard without clear indicators. On the other

hand, pointwise methods [25, 36, 41, 52, 55, 67] treat the

optimization as data points against representative samples

per class. Instead of meticulous mining, the representative

samples could be learnable proxies [25, 36, 41, 52] or ran-

domly sampled points [55, 67], bringing faster convergence

for training without pairwise comparisons. For example,
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NSoftmax [67] follows the classification training paradigm

and applies L2 normalization to the embedding layer out-

put for image retrieval. Such a minor modification yields

competitive results compared with pairwise methods in the

benchmark [44]. Our method is easily integrated with the

strategies mentioned above. For simple and elegant pur-

poses, we optimize with NSoftmax.

Backward Consistency of Feature Embedding: Despite

the proliferation of different methods in image retrieval,

most work ignores the demand for backward consistency,

i.e., making previously frozen features comparable with the

newly extracted ones in the gallery set. Feature consistent

learning contributes to this goal in two ways. The first line

aims to reduce the effort of feature re-extraction. R³AN [9]

projects the old features into the new feature space by

one-side transform; CMC [56] bridges the multiple feature

spaces via a lightweight transformation module. However,

they still need re-extraction, which becomes impractical for

large galleries and long sessions. The second line maintains

the backward consistency without any feature re-extraction.

BCT [48] constrains the current feature space by simultane-

ously enabling gradient flow from both the old and the new

classifier. However, it requires the entire previous data seen

so far for finetuning and hence is incapable of handling the

long session learning scenario. Moreover, the gallery set is

assumed fixed in the experimental settings of BCT without

addressing the critical issue that the gallery set could be in-

creasingly enlarged in practice. Unlike BCT, our method

imposes constraints on both the inter-session feature em-

beddings and the neighbor-session model; hence it gains a

great improvement in backward consistency. Besides, we

examine an at most 10-session scenario (in contrast to only

3 sessions at most in BCT’s experiments) for a reality check

on the backward feature compatibility.

2.2. Continual Learning

CL aims for a single learner that can sequentially update

knowledge without forgetting the previously learned infor-

mation. The existing works [20,53] can be categorized into

task-incremental and class-incremental CL, where the for-

mer assumes the task index presented at the inference time

while the later assumes a task-agnostic scenario during in-

ference. Most works assume the categories in the successive

tasks (i.e., sessions) to be disjoint to each other.

To avoid overfitting to the current session,

regularization-based methods [8, 26, 46, 66] impose

constraints on change of the critical neural weights,

distillation-based methods [13, 14, 29, 42, 68] transfer the

knowledge from the previous learner to the current one,

replay-based methods [4,6,15,31,43] revisit a small amount

of old data to prevent forgetting, and isolation-based meth-

ods [21,33,34,47] assign the subnetwork capacity per task.

Though an automatic task selector [1] can help extend an

isolation-based method to class-incremental, it still requires

the disjoint assumption of the classes among tasks. To

break the disjoint-class limitation in CL, recent studies

propose the blurry setup (i.e., class-overlapping [2, 4, 40]).

However, it requires the presentation of all predefined

classes across subsequent sessions, and is thus still

impractical for real-world visual search applications.

Besides, most works focus on the classification prob-

lem, ignoring the demand for image retrieval. MMD [11]

studies retrieval-based CL in a distillation manner. By nar-

rowing down the mean difference between two distributions

in reproducing kernel space, the current model distills the

knowledge of the old one. However, the method ignores the

backward-compatible needs for retrieval; hence the embed-

ding have to be re-extracted for the gallery data as the task

grows in CL. It is thus impractical for a realistic system.

