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Abstract

In single domain generalization, models trained with
data from only one domain are required to perform well
on many unseen domains. In this paper, we propose a new
model, termed meta convolutional neural network, to solve
the single domain generalization problem in image recog-
nition. The key idea is to decompose the convolutional
features of images into meta features. Acting as “visual
words”, meta features are defined as universal and basic
visual elements for image representations (like words for
documents in language). Taking meta features as reference,
we propose compositional operations to eliminate irrele-
vant features of local convolutional features by an address-
ing process and then to reformulate the convolutional fea-
ture maps as a composition of related meta features. In this
way, images are universally coded without biased informa-
tion from the unseen domain, which can be processed by
following modules trained in the source domain. The com-
positional operations adopt a regression analysis technique
to learn the meta features in an online batch learning man-
ner. Extensive experiments on multiple benchmark datasets
verify the superiority of the proposed model in improving
single domain generalization ability.

1. Introduction
Deep learning models are widely used for vision tasks in

recent years [11, 13, 19, 36, 38], with the assumption that
training data and testing data are from the same or simi-
lar distributions. However, when applied to unseen or out-
of-distribution (OOD) test domains, the performance of the
model trained on the source domain can be significantly de-
graded. In practice, domain shift problem is very common
because of the change of illuminations, object appearance,
or background [4, 30]. To solve this problem, many do-
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Figure 1. Bag of visual words and the proposed bag of meta fea-
tures. Both follow a three-step process to construct general rep-
resentations for the input. (a) Local features are firstly extracted
by SIFT [24], and then quantized into visual words. A frequency
histogram of visual words is constituted as the final representa-
tion. (b) Input features are firstly decomposed into local features
through a sliding window. Then, the addressing operation selects
meta features which are related to these local features. Finally, a
linear regression model is adopted to compose the output repre-
sentation based on the selected meta features.

main adaptation [2, 4, 23, 42] and domain generalization
[3, 5, 14, 33, 41, 45, 46, 49] methods have been proposed.
These methods differ in strategies of transferring knowledge
from multiple source domains to the target domain. How-
ever, it is more plausible to consider a more realistic sce-
nario where only one single domain is available for training,
and the trained models are required to perform well on mul-
tiple unseen domains, i.e., single domain generalization.

Single domain generalization is an important and chal-
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lenging problem. For the purpose of large-scale vision ap-
plications in practical scenarios, we focus on improving the
single domain generalization ability of CNNs. Recently,
only a few works are proposed to solve this problem, in-
cluding data augmentation [32, 43, 45] and regularization
[32, 39]. Data augmentation based approaches generate
more diversified data from many “fictitious” domains in
the input space for training. Regularization based meth-
ods mainly focus on developing losses for the consistency
among features from source data and augmented data.

In this paper, we solve the single domain generalization
from a new perspective: developing a novel convolutional
model, termed Meta CNN. We are motivated by stacked
capsule autoencoder (SCAE) [17], in which images are seg-
mented into constituent parts and reconstructed by a com-
position of general part templates. Similarly, we believe
convolutional features of input images can also be decom-
posed into universal and elemental visual features. Then
these elemental visual features are used as “templates” to
compose general representations of images in the trained
domain. However, due to the domain gap, features from a
different domain are unable to be directly reconstructed by
these trained templates. Following metadata normalization
[25], the domain shift effects of such local features can be
“regressed out” by a generalized linear model (GLM) [26]
f = βM + r, where f is the local features, β is a learn-
able set of linear parameters, M is the templates of trained
domain (termed as “meta features”), and r is the irrelevant
features effected by the domain gap. As βM corresponds
to the component in f explained by the meta features, the
features from shifted domain is reconstructed in the source
domain by eliminating r. Consequently, for a CNN block,
the effect of domain shift in input features is eliminated by
feeding βM instead of f into the following convolutional
operations. To achieve this goal, we follow the process of
bag of visual words (BoVW) [6, 24, 37], where each image
is represented by the histogram of “visual words” through 3
steps (shown in Fig. 1a). We propose corresponding 3 steps
of compositional operations in CNN blocks: 1) decompose
the convolutional features of images into local meta features
as “templates”, 2) take meta features as reference, eliminate
irrelevant features of local convolutional features by an ad-
dressing process, 3) reformulate the feature maps as a com-
position of related meta features. In this way, images are
universally coded without biased information from the un-
seen domain, which can be processed by following modules
trained in the source domain (shown in Fig. 1b).

