
3D Moments from Near-Duplicate Photos

Qianqian Wang1,2 Zhengqi Li1 David Salesin1 Noah Snavely1,2 Brian Curless1,3 Janne Kontkanen1

1Google Research 2Cornell Tech, Cornell University 3University of Washington

Near-duplicate photos Space-time videos

Figure 1. People often take many near-duplicate photos in an attempt to capture the perfect expression. Given a pair of these photos,
taken from nearby viewpoints (left), our proposed approach brings these photos to life as 3D Moments, producing space-time videos with
cinematic camera motions and interpolated scene motion (right). Please refer to the supplementary material to see the videos.

Abstract

We introduce 3D Moments, a new computational photog-
raphy effect. As input we take a pair of near-duplicate photos,
i.e., photos of moving subjects from similar viewpoints, com-
mon in people’s photo collections. As output, we produce
a video that smoothly interpolates the scene motion from
the first photo to the second, while also producing camera
motion with parallax that gives a heightened sense of 3D.
To achieve this effect, we represent the scene as a pair of
feature-based layered depth images augmented with scene
flow. This representation enables motion interpolation along
with independent control of the camera viewpoint. Our sys-
tem produces photorealistic space-time videos with motion
parallax and scene dynamics, while plausibly recovering
regions occluded in the original views. We conduct exten-
sive experiments demonstrating superior performance over
baselines on public datasets and in-the-wild photos. Project
page: https://3d-moments.github.io/.

1. Introduction
Digital photography enables us to take scores of photos in

order to capture just the right moment. In fact, we often end
up with many near-duplicate photos in our image collections

as we try to capture the best facial expression of a family
member, or the most memorable part of an action. These
near-duplicate photos end up just lying around in digital
storage, unviewed.

In this paper, we aim to utilize such near-duplicate photos
to create a compelling new kind of 3D photo enlivened with
animation. We call this new effect 3D Moments: given a
pair of near-duplicate photos depicting a dynamic scene
from nearby (perhaps indistinguishable) viewpoints, such
as the images in Fig. 1 (left), our goal is to simultaneously
enable cinematic camera motion with 3D parallax (including
novel, extrapolated viewpoints) while faithfully interpolating
scene motion to synthesize short space-time videos like the
one shown in Fig. 1 (right). 3D Moments combine both
camera and scene motion in a compelling way, but involve
very challenging vision problems: we must jointly infer 3D
geometry, scene dynamics, and content that becomes newly
disoccluded during the animation.

Despite great progress towards each of these individ-
ual problems, tackling all of them jointly is non-trivial,
especially with image pairs with unknown camera poses
as input. NeRF-based view synthesis methods for dynamic
scenes [15,27,28,49] require many images with known cam-
era poses. Single-photo view synthesis methods (sometimes
called 3D Photos or 3D Ken Burns [11, 25, 38]) can create

3906



animated camera paths from a single photo, but cannot rep-
resent moving people or objects. Frame interpolation can
create smooth animations from image pairs, but only in 2D.
Furthermore, naively applying view synthesis and frame
interpolation methods sequentially results in temporally in-
consistent, unrealistic animations.

To address these challenges, we propose a novel ap-
proach for creating 3D Moments by explicitly modeling
time-varying geometry and appearance from two uncali-
brated, near-duplicate photos. The key to our approach is to
represent the scene as a pair of feature-based layered depth
images (LDIs) augmented with scene flows. We build this
representation by first transforming the input photos into a
pair of color LDIs, with inpainted color and depth for oc-
cluded regions. We then extract features for each layer with
a neural network to create the feature LDIs. In addition, we
compute optical flow between the input images and combine
it with the depth layers to estimate scene flow between the
LDIs. To render a novel view at a novel time, we lift these
feature LDIs into a pair of 3D point clouds, and employ a
depth-aware, bidirectional splatting and rendering module
that combines the splatted features from both directions.

We extensively test our method on both public multi-view
dynamic scene datasets and in-the-wild photos in terms of
rendering quality, and demonstrate superior performance
compared to state-of-the-art baselines.

In summary, our main contributions include: (1) the new
task of creating 3D Moments from near-duplicate photos
of dynamic scenes, and (2) a new representation based on
feature LDIs augmented with scene flows, and a model that
can be trained for creating 3D Moments.

2. Related work
Our work builds on methods for few-shot view synthesis,

frame interpolation and space-time view synthesis.
View synthesis from one or two views. Novel view syn-
thesis aims to reconstruct unseen viewpoints from a set of
input 2D images. Recent neural rendering methods achieve
impressive synthesis results [17, 20, 43, 44, 47, 54], but
typically assume many views as input and thus do not
suit our task. We focus here on methods that take just
one or two views. Many single-view synthesis methods
involve estimating dense monocular depths and filling in
occluded regions [7, 11, 14, 25, 34, 38, 48], while others
seek to directly regress to a scene representation in a sin-
gle step [30, 35, 45, 46, 53]. We draw on ideas from several
works in this vein: SynSin learns a feature 3D point cloud
for each input image and projects it to the target view where
the missing regions are inpainted [48]. 3D Photo [38] instead
creates a Layered Depth Image (LDI) and inpaints the color
and depth of the occluded region in a spatial context-aware
manner. We build on both methods but extend to the case of
dynamic scenes.