3. Continual Learner for Visual Search (CVS)
Consider a CL retrieval problem with J sessions. In ses-

sion j ∈ {1 · · · J}, a neural-network model is learned and

let fj be the mapping from the input image to the feature

embedding of the model. During CL training, the backbone

feature extractor fj+1 is initialized from fj , the neural map-

ping obtained immediately before the current session. To

fulfill the requirement in our General-Incremental setup, the

gallery set is incrementally extensible with the newly added

embedding. Specifically, let Gj be the images newly added

in time session j and gj be the feature embedding obtained

for Gj (via fj). The embedding will be added to the gallery

set up to the j-th session, g1:j =
⋃j

i=1 gi. The feature

embedding cumulatively saved (i.e., g1:j) then serve as the

gallery set for retrieval for future sessions l(> j). In addi-

tion, to learn fj+1 capable of handling the new-session data

containing possibly both existing and novel classes and also

maintaining the performance on all previous-session data,

we conduct the following loss terms in our CVS approach,

namely, inter-session term of data coherence (Ld
{1:j};j+1),

neighbor-session term for model coherence (Lm
j;j+1), and

intra-session term for discrimination (Lc
j+1).

3.1. Inter-session data coherence

Each training sample of the previous-session data has

been already provided with an embedding by one of the old

neural mappings, f1, · · · , fj . To fulfill the condition of not

re-extracting the embedding for updating the gallery set ev-

ery time, they are fixed and kept invariant once having been

built upon a session k ∈ {1 · · · j}. That is, after establishing

the embedding, they can be used for a series of future tasks

in CL. Besides hoping to un-forget the classification power

of known labels, we further need to un-forget the capability

of retrieval based on the embedding already built.

Replayed Embedding Together with Data: Replayed data

are widely adopted to avert forgetting in CL. To resolve stor-
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age efficiency and avoid training on all data, a small portion

of the data from sessions 1 to j can be stored and replayed

for a joint training with the current data in session j + 1.

In our work, the old data embedding have been extracted

as gi = fi{Gi}|ji=1. Besides replaying the data, we re-

play the embedding to facilitate CL, which is more efficient

with learning. We call the technique replayed embedding,

where a small portion of features sampled from the embed-

ding space are replayed for training.

The deep model updated in the current session j + 1
should be confined to the stored embedding of seen classes.

Therefore, the goal of our learner is to train fj+1 to extract

features from Gj+1 (gj+1 = fj+1{Gj+1}) while keeping

the existing obsolete features g1:j unchanged. However, the

embedding are established from different neural mappings

varying with sessions. The sessions have separated distribu-

tions and could be diverse for a long sequence of sessions.

As different feature spaces are not necessarily comparable,

to avoid an over-fitting to individual sessions, we aggregate

the embedding across the previous sessions by taking the

expectations as follows.

Ec = 1

j

j∑
i=1

ξ(gic), c ∈ C(i), (1)

where C(i) is the set of class indices appearing in session i,
gic is the set of embedding extracted from the data of class

c in Gi, and ξ(·) denotes the expectation operator. The loss

enforcing inter-session data coherence is defined as follows:

LdI

{1:j};j+1 =
∑

c∈Πj+1

∑
xi∈c

‖fj+1(xi)− Ec)‖22 , (2)

where Πj+1 =
⋃j

i=1 C(i) ∩ C(j + 1) is the indices inter-

section between the classes in the current and all previous

sessions; xi denotes the data in the current session (j + 1).

However, the current-session classes may not contain

all the previous classes in our General Incremental setup.

E.g., for the special case of Disjoint setup, there is no old

class sample in the incoming sessions at all. Hence, be-

sides employing the replayed embedding Ec (in Πj+1), we

use the replayed data for the old classes Γj+1 =
⋃j

i=1 C(i)
too. Without loss of generality, we use the exemplar mining

technique iCaRL [43] to conduct a small portion of data for

replay, which searches random neighbors around the mean

per class. The replayed embedding and data in Γj+1 are

co-used as follows:

LdO

{1:j};j+1 =
∑

c∈Γj+1

∑
x̃i∈c

‖fj+1(x̃i)− Ec)‖22 , (3)

where x̃i denotes the replayed data. Then, the inter-session

data coherence loss is a combination of Eqs. 2 and 3, which

helps maintain the backward feature consistency:

Ld{1:j};j+1 = (LdI

{1:j};j+1 + LdO

{1:j};j+1)/n, (4)

where n is the mini-batch size.