The challenge of applying compositional operations of
meta features within a CNN building block lies in four
folds: 1) local feature extraction. For BoVW, local features
are firstly located by key point detection and then extracted
by handcrafted operations of local image patches. Both op-
erations are non-differentiable, making it infeasible for end-

to-end batch learning in CNN blocks. As representation and
location are encoded simultaneously in a grid manner for
convolutional feature maps, we propose to decompose fea-
ture maps into local patches with a sliding window, which is
compatible with following convolution/pooling operations
in CNN blocks. 2) local feature addressing. In BoVW,
each local feature is mapped to a certain visual word, where
a dense and large enough visual word set is required for
small mapping error. However, in the deep learning sce-
nario, the storage of batch training and inference are limited
by GPUs. Therefore, we propose to map local features to a
combination of meta features, where the expressive power
of the meta features set is enlarged. In this way, a mod-
erate meta features set is allowed with feasible storage oc-
cupancy. 3) meta feature composition. In BoVW, image
is represented by a frequency histogram of visual words,
which is non-differentiable and lack of the spatial and con-
tent information of image patches. To keep the content and
spatial information of convolutional features, we propose
to represent local patch features by a linear interpolation of
meta features. 4) meta feature learning. In BoVW, cluster-
ing is performed over all the local features in the dataset,
the center of each cluster is used as visual words. However,
deep learning models are trained in an online batch learning
manner, where only a very small portion of the dataset are
feasible. Consequently, we adopt a regression analysis with
maximum likelihood estimation to update the meta features
during training.

Extensive experiments on multiple benchmark datasets
indicate the superiority of the proposed model in tackling
single domain generalization problems. More importantly,
these results reveals the potential of convolutional meta fea-
tures for general image representations.

2. Related Work
Bag of Visual Words (BoVW) is one of the most widely

used model for image recognition in computer vision. To
represent an image using the BoVW model, an image can
be treated as a document, containing a series of “visual
words”. The whole procedure of BoVW can be summarized
into three steps: local feature extraction, feature quantiza-
tion, and histogram representation, as shown in Fig. 1a. For
local feature extraction, Scale-Invariant Feature Transform
(SIFT) [24], invented by David Lowe, is the most impres-
sive method to transform an image into a large collection of
disordered feature vectors. Because the features are invari-
ant to image scale and rotation [24]. These robust features
are then quantized based on visual words, i.e., finding the
nearest neighbor for each extracted feature. Finally, the im-
age can be represented by a frequency histogram of the vi-
sual words. To generate reliable visual vocabulary, k-means
clustering can be performed on all extracted features. Visual
vocabulary are then defined as the centers of the learned
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clusters. One of the notorious disadvantages of BoVW is
that it ignores the spatial relationships among the patches.
This issue was carefully considered when we implemented
meta CNN.

Domain Generalization is one of the most general prob-
lem of discussing the stability and robustness of the con-
volutional neural networks. It considers the generalization
capacities to unseen domains of deep models. Existing do-
main generalization methods can be rough classified into
two categories: learning the domain invariant representa-
tion and data augmentation. Learning the domain invari-
ant representation is to reduce the discrepancy between rep-
resentations of different source domains. Classical meth-
ods includes kernel-based method [27], domain reconstruc-
tion [10], contrastive semantic alignment loss [33], domain
agnostic representation learning [41], and Maximum Mean
Discrepancy (MMD). Recently, meta-learning procedure
has been studied to solve domain generalization problem.
Li et al. propose and develop a gradient-based model agnos-
tic meta-learning algorithm for domain generalization [22].
Dou et al. exploit the episodic training scheme, which en-
forces features keep alignment from the view of the local
and global [8]. Du et al. incorporate variational information
bottleneck with meta-learning to narrow the domain gap be-
tween the source domains [46].