Like our method, some prior view synthesis methods op-
erate on two views. For instance, Stereo Magnification [56]
and related work [40] take two narrow-baseline stereo im-
ages and predict a multi-plane image that enables real-time
novel view synthesis. However, unlike our approach, these
methods assume that there is some parallax from camera
motion, and again can only model static scenes, not ones
where there is scene motion between the two input views.
Frame interpolation. In contrast to 3D view synthesis, tem-
poral frame interpolation creates sequences of in-between
frames from two input images. Frame interpolation meth-
ods do not distinguish between camera and scene motion:
all object motions are interpolated in 2D image space.
Moreover, most frame interpolators assume a linear mo-
tion model [2, 6, 8, 12, 21–24, 26, 39] although some recent
works consider quadratic motion [18, 50]. Most of the inter-
polators use image warping with optical flow, although as a
notable exception, Niklaus et al. [23, 24] synthesize interme-
diate frames by blending the inputs with kernels predicted
by a neural network. However, frame interpolation alone
cannot generate 3D Moments, since it does not recover the
3D geometry or allow control over camera motion in 3D.

Space-time view synthesis. A number of methods have
sought to synthesize novel views for dynamic scenes in both
space and time by modeling time-varying 3D geometry and
appearance. Many methods require synchronized multi-view
videos as inputs, and thus do not apply to in-the-wild pho-
tos [1, 3, 4, 13, 41, 57]. Recently, several neural rendering ap-
proaches [15,27–29,49,52] have shown promising results on
space-time view synthesis from monocular dynamic videos.
To interpolate both viewpoints and time, recent works either
directly interpolate learned latent codes [27, 28], or apply
splatting with estimated 3D scene flow fields [15]. How-
ever, these methods require densely sampled input views
with accurate camera poses, which are unavailable for our
two-image setting. Moreover, none of them explicitly inpaint
unseen regions.

3. Method
3.1. Problem statement and method overview

The input to our system is a pair of images (I0, I1) of a
dynamic scene taken at nearby times and camera viewpoints.
For tractable motion interpolation, we assume that motion
between I0 and I1 is roughly within the operating range of
a modern optical flow estimator. Our goal is to create 3D
Moments by independently controlling the camera viewpoint
while simultaneously interpolating scene motion to render
arbitrary nearby novel views at arbitrary intermediate times
t ∈ [0, 1]. Our output is a space-time video with cinematic
camera motions and interpolated scene motion.

To this end, we propose a new framework that enables
efficient and photorealistic space-time novel view synthesis

3907



Interpolate 
to time t

 & 
splat

I0

I1

Scene flows

…

Interpolate 
to time t

&
splat

Novel view
 at time t

 2D feature extractor Image synthesis networkLifting

Feature LDI

Feature LDI

Inpainted depth and color layers Feature layers

Inpainted depth and color layers Feature layers

Figure 2. Overview. Given near-duplicate photos (I0, I1), we align them with a homography and predict a dense depth map for each photo.
Each RGBD image is then converted to a color LDI, with occluded regions filled by depth-aware inpainting. A 2D feature extractor is
applied to each color layer of the inpainted LDIs to obtain feature layers, resulting in feature LDIs (F0,F1), where colors in the inpainted
LDIs have been replaced with features. To model scene motion, we compute the scene flow of each pixel in the LDIs using the predicted
depths and optical flows between the two input images. To render a novel view at intermediate time t, we lift the feature LDIs to a pair of 3D
point clouds (P0, P1) and bidirectionally move points along their scene flows to time t. We then project and splat these 3D feature points to
form forward and backward 2D feature maps (from P0 and P1, respectively) and their corresponding depth maps. We linearly blend these
maps with weight map Wt derived from spatio-temporal cues, and pass the result to an image synthesis network to produce the final image.

without the need for test-time optimization. Our pipeline is
illustrated in Fig. 2. Our system starts by aligning the two
photos into a single reference frame via a homography. The
key to our approach is building feature LDI from each of the
inputs, where each pixel in the feature LDI consists of its
depth, scene flow and a learnable feature.