The loss combines both the replayed embedding and data

to maintain the coherence of the feature spaces of sessions

1, · · · , (j + 1). Even the aggregated embedding provide

strong constraints, as the freedom of neural networks is of-

ten large in the capacity, the learner can still easily adapt

the model from fj to fj+1. In our experience, a nice us-

age of this precedent constraint can help build an effective

CL learner because the fixed embedding can act as attrac-

tors to regularize the deep model training. Our approach

only needs |Γj+1| replayed embedding, and we set a ratio

of around 5% samples of the total data in sessions 1 : J as a

fixed budget shared by all sessions up to now in the replayed

data. Since the loss establishes the connection between ses-

sion (j + 1) to all previous ones (1 : j), unlike BCT [48]

employing only the inter relationship between the current

session (j+1) and that immediately before the session (j),
our approach can effectively enhance the backward feature

consistency for long-term sessions.

Besides, our replayed-embedding solution coincides

with the idea in the cross-batch learning [58,61], where pre-

viously learned embedding in the past mini-batches guide

the training in the current one. The approaches have been

demonstrated effective to boost retrieval performance. Our

approach is analogously a cross-session learning method. In

the experiments, we show the efficacy of our cross-session

CL solution and make an in-depth analysis on the results.

3.2. Neighbor-session model coherence

In the above, we utilize the replayed materials of seen

classes in all previous sessions and the current session data

for training. This section develops the loss using mainly

the current-session data while co-using the current model

(fj+1) and last-time model (fj) in training. It enforces the

neighbor-session model coherence.

The loss is designed using the distillation principle,

where the mapping fl (learned and fixed) serves as the

teacher model to guide the training of the student fl+1.

Unlike previous studies of distillation techniques that are

mainly for classification [18], we conduct a distillation-

based loss to regulate the metric learning of fj+1 from the

metric space of fj based on the triplet loss to better fit the

nature of CL on retrieval. In a triple of (xa, xp, xn) for an

anchor, a positive sample, and a negative sample respec-

tively are selected from mainly the current-session data.

The purpose of training is to shrink the distance between

xa and xp while enlarging that between xa and xn.

To distill knowledge from the embedding space already

built from the previous session j, we generate the embed-

ding of positive and negative samples using fj(·) and obtain

fj(xp) and fj(xn), respectively. Then, we use the teacher-

generated embedding to guide the training of the student an-

chor fj+1(xa). The current session data are fed into the cur-
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rent and previous models to constrain the embedding distri-

butions produced by fj+1 and fj , respectively. The loss

conducted can thus enforce the model coherence between

neighbor sessions.

Besides, we co-use xa and xp via setting xp = xa.

Hence, we conduct a 2-samples-3-embedding triplet-loss

strategy where the triplet embedding are fj+1(xa), fj(xa),
and fj(xn). This is because it can facilitate drawing the em-

bedding distributions of the student and the teacher based

on the same xa for comparison. In the meantime, it also

saves the computation of choosing positive samples and en-

forces efficient sampling. Recent studies have shown that

mining easy positive samples (i.e., similar positives) ben-

efits to metric learning [60]. Our approach directly forms

the positive sample’s embedding from the anchor, which

eliminates the positive mining effort in [60] during pair

sampling. For the negative, we follow the hardest nega-

tive mining principle [17] to pick the embedding. Denote

dj+1
j (x, y) = ‖fj+1(x) − fj(y)‖22. The neighbor-session-

model-coherence loss is written as:

Lm
j;j+1 =

1

n

∑
xa

[
dj+1
j (xa, xa)− dj+1

j (xa, xn) +m
]
+
,

(5)

where m is the margin set as 0.1 by default. Besides,

fj+1(x) and fj(x) are l2-normalized to alleviate the issue of

forgetting according to previous studies [19, 32]. This loss

helps restrict the behavior of the updated model coherent to

the previous one.