The other category is data augmentation. Methods in
this category generally aim to generate various styles of
samples to enlarge the training distribution. These samples
are used to train the network along with the source sam-
ples to improve the generalization ability. For instance,
Riccardo et al. propose to generate “hard” samples for
the classifier based on the adversarial training scheme [40].
Shankar et al. focus on the direction of the domain change,
and proposed to augment the source samples along this di-
rection [34]. Zhou et al. exploit a conditional generative
adversarial network (GAN) to synthesize data from pseudo-
novel domain [50]. Fabio et al. exploit an auxiliary self-
supervision training signal from solving a jigsaw puzzle [5].

Single Domain Generalization is a more challenging
yet realistic domain generalization task [32,48]. In this task,
the network is trained on only a single source domain, and
evaluated on multiple unseen domains. To deal with this
challenging problem, gradient-based image augmentation is
an effective strategy to improve the model generalization.
Qiao et al. propose to encourage semantic consistency be-
tween the augmented and source images in the latent space
through Wasserstein autoencoder [32]. Zhao et al. intro-
duce entropy maximization in adversarial training frame-
work to generate challenging perturbations of the source
samples [48]. [32, 43] propose to learn the various styles
for the generation of more diverse images. Different from
existing single domain generalization methods, our method
aims to discover the stability of deep models from the per-
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Figure 2. Overview of the proposed BoMF operations. The input
convolutional feature maps are firstly decomposed into local fea-
tures. Then local features are refined by a composition of related
meta features. Finally, refined local features are folded to generate
the final output convolutional feature maps.

spective of model architecture.

3. Method
Consider input convolutional feature maps f ∈

RC×H×W , and meta feature set M ∈ RM×D, where M
is the number of meta features and D is the dimension of
each meta feature. The goal of BoMF is to reformulate the
convolutional representations as a composition of meta fea-
tures, i.e., f̂ = BoMF(f ;M). The proposed BoMF op-
erations consist of four steps, as shown in Fig. 2: 1) local
feature decomposition aims to split feature maps into lo-
cal patches. 2) local feature addressing selects most related
meta features from the meta feature set. 3) meta feature
composition generates refined local patches by integrating
the selected meta features. In addition, the entire output
feature maps are generated by folding all the refined local
features. 4) meta feature learning is designed to update meta
features from random initialization based on batch stochas-
tic gradient descent. Details are described in the following.

3.1. Local Feature Decomposition

Local feature decomposition aims to extract local fea-
tures {pi}Ni=1 from the input convolutional feature maps
f through a sliding window (shown in Fig. 1b), N is the
number of local patches. Similar to convolution/pooling,
the sliding window in local feature decomposition is de-
fined by a window size kc × kh × kw and a step size
sc × sh × sw. This process corresponds to the unfolding1

operation in PyTorch [31], {pi}Ni=1 = unfold(f). Fig. 1b
shows an example of extracting 16 patches from input fea-
ture maps through a sliding window with kc × kh × kw =
C × 1

4H × 1
4W and sc × sh × sw = 1× 1

4H × 1
4W .