To do so, we first transform each input image into a color
LDI [37] with inpainted color and depth in occluded regions.
We then extract deep feature maps from each color layer
of these LDIs to obtain a pair of feature LDIs (F0,F1). To
model scene dynamics, the scene flows of each pixel in the
LDIs are estimated based on predicted depth and optical
flows between the two inputs. Finally, to render a novel view
at intermediate time t, we lift the feature LDIs into a pair
of point clouds (P0,P1) and propose a scene-flow-based
bidirectional splatting and rendering module to combine the
features from two directions and synthesize the final image.
We now describe our method in more detail.

3.2. LDIs from near-duplicate photos

Our method first computes the underlying 3D scene ge-
ometry. As near-duplicates typically have scene dynamics
and very little camera motion, standard Structure from Mo-
tion (SfM) and stereo reconstruction methods fail to pro-
duce reliable results. Instead, we found that state-of-the-art

monocular depth estimator DPT [31] can produce sharp and
plausible dense depth maps for images in the wild. Therefore,
we rely on DPT to obtain the geometry for each image.

To account for small camera pose changes between the
views, we compute optical flow between the views using
RAFT [42], estimate a homography between the images us-
ing the flow, and then warp I1 to align with I0. Because
we only want to align the static background of two images,
we mask out regions with large optical flow, which often
correspond to moving objects, and compute the homography
using the remaining mutual correspondences given by the
flow. Once I1 is warped to align with I0, we treat their cam-
era poses as identical. To simplify notation, we henceforth
re-use I0 and I1 to denote the aligned input images.

We then apply DPT [32] to predict the depth maps for
each image. To align the depth range of I1 with I0 we esti-
mate a global scale and shift for I1’s disparities (i.e., 1/depth),
using flow correspondences in the static regions. Next, we
convert the aligned photos and their dense depths to an LDI
representation [37], in which layers are separated accord-
ing to depth discontinuities, and apply RGBD inpainting in
occluded regions as described below.

Prior methods for 3D photos iterate over all depth edges in
an LDI to adaptively inpaint local regions using background
pixels of the edge [11,38]. However, we found this procedure

3908



to be computationally expensive and the output difficult
to feed into a training pipeline. More recently, Jampani et
al. [7] employ a two-layer approach that would otherwise suit
our requirements but is restricted in the number of layers.
We therefore propose a simple, yet effective strategy for
creating and inpainting LDIs that flow well into our learning-
based pipeline. Specifically, we first perform agglomerative
clustering [19] in disparity space to separate the RGBD maps
into different depth layers (Fig. 3 (a)). We set a fixed distance
threshold above which clusters will not be merged, resulting
in 2 ∼ 5 layers for an image. We apply the clustering to
the disparities of both images to obtain their LDIs, L0 ,
{Cl

0,D
l
0}

L0

l=1 and L1 , {Cl
1,D

l
1}

L1

l=1, where Cl and Dl

represent the lth color and depth layer respectively, and L0

and L1 denote the number of layers constructed from I0 and
I1, respectively. Each color layer is an RGBA image, with
the alpha channel indicating valid pixels in this layer.

Next, we apply depth-aware inpainting to each color and
depth LDI layer in occluded regions. To inpaint missing
contents in layer l, we treat all the pixels between the lth

layer and the farthest layer as the context region (i.e., the
region used as reference for inpainting), and exclude all
irrelevant foreground pixels in layers nearer than layer l. We
set the rest of the lth layer within a certain margin from
existing pixels (see supplement) to be inpainted. We keep
only inpainted pixels whose depths are smaller than the
maximum depth of layer l so that inpainted regions do not
mistakenly occlude layers farther than layer l. We adopt
the pre-trained inpainting network from Shih et al. [38] to
inpaint color and depth at each layer. Fig. 3 (b) shows an
example of LDI layers after inpainting. Note that we choose
to inpaint the two LDIs up front rather than performing per-
frame inpainting for each rendered novel view, as the latter
would suffer from multi-view inconsistency due to the lack
of a global representation for disoccluded regions.

3.3. Space-time scene representation

We now have inpainted color LDIs L0 and L1 for novel
view synthesis. From each individual LDI, we could synthe-
size new views of the static scene. However, the LDIs alone
do not model the scene motion between the two photos. To
enable motion interpolation, we estimate 3D motion fields
between the images. To do so, we first compute 2D optical
flow between the two aligned images and perform a forward
and backward consistency check to identify pixels with mu-
tual correspondences. Given 2D mutual correspondences,
we use their associated depth values to compute their 3D lo-
cations and lift the 2D optical flow to 3D scene flow, i.e., 3D
translation vectors that displace each 3D point from one time
to another. This process gives the scene flow for mutually
visible pixels of the LDIs.