3.3. Intra-session discrimination

Recent studies show that classification is a strong base-

line for learning effective feature embedding (if an appro-

priate l2-norm normalization layer is added) [67]. Without

loss of generality, we employ the method to establish the

retrieval capability of fj+1 using mainly the current-session

data. The loss for intra-session discrimination is

Lc
j+1 =

1

n

n∑
i=1

−log(
exp(wT

yi
fj+1(xi)/T )∑

k exp(w
T
k fj+1(xi)/T )

), (6)

where (xi, yi)|ni=1 are the data and labels, w denote the l2-

normalized weight of the classification layer, fj+1(xi) is

the l2-normalized embedding extracted for xi, and T is the

temperature term set as 0.05 by default.

Total Loss. The final learning objective is as follows:

min
fj+1

L = Lc
j+1 + αLm

j;j+1 + βLd{1:j};j+1. (7)

By default, we set α to 10 and β to 1 empirically in our

experiments, and cosine distance is used for retrieval in this

work. Only the first term Lc
1 is used in session 1. Then,

all three terms are used in sessions 2 to J . Fig. 2 gives an

illustration of our approach.

In sum, to fulfill the General Incremental setup, the first

term Lc
j+1 provides a fundamental retrieval ability of the

current session (j + 1). The second term Lm
j;j+1 makes the

neural mapping fj+1 close to fj based on both the novel-

and seen-label data in the current session. It enforces the

prediction to mimic the behavior of the previous feature

extractor. The third term Ld{1:j};j+1 enforces the back-

ward feature consistency from the replayed embedding and

data of all sessions (1 to j) and a joint training with the

current-session data based only on the labels seen before

(i.e.,
⋃j

i=1 C(i)). It helps bias the feature space to align

with the one obsolete gallery features lie in. By joining the

three losses, our CVS approach can handle the General In-

cremental setup and its special cases (Blurry, Disjoint) well.

4. Experiments
We conduct extensive experiments across various

datasets under different data distributions. Five datasets are

used, including two coarse-grained datatests, CIFAR100

and Tiny ImageNet, and three fine-grained datasets, Stan-

ford Dog, iNaturalist 2017, and Product-10K. We use CI-

FAR100 for fundamental study and then Tiny Imagenet on

a longer sequence of sessions.

The datasets are summarized as follows. CIFAR100
[27] has 100 categories; each owns 500 32× 32 images for

training and 100 images for testing. Tiny ImageNet [28]

has 100,000 training and 10,000 testing images (of size

64 × 64 sampled from the 200 classes from ImageNet.

Due to its compact size and various categories, we con-

duct a long sequence learning on it. Stanford Dog [24]

contains 120 dog breed-level categories picked from Ima-

geNet, including 8,580 images for testing and 12,000 im-

ages for training. For the training split, each class has 100

images. iNaturalist 2017 [54] is a large-scale long-tailed

image retrieval dataset with 5,089 species-level categories.

We sample 527 images per class for the 200 classes; each

contains at least 527 samples to avoid very small classes

and unbalanced data before partition. We call it iNat-M
in this work. Product-10K [3] is an ultrafine-grained long-

tailed dataset covering the top-9691 frequently bought prod-

uct images from a real e-commerce system; Each class’s im-

ages contain diverse appearances of the specific product by

collecting offline customer-taken and online in-shop pho-

tos. We remove the category with fewer than 20 images in

the training set. We then construct the train-test split based

on the original training set because the official testing data

do no offer labels. Finally, there are 2,743 classes. We call

it Product-M in this work. Fine-grained images are more

challenging as only subtle differences exist.

4.1. Implementation Details

In all of the experiments, the embedding dimension sets

as 128 by default. We use ResNet-18 [16] for coarse-
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grained datasets, and ResNet-50 [16] for fine-grained

datasets. The hyperparameter details are depicted in the

supplementary material.