3.2. Local Feature Addressing

Given a specific local feature p ∈ Rc×h×w, D = c ×
h × w and the entire meta feature set M , local feature
addressing aims to selects most related meta features Mp

from M . To improve the efficiency of composition and the
1https : / / pytorch . org / docs / stable / generated /

torch.nn.Unfold.html
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express power of meta features, it’s natural to select fewest
meta features (i.e., min |Mp|) with minimized fitting error
of p. Thus, this selection process can be formulated as a
sparse coding problem [1, 15], that is, estimating a coeffi-
cients vector Γ based on p = ΓM + r and

min
Γ

||p− ΓM ||2 s.t. ||Γ||1 < ϵ. (1)

Here, r is the irrelevant features, and the L1 constraint
of Γ controls the number of selected meta features. To
solve this problem, an ordinary solution is Iterative Shrink-
age Thresholding Algorithm (ISTA) [15, 35]. Given an ini-
tial Γ0 = 0, ISTA iterates the recursive equation Γk+1 =
Sλ

c
(Γk +

1
c (p− ΓkM)MT ) several times. After this iter-

ation, meta features with corresponding non-zero values in
Γ are incorporated to construct Mp.

3.3. Meta Feature Composition

Meta feature composition firstly integrates related meta
features Mp to refine p and then compose the refined local
features to feature maps based on their spatial relationship.

To remove the irrelevant features of p without the loss of
content, a general linear model (GLM) [26, 28] is adopted
to associate local feature p and meta features Mp by p =
βMp + r. The optimal linear coefficients β is given by
the closed-form solution β = (MT

p Mp)
−1MT

p p. There-
fore, the refined local feature p̂ without irrelevant features
r based on selected meta features Mp is

p̂ = βMp = pMT
p (MpM

T
p )

−1pMp. (2)

To maintain the spatial relationship of refined local fea-
tures, the final output feature maps f̂ is constructed by lo-
cating {p̂}Ni=1 to the same position as {p}Ni=1 in f (shown
in the right side of Fig. 1b). This is an inverse process of
local feature decomposition and corresponds to the folding2

operation in PyTorch [31], i.e., f̂ = fold({p̂i}Ni=1).

3.4. Meta Feature Learning

The operations described in Sec. 3.2 and Sec. 3.3 are
built based on a known meta feature set M . An unsolved
problem is to learn these meta features from random initial-
ization. Meta feature learning aims to learn the set of meta
features from random initialization based on batch stochas-
tic gradient descent. Given the latest meta features M and a
batch of input features {f i}Bi=1, β is firstly estimated in the
forward pass based on operations in Sec. 3.1, 3.2, and 3.3.
Then the estimated β is fixed, meta features can be updated
by aggregating the gradients from the reconstruction error
in Eq. 2 and the back-propagated gradients from the super-
vised classification loss Lcls:

L = α1||βMp − p||2 + α2Lcls, (3)
2https : / / pytorch . org / docs / stable / generated /

torch.nn.Fold.html

Table 1. Our meta CNN model for Digits categorization. The
baseline model shares the same parameter settings for the convo-
lutional and fully connected modules. The k, s and #k represent
the kernel size, stride and the output channels. The n denotes the
number of meta features.

Layer Parameters

BoMF1

decomp k = 9× 9× 3, s = 2× 2× 1
meta feat n = 100

conv k = 5× 5, s = 1; #k = 64
maxpool1 k = 2× 2

BoMF2

decomp k = 5× 5× 4, s = 1× 1× 1
meta feat n = 200

conv k = 5× 5, s = 1; #k = 128
maxpool2 k = 2× 2

fc1 3200× 1024
fc2 1024× 1024
fc3 1024× 10

where α1, α2 is the weights for reconstruction loss and clas-
sification loss, respectively. The balance between these two
objectives pushes the meta features to learn both general
and discriminative local patterns.

3.5. Instantiation

To understand the behavior of Meta CNN, we conduct
comprehensive ablation experiments on the generalization
of Digits classification [7, 9, 20, 29]. First we describe our
baseline network architectures for this task, and then extend
them to meta convolutional neural networks.

Plain Networks. As in [34, 50], the baseline convolu-
tional neural networks consist of two convolutional blocks.
Each convolutional layer is followed by ReLU activation
and 2 × 2 max-pooling. The classifier is a cascade of three
fully connected layers.

The plain networks share the same settings (“conv”,
“maxpool” and “fc” in Table 1) with Meta CNNs except
those of BoMF operations.