However, for pixels that do not have mutual correspon-
dences, such as those occluded in the other view or those

(a) LDI (b) Inpainted LDI

Figure 3. From an image to an inpainted LDI. Given an input
image and its estimated monocular depth [31], we first apply ag-
glomerative clustering [19] to separate the RGBD image into multi-
ple (in this example 3) RGBDA layers as shown in (a), then perform
context-aware color and depth inpainting [38] to obtain inpainted
RGBDA layers (b).

in the inpainted region, 3D correspondences are not well
defined. To handle this issue, we leverage the fact that the
scene flows are spatially smooth and propagate them from
well-defined pixels to missing regions. In particular, for each
pixel in L0 with a corresponding point in L1, we store its
associated scene flow at its pixel location, resulting in scene
flow layers initially containing only well-defined values for
mutually visible pixels. To inpaint the remaining scene flow,
we perform a diffusion operation that iteratively applies a
masked blur filter to each scene flow layer until all pixels in
L0 have scene flow vectors. We apply the same method to
L1 to obtain complete scene flow layers for the second LDI.
This process gives us complete forward and backward scene
flows for every pixel in L0 and L1, respectively.

To render an image from a novel camera viewpoint and
time with these two scene-flow-augmented LDIs, one simple
approach is to directly interpolate the LDI point locations to
the target time according to their scene flow and splat RGB
values to the target view. However, when using this method,
we found that any small error in depth or scene flow can lead
to noticeable artifacts. We therefore correct for such errors
by training a 2D feature extraction network that takes each
inpainted LDI color layer Cl as input and produces a corre-
sponding 2D feature map Fl. These features encode local
appearance of the scene and are trained to mitigate rendering
artifacts introduced by inaccurate depth or scene flow and
to improve overall rendering quality. This step converts our
inpainted color LDIs to feature LDIs F0 , {Fl

0,D
l
0}

L0

l=1,
F1 , {Fl

1,D
l
1}

L1

l=1, both of which are augmented with
scene flows. Finally, we lift all valid pixels for these fea-

3909



ture LDIs into a pair of point clouds P0 , {(x0, f0,u0)}
and P1 , {(x1, f1,u1)}, where each point is defined with
3D location x, appearance feature f , and 3D scene flow u.

3.4. Bidirectional splatting and rendering

Given a pair of 3D feature point clouds P0 and P1, we
wish to interpolate and render them to produce the image
at a novel view and time t. Inspired by prior work [2, 21],
we propose a depth-aware bidirectional splatting technique.
In particular, we first obtain the 3D location of every point
(in both point clouds) at time t by displacing it according
to its associated scene flow scaled by t: x0→t = x0 + tu0,
x1→t = x1 + (1 − t)u1. The displaced points and their
associated features from each direction (0 → t or 1 → t)
are then separately splatted into the target viewpoint using
differentiable point-based rendering [48], which results in
a pair of rendered 2D feature maps F0→t,F1→t and depth
maps D0→t,D1→t. To combine the two feature maps and
decode them to a final image, we linearly blend them based
on spatial-temporal cues. Our general principles are: 1) if t
is closer to 0 then F0→t should have a higher weight, and
vice versa, and 2) for a 2D pixel, if its splatted depth D0→t

from time 0 is smaller then the depth D1→t from time 1,
F0→t should be favored more, and vice versa. Therefore, we
compute a weight map to linearly blend the two feature and
depth maps as follows:

Wt =
(1− t) · exp(−β ·D0→t)

(1− t) · exp(−β ·D0→t) + t · exp(−β ·D1→t)
(1)

Ft = Wt · F0→t + (1−Wt) · F1→t (2)
Dt = Wt ·D0→t + (1−Wt) ·D1→t. (3)

Here β ∈ R+ is a learnable parameter that controls contribu-
tions based on relative depth. Finally, Ft and Dt are fed to a
network that synthesizes the final color image.

3.5. Training

We train the feature extractor, image synthesis network,
and the parameter β on two video datasets to optimize the
rendering quality, as described below.

Training datasets. To train our system, we ideally would
use image triplets with known camera parameters, where
each triplet depicts a dynamic scene from a moving camera,
so that we can use two images as input and the third one (at
an intermediate time and novel viewpoint) as ground truth.
However, such data is difficult to collect at scale, since it
either requires capturing dynamic scenes with synchronized
multi-view camera systems, or running SfM on dynamic
videos shot from moving cameras. The former requires a
time-consuming setup and is difficult to scale to in-the-wild
scenarios, while the latter cannot guarantee the accuracy
of estimated camera parameters due to moving objects and

potentially insufficient motion parallax. Therefore, we found
that existing datasets of this kind are not sufficiently large
or diverse for use as training data. Instead, we propose two
sources of more accessible data for joint training of motion
interpolation and view synthesis.