Disjoint setup assumes that previously seen classes are un-

available when learning new session data. As shown in

Fig. 3a, we partition the CIFAR100 into five sessions with

each containing 20 classes. For Tiny ImageNet, the dataset

is divided into ten sessions with 20 classes per session.

Blurry setup [4] provides all categories in the beginning;

each session shows a subset of samples from all of them.

The data distribution is controlled via a percentage of the

data from the major and minor classes per session. In our

experiments, CIFAR100 is divided into five sessions; each

contains 20 major classes and 80 minor classes, with 90%

samples from the major and 10% from the minor, as shown

in 3b. For Tiny ImageNet, we simulate a 10-session CL;

each has 70% from the major and 30% from the minor.

General-incremental setup: The new-class and novel old-

class samples may co-exist. The model is learned from the

S classes at initial in a total of L sessions. For the later ses-

sions, we add C classes and assume that M% of the data are

from the old categories and (1−M)% are from the new, de-

noted as (S,C,M,L). We set (20, 20, 10, 5) for CIFAR100

(Fig. 3c). For the rest, we apply (20, 20, 30, 10) to Tiny Im-

ageNet, (60, 20, 30, 4) to Stanford Dog, (100, 25, 30, 5) to

iNat-M, and (1343,700,40,3) to Product-M.

Replayed data are used for all loss terms. Following [4],

we set the memory buffer size for replay as 2,000 for CI-

FAR100. Note that this is a budget-limited buffer (for the

replay-based methods) co-used by all sessions. We assume

a memory budget of 600 samples for Dog due to the small

scale, 4,000 for Tiny ImgNet, 4,000 for iNat-M, and 3,000

for the ultrafine-grained Product-M, respectively. It is pretty

challenging for Product-M as it has 2,743 classes; for each

session, only 1 ∼ 2 images will be stored for replay.

4.2. Evaluation

We follow the train-validation-test protocol. The model

achieving the best recall@1 in the validation phase is picked

for fair comparisons. Then, we report the final performance

by using the original testing set as a query set. For collect-

ing the validation query set for each class in disjoint and

general-incremental setups, we sample 5% of current train-

ing session data for iNat-M and Tiny ImageNet, and 10%

for CIFAR100 and Stanford Dog. We sample 2 images ran-

domly from each class for Product-M due to scarce training

data. Note that such a validation query set is accumulated as

the session grows in the disjoint and general setup. For the

blurry setup, we keep a fixed portion of data from the entire

training set as a validation query set (5% for Tiny ImageNet

and 10% for CIFAR100) class-wisely since the model can

see all predefined categories in the beginning. The embed-

ding extracted for the current-session training data is added

(a) Disjoint Setup

(b) Blurry Setup

(c) General Setup

Figure 3. Class distributions of different setups on CIFAR100.

to the gallery set after finishing the session as mentioned be-

fore; thus the new-classes images first observed in one sea-

son are allowed to be searched in the future seasons. Such

an extensible gallery set matches the real-world scenarios.

We report the recall@k [22] as it is the most popu-

lar metric in fine-grained retrieval [44, 51]. For the test-

ing query, we evaluate all the classes for the blurry setup,

and the classes seen so far for both the disjoint and gen-

eral setup, respectively. Finally, we average the scores over

sessions, denoted as AR@K. To compare with existing ap-

proaches, we re-implement the LWF [29], and MMD [11]

and re-run EWC [26], RWalk [8], and Rainbow [4] from the

official Github of [4]. Among them, all (except MMD) are

for classification since CL is rare to be stuided on retrieval

yet, and we replace all the plain softmax loss with normal-

ized softmax loss [67] for them for a fair comparison. We

also re-implement BCT [48] that is a backward feature com-

patible approach for retrieval. We apply the same exemplar

mining as ours for BCT in disjoint setup as the Naı̈ve BCT

is not a CL solution and requires old classes to pass through.

Besides, we provide direct fine-tuning as the lower
bound; in contrast, we offer joint training of all gallery im-

ages seen so far allowing re-extraction as the upper bound.