Meta CNN. In meta CNN, two extra BoMF modules are
inserted to the convolutional blocks. The setting of the local
feature decomposition (“decomp”) and the number of meta
features (“meta feat”) are presented in Table 1.

4. Experiments

In this section, experimental setups and implementation
details are introduced in Sec. 4.1 and 4.2. In Sec. 4.3, exper-
iments are conducted on three widely used benchmarks of
domain generalization. Further analysis and visualizations
are provided in Sec. 4.4.
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Figure 3. The framework of Meta Convolutional Neural Networks. Each block consists of three steps: decomposition of input, composition
of local features based on meta features and convolutional operations. This network is trained in an end-to-end manner with a general
classification loss.

4.1. Datasets and Settings

Digits consists of 5 different datasets, including
MNIST [20], SVHN [29], MNIST-M [9], SYN [9] and
USPS [7]. Images in different datasets have different font
styles, scales, backgrounds, stroke colors, etc. Follow-
ing [32,43,45], the first 10, 000 images of the training set of
MNIST are selected to train the models, and other datasets
are used to evaluate the generalization of performance. All
the images are converted into RGB, and resized to 32 × 32
during data preprocessing.

CIFAR-10-C, also termed as corrupted CIFAR-10 [12]
is a robustness benchmark consisting of 19 types of corrup-
tions on the test set of CIFAR-10 [18]. These corruptions
are from 4 main categories, weather, blur, noise, and dig-
ital. Each corruption has five-level severities and “5” indi-
cates the most corrupted level. Following [43], the training
set of CIFAR-10 is selected as the source dataset for train-
ing, while images in CIFAR-10-C with the corruption of
level “5” are used for evaluation. For simplicity, only the
accuracy of each category and the average accuracy of all
categories are reported.

PACS [21] is a recent proposed domain generalization
benchmark dataset that has four domains, photo, art paint-
ing, cartoon, and sketch. Each domain contains 224× 224
images belonging to seven categories, and there are 9, 991
images in total. Compared with the digits dataset, PACS is a
more challenging dataset due to the large style shift between
domains. Following [43], images in photo are selected as
the source domain for training, while other images are used
for evaluation.

4.2. Implementation Details

For BoFM operations, the meta features are initialized
as random Gaussian noise with standard derivation of 0.01.
In the local feature addressing step, the average number of
selected meta features |M̄p| of two BoMF operations are
controlled around 4 and 8, respectively. The normalized co-
efficient c is set as 1, and each meta feature is normalized
through Mi

||Mi||2 after every iteration [1]. In the local fea-
ture learning step, to improve the number of activated meta
features and enlarge the diversity of learned semantic infor-

Table 2. Experiments of single domain generalization on digits
classification. Models are trained on the first 10, 000 training im-
ages in MNIST and evaluated on the rest of the digits datasets.
MetaCNN achieves the best performance, especially on SYN and
USPS. The image styles and backgrounds in SYN and USPS are
simple, images from these two datasets are closer to images in
MNIST. It reflects that MetaCNN is more generalized to small dis-
tribution divergence.

Method SVHN MNIST-M SYN USPS Avg

ERM [40] 27.83 52.72 39.65 76.94 49.29
CCSA [33] 25.89 49.29 37.31 83.72 49.05
d-SNE [44] 26.22 50.98 37.83 93.16 52.05
JiGen [5] 33.80 57.80 43.79 77.15 53.14
ADA [40] 35.51 60.41 45.32 77.26 54.62
M-ADA [32] 42.55 67.94 48.95 78.53 59.49
ME-ADA [48] 42.56 63.27 50.39 81.04 59.32
RandConv [45] 57.52 87.76 62.88 83.36 72.88
L2D [43] 62.86 87.30 63.72 83.97 74.46
MetaCNN (ours) 66.50 88.27 70.66 89.64 78.76

mation, a bias term is introduced for Γ. This bias has the
same dimension as Γ, and reflects the usage (number of up-
date) of meta features. It assigns big values to those rarely
updated meta features. Therefore, a weighted summation of
Γ and bias can eliminate the unbalance of the update of M.
More details are presented in supplementary materials.