The first source contains video clips with small camera
motions (unknown pose). We assume that the cameras are
static and all pixel displacements are induced by scene mo-
tion. This type of data allows us to learn motion interpolation
without the need for camera calibration. The second source
is video clips of static scenes with known camera motion.
The camera motion of static scenes can be robustly esti-
mated using SfM and such data gives us supervision for
learning novel view synthesis. For the first source, we use
Vimeo-90K [51], a widely used dataset for learning frame
interpolation. For the second source, we use the Mannequin-
Challenge dataset [14], which contains over 170K video
frames of humans pretending to be statues captured from
moving cameras, with corresponding camera poses estimated
through SfM [56]. Since the scenes in this dataset including
people are (nearly) stationary, the estimated camera parame-
ters are sufficiently accurate for our purposes. We mix these
two datasets to train our model.

Learnable components. Our system consists of several
modules: (a) monocular depth estimator, (b) color and depth
inpainter, (c) 2D feature extractor, (d) optical flow estima-
tor and (e) image synthesis network. We could conceptu-
ally train this whole system, but in practice we train only
modules (c), (d), and (e), and use pretrained state-of-the-art
models [31,38] for (a) and (b). This makes training less com-
putationally expensive, and also avoids the need for the large-
scale direct supervision required for learning high-quality
depth estimation and RGBD inpainting networks.

Training losses. We train our system using image reconstruc-
tion losses. In particular, we minimize perceptual loss [9,55]
and l1 loss between the predicted and ground-truth images
to supervise our networks.

4. Experiments
4.1. Implementation details

For the feature extractor, we use ResNet34 [5] truncated
after layer3 followed by two additional up-sampling lay-
ers to extract feature maps for each RGB layer, which we
augment with a binary mask to indicate which pixels are
covered (observed or inpainted) in that layer. For the im-
age synthesis network, we adopt a 2D U-Net architecture.
For the optical flow estimator we use a pre-trained RAFT
network [42] and fine-tune its weights during training. We
use Pytorch3D [33] for differentiable point cloud rendering.
Rather than using a fixed radius for all points, we set the ra-
dius of a point proportionally to its disparity when rendering
a target viewpoint. This prevents foreground objects from

3910



becoming semi-transparent due to gaps between samples
when the camera zooms in.

We train our system using Adam [10], with base learning
rates set to 10−4 for the feature extractor and image synthe-
sis network, and 10−6 for the optical flow network [42]. We
train our model on 8 NVIDIA V100 GPUs for 250k itera-
tions for ∼ 3 days. We decrease the learning rates exponen-
tially during the optimization. Each training batch contains
8 triplets randomly sampled from the Vimeo-90K [51] and
MannequinChallenge datasets [14]. Within each triplet, the
start and end images are used as input and the intermediate
frame is used as ground truth. To train on MannequinChal-
lenge, we must calibrate the monocular depth maps so that
they align with the SfM point clouds. We estimate a disparity
scale and shift for each depth map to minimize the MSE error
between it and the depths of recovered SfM points. We dis-
card sequences with large alignment errors during training.
Please refer to the supplement for additional details.

4.2. Baselines

To our knowledge, there is no prior work that serves as a
direct baseline for our new task of space-time view synthesis
from the near-duplicate photos. One might consider dynamic-
NeRF approaches [15,27,29,49] as baselines. However, these
all require dense input views with known camera parameters
and sufficient motion parallax, and thus do not apply to
our scenario. Instead, as in NSFF [15], we found that we
can combine individual methods to form baselines for our
method. We describe three such baselines below.
Naive scene flow. As a simple baseline, we augment monoc-
ular depth with optical flow to get scene flow. Specifically,
we first compute the monocular depths of the two views
using DPT [31], and lift them into 3D to get two colored
point clouds. We then use 2D optical flows generated by
RAFT [42] to find pixels with mutual correspondences and
compute their scene flows in the forward and backward di-
rections. The two colored point clouds are then separately
rendered to the target viewpoint at the intermediate time,
producing two RGB images. Finally, we linearly blend the
two rendered images based on the time t to obtain the final
view. Note that this baseline does not perform inpainting.
Frame interpolation → 3D photo. Existing methods for
frame interpolation and novel view synthesis can be com-
bined to form a baseline for our task. Specifically, to synthe-
size an image at the novel time and viewpoint, we first adopt
a state-of-the-art frame interpolation method, XVFI [39],
to synthesize a frame at the intermediate time. We then ap-
ply 3D photo inpainting [38] to turn the interpolated frame
into an inpainted LDI and render it from a desired view-
point through a constructed mesh. For a fair comparison,
we upgrade the 3D photo method to use the state-of-the-art
monocular depth backbone DPT [31], i.e., the same monoc-
ular depth predictor we use in our approach.

3D photo → frame interpolation. This baseline reverses
the order of operations in the aforementioned method. First,
we apply the 3D photo [38] to each of the near-duplicates
and render them to the target viewpoint separately. We then
apply XVFI [39] to these two rendered images to obtain a
final view at intermediate time t.