4.3. Results on the Coarse-grained Datasets

Results on CIFAR100: We conduct a 5-session experi-

ments on CIFAR100. The results are shown in Fig. 4 (re-

call@1) and Table 1(a) (AR@K). For all three setups, ex-

cept for Joint Train that is an upper bound of this experi-

ment, our CVS performs the best on both evaluation mea-

sures. In the blurry and general-incremental setups, we ob-

serve that BCT performs even worse than Finetune, a lower
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(a) Disjoint Setup (b) Blurry Setup (c) General Setup

Figure 4. Recall@1 on CIFAR100 for the three setups, where Average Recall@1 across sessions is reported in parentheses.

(a) Disjoint Setup (b) Blurry Setup (c) General Setup

Figure 5. Recall@1 on Tiny ImageNet for the three setups, where Average Recall@1 across sessions is reported in parentheses.

Disjoint Blurry General

AR@1 AR@2 AR@4 AR@1 AR@2 AR@4 AR@1 AR@2 AR@4

Joint Train 83.39 85.69 87.64 55.1 57.74 60.33 81.97 84.6 86.82

Finetune 42.03 43.23 44.74 32.54 36.8 41.11 60.79 64.73 68.14

BCT 60.24 64.38 68.37 31.71 35.69 39.61 58.31 62.2 65.66

LWF 49.33 53.51 58.01 36.79 41.63 46.52 65.53 70.91 75.31

MMD 49.62 53.58 57.87 32.83 36.73 40.64 65.51 70.22 74.33

EWC 43.6 45.65 48.12 34.75 40.85 46.71 60.89 64.86 68.2

RWalk 64.11 67.33 70.56 41.78 45.67 49.4 69.9 73.37 76.39

Rainbow 62.27 65.09 67.43 41.47 44.99 48.27 68.4 71.56 74.2

Ours (CVS) 71.47 74.8 77.51 47.47 49.86 52.17 73.95 76.73 78.84

(a)
Disjoint Blurry General

AR@1 AR@2 AR@4 AR@1 AR@2 AR@4 AR@1 AR@2 AR@4

Joint Train 54.42 58.62 62.31 35.46 39.29 43.19 47.45 51.94 55.99

Finetune 19.73 20.92 21.81 18.63 23.17 28.11 31.11 35.87 40.8

BCT 34.27 37.92 41.22 18.54 23 27.66 30.17 34.64 39.29

LWF 24.24 27.5 30.67 20.06 25.11 30.52 32.22 38.23 44.56

MMD 25.83 29.22 32.75 18.51 22.65 27.23 33.35 38.21 43.06

EWC 19.95 21.89 23.88 17.33 21.42 26.07 27.86 32.67 37.78

RWalk 32.85 37.09 41.09 22.4 26.11 29.94 33.83 38.43 42.97

Rainbow 32.6 35.51 38.35 22.64 26.47 30.4 37.53 41.64 45.44

Ours (CVS) 38.87 42.03 45.08 26.62 29.19 31.86 38.78 42.38 45.89

(b)
Dog iNat-M Product-M

AR@1 AR@2 AR@4 AR@1 AR@2 AR@4 AR@1 AR@2 AR@4

Joint Train 86.98 91.08 93.99 75.85 79.97 83.65 79.36 83.83 87.73

Finetune 82.7 88.32 92.23 67.75 72.68 77 70.99 76.26 81.16

BCT 81.73 87.49 91.55 67.34 72.07 75.99 70.48 75.67 80.47

LWF 83.25 89.29 93.04 68.51 73.71 78.12 72.95 78.38 83.1

MMD 83.2 88.98 92.71 68.58 73.48 77.79 72.89 78.21 82.96

EWC 81.64 88.7 92.82 66.3 71.4 75.82 66.01 72.53 78.24

RWalk 82.41 88.31 92.43 68.77 73.82 78.16 68.71 74.64 80.13

Rainbow 82.78 89.04 93.23 68.68 73.22 77.21 69.39 75.19 80.34

Ours (CVS) 84.71 89.4 92.61 72.57 76.39 79.87 75.47 80.36 84.68

(c)