For model architecture, we design specific task models
and different training strategies for three datasets. Specif-
ically, models for Digits are described in Sec. 3.5. As for
CIFAR-10-C and PACS, the plain networks are WideRes-
Net (16-4) [47] and AlexNet [19] for fair comparison [43].
Similar to Sec. 3.5, the corresponding MetaCNN is con-
structed by inserting two extra BoMF modules to the first
two convolutional blocks in WideResNet and AlexNet. Dif-
ferent from Table 1, the kernel size and step size of the first
BoMF for PACS is set to 17 and 4 in spatial dimension.

For model training, batch size is set to 32, and all the net-
works are optimized through Adam [16]. The loss weight
α1 and α2 are set to 2.0 and 0.1 initially. α1 gradually de-
creases to 0 based on cosine function cos( epoch

|epochs|π) + 1,
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Table 3. Experiments of single domain generalization on digits
classification. Models are trained on CIFAR-10 and evaluated
on the CIFAR-10-C. “*” means our implementation. MetaCNN
achieves the best performance, especially on blur, noise and digits.
Images in these three categories are closer to images in CIFAR-10.
It reflects that MetaCNN is more generalized to small distribution
divergence.

Method Weather Blur Noise Digits Avg

ERM [40] 67.28 56.73 30.02 62.30 54.08
CCSA [33] 67.66 57.81 28.73 61.96 54.04
d-SNE [44] 67.90 56.59 33.97 61.83 55.07
M-ADA [32] 75.54 63.76 54.21 65.10 64.65
L2D [43] 75.98 69.16 73.29 72.02 72.61
RandConv* [45] 76.87 55.36 75.19 77.51 71.23
MetaCNN (ours) 77.44 76.80 78.23 81.26 78.45

while α2 linearly increases to 1 during the first 10 epochs.
In Digits, the initial learning rate is 0.0035 for conv/fc, and
0.001 for BoMF. It decays by a factor of 0.1 at 50 and 100
epochs. Training lasts 120 epochs in total. In CIFAR-10-C,
the initial learning rate is 0.0001 for conv/fc, and 0.001 for
BoMF. The strategy to decay the learning rate is the same
as Digits. In PACS, the initial learning rate is 0.00035 for
conv/fc, and 0.01 for BoMF since the scale of the training
data is inadequate. The learning rate decays at 24 epochs
with 30 epochs in total. All models and optimizations are
implemented in PyTorch [31].

4.3. Evaluation of Single Domain Generalization

Table 2, 3 and 4 exhibit the evaluations of single do-
main generalization on Digits, CIFAR-10-C, and PACS, re-
spectively. Results show that MetaCNN achieves the high-
est average accuracy compared to other baselines on three
benchmarks. Specifically, in Table 2, improvements are
3.6%, 0.9%, 6.9%, 5.7% on SVHN, MNIST-M, SYN and
USPS, compared to the previous best method L2D. In Ta-
ble 3, there are 0.6%, 10.7%, 4.9%, 3.7% improvements
on weather, blur, noise and digital, respectively. In Ta-
ble 4, MetaCNN outperforms the previous methods in car-
toon, sketch, and the average performance. The above re-
sults indicate the proposed BoMF operations improve the
model generalization, reflecting the effectiveness of com-
posing generalized output features through meta features.

In addition, there is an obvious discrepancy among
different datasets rather than different benchmarks. Per-
formance gains are appreciable on USPS/SYN [Dig-
its], blur/noise/digital [CIFAR-10-C], and cartoon/sketch
[PACS], yet insufficient on MNIST-M [Digits], weather
[CIFAR-10-C], and art painting [PACS]. It is interesting
that the division of these two groups of datasets reveals a
certain consistent rule. In the first group, the image styles

Table 4. Experiments of single domain generalization on digits
classification. Models are trained on photo and evaluated on the
rest of the target domains (i.e., art painting, cartoon, and sketch).
Best performances are highlighted in bold.