4.3. Comparisons on public benchmarks

Evaluation datasets. We evaluate our method and base-
lines on two public multi-view dynamic scene datasets: the
NVIDIA Dynamic Scenes Dataset [52] and the UCSD Multi-
View Video Dataset [16]. The NVIDIA dataset consists of 9
scenes involving more challenging human and non-human
motions captured by 12 synchronized cameras at 60FPS. The
UCSD dataset contains 96 multi-view videos of dynamic
scenes, which capture diverse human interactions in outdoor
environments. The videos are recorded by 10 synchronized
action cameras at 120FPS. We run COLMAP [36] on each
of the multi-view videos (masking out dynamic components
using provided motion masks) to obtain camera parameters
and sparse point clouds of the static scene contents.
Experimental setup. To evaluate rendering quality, we sam-
ple a triplet (two input and one target view) every 0.5 seconds
from the multi-view videos. In each triplet, we select the two
input views to be at the same camera viewpoint and two
frames apart, and the target view to be the middle frame at a
nearby camera viewpoint. We compare the prediction with
the ground truth at the same time and viewpoint. All methods
we evaluate use monocular depths that are only predicted
up to an unknown disparity scale and shift. To properly ren-
der images into the target viewpoint and compare with the
ground truth, we need to obtain aligned depth maps that are
consistent with the reconstructed scenes. Similar to Sec. 4.1,
we align the predicted depths with the depth from SfM point
clouds. Please refer to the supplement for more detail.
Quantitative comparisons. We evaluate the rendering qual-
ity of each method using three standard error metrics: PSNR,
SSIM and LPIPS [55]. Tab. 1 shows comparisons between
our method and the baselines. Our method consistently out-
performs the baselines in all error metrics. In particular, our
LPIPS scores are significantly better, suggesting better per-
ceptual quality and photorealism of rendered images for
our approach. Note that all the methods have relatively low
PSNR/SSIM because these metrics are sensitive to pixel mis-
alignment, and inaccurate geometry from monocular depth
networks can cause the rendered images to not fully align
with the ground truth. But since all methods use DPT [31]
depths, this issue does not affect the relative comparisons.
Qualitative comparisons. We show qualitative compar-
isons on the UCSD dataset in Fig. 4. Our method generates
the fewest artifacts while preserving the most details in the
scene. The naive scene flow baseline produces noticeable
holes. Applying 3D Photos and then frame interpolation

3911



NVIDIA Dynamic Scene [52] UCSD Multi-View Video [16]
Method PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS↓

Naive Scene Flow 19.34 0.681 0.177 23.60 0.837 0.120
Frame Interpolation [39] → 3D Photo [38] 21.01 0.676 0.189 25.70 0.852 0.123
3D Photo [38] → Frame Interpolation [39] 21.18 0.681 0.192 25.96 0.858 0.126
Ours 21.72 0.702 0.145 26.54 0.864 0.078

Table 1. Quantitative comparisons of novel view and time synthesis. Our method outperforms all the baselines in all error metrics. See
Sec. 4.2 for the descriptions of baselines.

(a) (b) (c) (d) (e)

Figure 4. Qualitative comparisons on the UCSD dataset [16].
From left to right are (a) naive scene flow, (b) frame interpola-
tion [39] → 3D Photo [38], (c) 3D Photo [38]→ frame interpola-
tion [39], (d) our method, and (e) ground truth.

leads to blurry disoccluded regions as the frame interpola-
tor [39] is not trained to interpolate between inconsistently
inpainted images. Applying frame interpolation and then 3D
Photos leads to strong flickering artifacts due to inconsistent
inpainting in each frame (see supplement video).

4.4. Comparisons on in-the-wild photos

We also evaluate our approach and the baselines quali-
tatively on in-the-wild near-duplicate photos. We collected
these photos from our colleagues and their friends and fam-
ilies and obtained their consent to present these photos in
this manuscript. We show comparisons of views generated
by each method in Fig. 5. In particular, we show two dif-
ferent kinds of camera motions, zooming in and tracking,
and rendering a novel view at intermediate time t = 0.5.
Our method achieves overall better rendering quality with
fewer visual artifacts, especially near moving objects and
occlusion boundaries. We refer readers to the supplementary
video for better visual comparisons of these generated 3D

PSNR↑ SSIM↑ LPIPS↓

No features 21.16 0.693 0.173
No inpainting 21.33 0.685 0.145
No bidirectional 21.56 0.694 0.151
Full model Ours 21.72 0.702 0.145

Table 2. Ablation studies on the NVIDIA dataset [52]. Each com-
ponent of our system leads to an increase in rendering quality.

Moments.