Table 1. Results on (a) CIFAR100 and (b) Tiny ImageNet, and (c)

Fine-grained datasets, where Joint Train and Finetune specify the

theoretically upper and lower bounds, respectively.

bound in this work. Even though both old and new classes

are shown for each incremental session, BCT would still

require all samples seen previously for training to obtain

satisfied results. On the other hand, we find that EWC at-

tains almost the same performance as the lower bound. We

attribute the bad performance to the uncertainty of impor-

tance weight estimation. The runner-up is RWalk, which

improves EWC by imposing constraints on the parameter

space while avoiding forgetting via a replay-based mecha-

nism. Such a mixed strategy works for classification but is

not sufficiently well for backward-compatible retrieval. In-

stead, our CVS utilizes the inter- and neighbor-session in-

formation in extra, showing the efficacy under all setups.

Results on Tiny ImageNet: We use Tiny ImageNet for

simulating the 10-session CL scenario in this experiment.

To our knowledge, we’re the first to perform such a long

session sequence for backward-compatible retrieval in CL.

According to Fig. 5 and Table 1(b), our method consistently

outperforms the existing competitors on the three setups for

this long sequence setting on retrieval. The overall runner-

up in this dataset becomes Rainbow that is a data-replay

method for classification. Our CVS employs the replayed

embedding to summary a class across sessions for retrieval

in addition to the data, and performs more favorably for all

cases on recall@1 and AR@K particularly when k is small.

For a large k = 4 in the general setup, the performance is

tie. We attribute the gap is reduced since only one of the

four retrieved labels has to be correct.

Comparisons to Other Embedding Distillations: We con-

duct a comparison of our CVS to the techniques of met-

ric learning from teacher [12, 38, 63] and knowledge dis-

tillation [18] by replacing Lm
j;j+1 in Eq. 7 with differ-

ent losses for neighbor-session model coherence based on

CIFAR-100. For a fair comparison, we carefully tune hy-

perparameter α at {1, 10} for the better results at AR@1.

Our 2-sample-3-embedding solution demonstrates the best

position among competitors for all setups. Compared to the

16708



runner-up results, we obtain CVS (71.47) v.s. Anglewise-

RKD [38] (70.45) in disjoint setup, CVS(47.47) v.s. Ab-

solute MLKD [63] (46.9) in blurry setup, and CVS(73.95)

v.s. Dark Knowledge [18](73.18) in general incremental

setup. We detail the results in the supplementary material.

Comparisons on Classification: As our CVS can produce

the classification results via the NSoftmax layer too, we fur-

ther compare the results with the CL classifier Rainbow [4]

based on CIFAR-100 after finishing all sessions. We have

already followed the setting of [4] on both the class distri-

bution ratios and replayed buffer size in the blurry setup.

The classification accuracy presented in [4] is 41.35% with

an online learning protocol (i.e., only a single epoch is al-

lowed in learning). We rerun the learner to converge and

get the accuracy of 50.2%. Surprisingly, CVS can achieve

the 54.04% classification accuracy that is even higher. We

owe the promising classification results to the replayed em-

bedding that can serve as useful exemplars (like the prin-

ciple of cross-batch learning [58, 61]) to further guide the

training in our CVS. We conduct extra experiments on the

other two setups (disjoint, general-incremental) and one ad-

ditional CL classifier RWalk and obtain the results: CVS

(50.62) v.s. Rainbow (46.69) v.s. RWalk (46.85) in disjoint

setup, CVS (54.04) v.s. Rainbow (50.2) v.s. RWalk(50.89)

in blurry setup, and CVS (55.49) v.s. Rainbow (52.26)

v.s. RWalk(51.92) in general incremental setup. The results

demonstrate the efficacy of CVS for CL.