Method A C S Avg

ERM [40] 54.43 42.74 42.02 46.39
JiGen [5] 54.98 42.62 40.62 46.07
RSC [] 56.26 39.59 47.13 47.66
ADA [40] 58.72 45.58 48.26 50.85
M-ADA [32] 58.96 44.09 49.96 51.00
L2D [43] 56.26 51.04 58.42 55.24
MetaCNN (Ours) 54.05 53.58 63.88 57.17

and image backgrounds are simple and close to the training
images from MNIST. However, in the second group, im-
ages have complex styles and background variations which
are very different from the training images. Therefore, large
distribution divergence (domain gaps) increases the diffi-
culty to recognize the convolutional features given the meta
features, hindering the performance of the final classifica-
tion. In conclusion, the proposed BoMF operations and its
constructed MetaCNN are effective on single domain gen-
eralization, especially for data that have small distribution
divergence.

4.4. Ablation Study

This subsection provides ablation studies and analysis of
each component in BoMF.

Meta Feature Learning and Meta Feature Composi-
tion directly affect the outputs of BoMF. Fig. 4a exhibits
the learned meta features, e.g., points, straight lines, arcs,
semicircles, indicating the meta feature learning is able to
decouple the local features into basic elements. These ba-
sic elements are used to compose the outputs, as shown in
Fig. 4b. Given a specific local feature, the most related meta
features are selected for composition. For example, in the
first row of Fig. 4b, the local patch of digit “4” first uses the
vertical and horizontal lines to compose the major structure.
Then, top left corner and middle right points are selected to
complete the remaining structure. In addition, complicated
local patches (patches at the middle of “8”) can also be con-
structed given learned basic meta features. Taken together,
linear regression analysis shows its efficiency in learning
meta features and composing general image features. Com-
paring the input and output of meta feature composition,
these two operations also show their superiority in reserv-
ing the domain-agnostic information (structure etc.) of the
input and removing the domain-specific information (style,
appearance etc.).

Local feature addressing. Table 5 compares the per-
formances of two addressing techniques. “MetaCNN-Mp”
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Figure 4. (a) The learned results of meta features. Distinctive local patterns, e.g., lines, circles, edges, dots, arcs, and even some residuals,
can be extracted from local features. (b) The procedure of meta feature composition. Given a specific local feature, the most related meta
features are selected and linearly combined to compose the output.
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Figure 5. Comparison of the learned meta features w & w/o local
feature addressing. More meaningful and diversified local patterns
are learned based on addressing.

Table 5. Experiment of evaluating the effectiveness of local feature
addressing, showing that local feature addressing is essential for
BoMF. “M” means skipping the addressing and using all meta
features. “Mp” represents using the local feature addressing.

Method SVHN MNIST-M SYN USPS Avg

MetaCNN-M 62.84 85.62 65.45 83.21 74.28
MetaCNN-Mp 66.50 88.27 70.66 89.64 78.76

represents the local feature addressing, while “MetaCNN-
M” represents directly composing all meta features. Re-
sults show that local feature addressing leads to better gen-
eralization ability. On the one hand, local feature addressing
is implemented via sparse coding, which has already been
proved beneficial for model generalization. On the other
hand, the sparse constraint pushes the meta features to se-
lect more related local features and learn more discrimina-
tive patterns. Fig. 5 visualizes the learned meta features
with and without local feature addressing. Fig. 5b contains
more diversified local patterns, i.e., points, straight lines,
arcs, showing the significance of local feature addressing.