4.5. Ablations and analysis

Ablation studies. We conduct ablation studies to justify our
design choices, as shown in Tab. 2. For “No features”, in-
stead of learning features we directly use RGB colors from
the input photos to splat and render novel views. For “No
inpainting”, we train the system without inpainting color
and depth in our LDIs and rely on the image synthesis net-
work to fill in disoccluded regions in each rendered view
separately (prone to temporal inconsistency). For “No bidi-
rectional warping”, we use only single-directional scene flow
from time 0 to time 1.
Performance. Our method can be applied to new near-
duplicate photo pairs without requiring test-time optimiza-
tion. We test our runtime on an NVIDIA V100 GPU. Given
a duplicate pair of images with resolution 768 × 576, it
takes 4.48s to build LDIs, extract feature maps, and build the
3D feature scene flow. These operations are performed once
for each duplicate pair. The projection-and-image-synthesis
stage takes 0.71s to render each output frame.

5. Discussion and Conclusion
We presented a new task of creating 3D Moments from

near-duplicate photos, allowing simultaneous view extrap-
olation and motion interpolation for a dynamic scene. We
propose a new system for this task that models the scene as a
pair of feature LDIs augmented with scene flows. By training
on both posed and unposed video datasets, our method is
able to produce photorealistic space-time videos from the
near-duplicate pairs without substantial visual artifacts or
temporal inconsistency. Experiments show that our approach

3912



Input near-duplicate pairs Interp.→3D Photo 3D Photo→Interp. Ours

Figure 5. Qualitative comparisons on in-the-wild photos. Compared with the baselines, our approach produces more realistic views with
significantly fewer visual artifacts, especially in moving or disoccluded regions. Please see the supplemental video for animated comparisons.

outperforms the baseline methods both quantitatively and
qualitatively on the tasks of space-time view synthesis.
Limitations and future work. Our method inherits some
limitations of monocular depth and optical flow methods.
Our method does not work well for photos with complex
scene geometry or semi-transparent objects. In addition, our
method tends to fail in the presence of large and non-linear
motions as well as challenging self-occlusions, such as hands.
Please refer to the supplementary video for failure cases. Fu-

ture work includes designing an automatic selection scheme
for photo pairs suitable for 3D Moment creation, automati-
cally detecting failures, better modeling of large or non-linear
motions, and extending the current method to handle more
than two near-duplicate photos.

Acknowledgements. We thank Richard Tucker, Tianfan
Xue, Andrew Liu, Jamie Aspinall, Fitsum Reda and For-
rester Cole for help, discussion and support.

3913



References
[1] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and

Srinivasa Narasimhan. 4d visualization of dynamic events
from unconstrained multi-view videos. In CVPR, pages 5366–
5375, 2020. 2

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiy-
ong Gao, and Ming-Hsuan Yang. Depth-aware video frame
interpolation. In CVPR, June 2019. 2, 5

[3] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and
Tobias Ritschel. X-fields: Implicit neural view-, light-and
time-image interpolation. ACM TOG, 39(6), 2020. 2

[4] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light field
video with a layered mesh representation. ACM TOG, 39(4),
July 2020. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 5

[6] Jun ho Park, Chul Lee, and Chang-Su Kim. Asymmetric
bilateral motion estimation for video frame interpolation. In
ICCV, 2021. 2

[7] V. Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar,
Richard Tucker, Michael Krainin, Dominik Philemon Kaeser,
William T. Freeman, D. Salesin, Brian Curless, and Ce Liu.
SLIDE: Single image 3d photography with soft layering and
depth-aware inpainting. In ICCV, 2021. 2, 4

[8] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang,
Erik G. Learned-Miller, and Jan Kautz. Super slomo: High
quality estimation of multiple intermediate frames for video
interpolation. In CVPR, pages 9000–9008, 2018. 2

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 5

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 6

[11] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley,
Francis Ge, Yangming Chong, Josh Patterson, Jan-Michael
Frahm, Shu Wu, Matthew Yu, Peizhao Zhang, Zijian He,
Péter Vajda, Ayush Saraf, and Michael F. Cohen. One shot 3d
photography. ACM Transactions on Graphics (TOG), 39:76:1
– 76:13, 2020. 1, 2, 3

[12] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive
collaboration of flows for video frame interpolation. In CVPR,
pages 5316–5325, 2020. 2

[13] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, S. Love-
grove, Michael Goesele, and Zhaoyang Lv. Neural 3d video
synthesis. ArXiv, abs/2103.02597, 2021. 2

[14] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah
Snavely, Ce Liu, and William T Freeman. Learning the depths
of moving people by watching frozen people. In CVPR, pages
4521–4530, 2019. 2, 5, 6

[15] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of
dynamic scenes. In CVPR, 2021. 1, 2, 6

[16] Kai-En Lin, Lei Xiao, Feng Liu, Guowei Yang, and Ravi
Ramamoorthi. Deep 3d mask volume for view synthesis of
dynamic scenes. ArXiv, abs/2108.13408, 2021. 6, 7