4.4. Results on the Fine-grained Datasets

As for the fine-grained benchmarks, we consider the

general-incremental setup only due to its practical useful-

ness. We initialize the model with ImageNet pretrained

weights as it is a common practice in the fine-grained re-

trieval benchmark. We assume the first session presents

samples from half of the classes from the dataset. It is a

practical setting for a modern visual search system because

a robust service should be well-trained to a certain extent

before going online. Due to the fine-grained limits on the

data amount, we partition the Stanford Dog dataset into

four, iNat-M into five, and Product-M into three sessions,

respectively. The results are shown in Table 1(c). Our CVS

consistently outperforms the other approaches for all the

fine-grained benchmarks and measures, except for AR@k
for k = 4 on Stanford Dog Dataset. In sum, the evalua-

tion results with other state-of-the-art approaches demon-

strate that our approach is effective for both coarse- and

fine-grained datasets on the general-incremental setup be-

cause we not only consider backward compatible embed-

ding of the neighboring sessions but also long-term consis-

tency with all the data of past sessions via replay embedding

and data. In addition, this backward compatible feature also

saves the CL from expensive computational costs of gallery

feature re-extraction as model updates during each session.

CIFAR100 Dog Product-M

AR@1 AR@2 AR@4 AR@1 AR@2 AR@4 AR@1 AR@2 AR@4

Lc 60.79 64.73 68.14 82.7 88.32 92.23 70.99 76.26 81.16

Lc + Lm 63.79 68.13 72.02 82.65 88.43 92.29 71.77 76.92 81.78

Lc + Ld w/o replay 64.5 68.12 71.14 83.29 88.77 92.38 73.96 78.69 83.02

Lc + Ld 72.16 74.67 76.7 84.37 89.07 92.46 75.6 80.27 84.33

Lc + Lm + Ld 73.95 76.73 78.74 84.71 89.4 92.61 75.47 80.36 84.68

Table 2. Ablation study on each component, where Lc, Lm, and

Ld are the losses of intra-session discrimination, neighbor-session

model coherence, and inter-session data coherence, respectively.

Discussion: A limitation we find is that almost all methods

(including ours) stagnate as the session expands, especially

in the blurry setup. The margin between ours and upper

bound enlarges gradually even though our method surpasses

the remaining approaches. Therefore, there is still room for

improvement in the long-term challenge.

Ablation Study: Our CVS consists of three loss terms,

Lc, Lm, and Ld. To verify their effectiveness, we con-

duct the ablation study as shown in Table 2. First, we find

that Lc + Ld has the greatest impact on the overall perfor-

mance. It brings the gain in the range of 1.67% to 11.37%

in AR@1 compared with Lc alone. Second, the effect of

Lc + Lm is weaker despite a slight increase on CIFAR100

and Product-M compared to the one of Lc. Our finding sug-

gests that adopting classification loss with distillation loss

alone is insufficient. Therefore, seeking unification of ad-

ditional information like Ld is practical in our setting. To

examine the performance gain from the consistency loss in

more depth, we detach the exemplar replay technique from

our method. We denote Lc + Ld w/o replay as the afore-

mentioned case. The replay-based trick improves the plain

version of the consistency loss on all datasets by a mar-

gin, especially for CIFAR100. Without reviewing exem-

plar data, the performance drop ranges between 1.08% and

7.66% in AR@1. Hence, integrating this design is essential

for overall performance.

5. Conclusion

In this work, we present a novel general incremental

setup which allows the new gallery set of both seen and

unseen classes incrementally added to the database and

is closer to the real-world retrieval setup than the widely

adopted disjoint and the recent blurry setups. Besides, we

also propose a CL method for long-term visual search with

backward consistent feature embedding. Our method acts

as an extension of cross-batch memory to the cross-session

memory for feature embedding learning in CL. We intro-

duce a 2-sample-3-embedding strategy in a triplet for dis-

tillation learning across neighbor sessions to enforce the

model coherence. The extensive experiments show that our

approach achieves the state of the art performance in two

coarse-grained classification and three fine-grained datasets

under different incremental data distributions.
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