Hyper-parameters are kernel size k and step size s in
local feature decomposition, and the size of meta features
M in meta feature learning. Fig. 7a and 7b evaluates

Figure 6. Similarities (Euclidean distance) among local features
w.r.t. different sliding window sizes. Larger patch size presents
relatively higher similarities. At right, one case of the local fea-
tures with high similarities are presented for each patch size. The
contrasts between dis-similar appearance and small distance re-
veals the necessity of decomposing input feature maps into local
features with small patch size.

the generalization performances on various kernel sizes and
step sizes for both BoMF operations. The results show that
a medium kernel size is the best. Fig. 7c demonstrates that
the accuracy becomes relatively stable after the number of
meta features reaches 200. Fig. 6 explores the similarity dis-
tributions of local patches under different kernel sizes. The
contrasts between dis-similar appearance and small distance
reveals the necessity of decomposing input feature maps
into local features with small patch size.

4.5. Deeper Meta CNNs

Previous experiments are conducted on Meta CNNs with
two blocks (BoMF1 ∼ 2 in Table 6). To investigate the ef-
fectiveness of deeper Meta CNNs, two more compositional
blocks are added to the aforementioned backbone. The ker-
nel size and step size are 3×3×4 and 1×1×1 for the com-
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(a) kernel size & step size in BoMF1 (b) kernel size & step size in BoMF2 (c) number of meta features

Figure 7. Hyper-parameter analysis for BoMF. (a) & (b): Performance on different kernel sizes and step sizes indicates medium kernel
size achieves the best performance. (c) As the number of meta features increase, the performances are relatively stable. It shows that the
number of meta features for BoMF1 and BoMF2 are sufficient at 100 and 200.

Table 6. Performance of Meta CNNs with various depths. The
superior performance of deeper backbones indicates that BoMF
operations are generic components for convolutional blocks.

Method SVHN MNIST-M SYN USPS Avg

BoMF1 64.86 86.30 68.72 88.97 77.21
BoMF1∼ 2 66.50 88.27 70.66 89.64 78.76
BoMF1∼ 3 67.23 88.63 71.44 90.07 79.34
BoMF1∼ 4 66.73 88.71 71.76 89.79 79.24

Compositional 

Outputs

Raw Inputs

Local

Features

MNIST-M SVHN

MNIST

Remove Texture Remove Style

Figure 8. Visualization of meta feature composition results for un-
known data (better viewed in color). Irrelevant textures and styles
in MNIST-M/SVHN are removed, and the compositional outputs
are close to the training images in MNIST.

positiona operations. The kernel size/stride is 3/1 for con-
volutions. Table 6 shows the performance of Meta CNNs
with various depth. The superior performance of deeper
backbones indicates that the pro-posed BoMF operations
are generic components for convolutional blocks.

4.6. Composition of unknown data

Fig. 8 shows the output of meta feature composition for
unknown data. In MNIST-M, background textures lead to
blurred edges of the digits. In SVHN, the styles of dig-
its are different from which in MNIST. With the help of

BoMF, most textures are removed in the compositional out-
puts of MNIST-M, and special styles in SVHN are removed
after meta feature composition. These composed outputs
are close to images in MNIST, indicating the effectiveness
of the meta feature composition in eliminating domain gap.

5. Discussion

Limitation and future work. This paper focuses on
generic models with high performance rather than effi-
ciency. The limitations of this work lie in the extra com-
putational cost of the proposed local feature decomposition
and meta feature composition. This limitation can be easily
alleviated by using key points to extract local features. We
will discuss more options in the future.

Potential societal impact. BoMF is proved to be an ef-
fective and general operation to improve the model gener-
alization ability. Therefore, this work possesses the poten-
tial to improve the model generalization ability on unknown
data in real applications.

6. Conclusion

In this work, we propose a new perspective for single
domain generalization. Compositional operation BoMF is
proposed and built by four steps: local feature decompo-
sition, local feature addressing, meta feature composition,
and meta feature learning. Experiments on three single do-
main generalization benchmark datasets illustrate the effec-
tiveness of the proposed model. Extensive visualizations
reveal the potential of BoMF to learn expressive meta fea-
tures for a general representation of images.
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