[17] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651–15663,
2020. 2

[18] Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and
Chao Dong. Enhanced quadratic video interpolation, 2020. 2

[19] Oded Maimon and Lior Rokach. Data Mining And Knowledge
Discovery Handbook. 2005. 4

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 2

[21] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, pages 5436–5445, 2020. 2, 5

[22] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpo-
lation via adaptive convolution. In CVPR, pages 2270–2279,
2017. 2

[23] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive separable convolution. In ICCV, pages
261–270, 2017. 2

[24] Simon Niklaus, Long Mai, and Oliver Wang. Revisiting
adaptive convolutions for video frame interpolation. arXiv
preprint arXiv:2011.01280, 2020. 2

[25] Simon Niklaus, Long Mai, Jimei Yang, and F. Liu. 3d ken
burns effect from a single image. ACM TOG, 38:1 – 15, 2019.
1, 2

[26] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
Bmbc: Bilateral motion estimation with bilateral cost volume
for video interpolation. In ECCV, pages 109–125. Springer,
2020. 2

[27] Keunhong Park, U. Sinha, Jonathan T. Barron, Sofien Bouaziz,
Dan B. Goldman, Steven M. Seitz, and Ricardo Martı́n Bru-
alla. Deformable neural radiance fields. In ICCV, 2021. 1, 2,
6

[28] Keunhong Park, U. Sinha, Peter Hedman, Jonathan T. Barron,
Sofien Bouaziz, Dan B. Goldman, Ricardo Martin-Brualla,
and Steven M. Seitz. Hypernerf: A higher-dimensional rep-
resentation for topologically varying neural radiance fields.
SIGGRAPH Asia, abs/2106.13228, 2021. 1, 2

[29] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In CVPR, 2021. 2, 6

[30] M. Usman Rafique, Hunter Blanton, Noah Snavely, and
Nathan Jacobs. Generative appearance flow: A hybrid ap-
proach for outdoor view synthesis. In BMVC, 2020. 2

[31] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In ICCV, 2021. 3, 4,
5, 6

[32] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE TPAMI, 2020. 3

3914



[33] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 5

[34] Chris Rockwell, David F. Fouhey, and Justin Johnson. Pix-
elsynth: Generating a 3d-consistent experience from a single
image. In ICCV, 2021. 2

[35] Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-
free view synthesis: Transformers and no 3d priors. In ICCV,
2021. 2

[36] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, pages 4104–4113, 2016.
6

[37] Jonathan Shade, Steven Gortler, Li-wei He, and Rick Szeliski.
Layered depth images. In SIGGRAPH, 1998. 3

[38] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In CVPR, pages 8028–8038, 2020. 1, 2, 3, 4, 5, 6,
7

[39] Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: ex-
treme video frame interpolation. In ICCV, 2021. 2, 6, 7

[40] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi
Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the bound-
aries of view extrapolation with multiplane images. In CVPR,
pages 175–184, 2019. 2

[41] Timo Stich, Christian Linz, Georgia Albuquerque, and Mar-
cus Magnor. View and time interpolation in image space. In
Computer Graphics Forum, volume 27, pages 1781–1787.
Wiley Online Library, 2008. 2

[42] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402–419.
Springer, 2020. 3, 5, 6

[43] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi,
K. Sunkavalli, R. Martin-Brualla, T. Simon, J. Saragih, M.
Nießner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y. Zhu, C.
Theobalt, M. Agrawala, E. Shechtman, D. B Goldman, and M.
Zollhöfer. State of the Art on Neural Rendering. Computer
Graphics Forum (EG STAR 2020), 2020. 2

[44] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, Yifan Wang, Christoph Lassner,
Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-
bardi, Tomas Simon, Christian Theobalt, Matthias Niessner,
Jonathan T. Barron, Gordon Wetzstein, Michael Zollhoefer,
and Vladislav Golyanik. Advances in neural rendering, 2021.
2

[45] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In CVPR, June 2020. 2

[46] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-
structured 3d scene inference via view synthesis. In ECCV,
pages 302–317, 2018. 2

[47] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In CVPR, 2021.
2

[48] Olivia Wiles, Georgia Gkioxari, R. Szeliski, and J. John-
son. Synsin: End-to-end view synthesis from a single image.
CVPR, pages 7465–7475, 2020. 2, 5

[49] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In CVPR, 2021. 1, 2, 6

[50] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation, 2019. 2

[51] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. IJCV, 127(8):1106–1125, 2019. 5, 6

[52] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera. In CVPR,
pages 5336–5345, 2020. 2, 6, 7

[53] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 2

[54] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

[55] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 5, 6

[56] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view syn-
thesis using multiplane images. ACM TOG, 37:1 – 12, 2018.
2, 5

[57] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM TOG,
23(3):600–608, 2004. 2

3915


