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Abstract

Although the Trajectory Prediction (TP) model has
achieved great success in computer vision and robotics
fields, its architecture and training scheme design rely on
heavy manual work and domain knowledge, which is not
friendly to common users. Besides, the existing works ig-
nore Federated Learning (FL) scenarios, failing to make
full use of distributed multi-source datasets with rich ac-
tual scenes to learn more a powerful TP model. In this pa-
per, we make up for the above defects and propose ATPFL
to help users federate multi-source trajectory datasets to
automatically design and train a powerful TP model. In
ATPFL, we build an effective TP search space by analyz-
ing and summarizing the existing works. Then, based on
the characters of this search space, we design a relation-
sequence-aware search strategy, realizing the automatic de-
sign of the TP model. Finally, we find appropriate feder-
ated training methods to respectively support the TP model
search and final model training under the FL framework,
ensuring both the search efficiency and the final model per-
formance. Extensive experimental results show that ATPFL
can help users gain well-performed TP models, achieving
better results than the existing TP models trained on the
single-source dataset.

1. Introduction
Human Trajectory Prediction (TP) models aim to predict

the movement of pedestrians [13, 20]. Their high perfor-
mance greatly depends on abundant trajectory data. How-
ever, in real applications, the TP data sources are generally
monitor devices scattered across different regions. They
contain trajectory data in a variety of scenarios but can not
be shared due to privacy protection, which brings limita-
tions to the existing TP works. In order to break the TP data
island problem, Federated Learning (FL) framework needs
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Figure 1. ATPFL combines AutoML with FL techniques on TP
area, aiming to utilize multi-source TP datasets to jointly design
and train the powerful TP model.

to be introduced to unite these multiple data sources jointly
obtain a more robust and general TP model in a distributed
and privacy-preserving manner. While this idea brings two
major challenges.

On one hand, the design of TP models under the FL
framework is difficult. Specifically, the TP model de-
sign process requires both heavy manual work and domain
knowledge. However, FL users are generally non-experts.
They fail to realize the independent development without
the domain knowledge, which brings great obstacles to the
general application of TP models under the FL framework.

On the other hand, the FL method suitable for TP mod-
els has not been studied or discussed yet. The existing FL
works are mainly built around CNN [6,8,19] without paying
attention to TP models. How to train TP models effectively
under the FL framework remains to be further studied.

In this paper, we aim to tackle the above two challenges
and propose ATPFL algorithm, which combines Automated
Machine Learning (AutoML) with FL (as is shown in Fig-
ure 1), to federate multi-source trajectory datasets to auto-
matically design and train powerful TP models.
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For the first challenge, in ATPFL, we design an AutoML
algorithm suitable for the TP area, thus achieving the TP
model’s automatic design. We summarize the design pro-
cess of the TP model, collect available operations for each
step and identify the limitation of each operation by analyz-
ing the existing TP works. We integrate the above experi-
ence and knowledge in a relation graph and thus construct
an effective search space for the TP area.

Besides, considering the complex restrictive relations,
temporal relations and technical connections among op-
erations, we design a relation-sequence-aware strategy to
effectively and efficiently explore the TP search space.
This strategy can utilize the constructed relation graph,
Graph Neural Network (GNN) [4] combined with Recurrent
Neural Network (RNN) to learn high-level features of the
selected operation sequence, and thus provide an effective
reference for designing subsequent steps. Also, it can avoid
invalid model design schemes by consulting the relation
graph at each step, thus greatly improving the search effi-
ciency. Compared with the traditional search strategy for
AutoML which ignores relations among operations during
the model design [10, 12, 21], our strategy is more suitable
for the TP area.

As for the second challenge, we find appropriate feder-
ated training methods for TP models, enabling ATPFL to
perform effectively and efficiently under the FL framework.
We identify a method with fast convergence to support the
fast evaluation of TP model candidates in AutoML, thus en-
suring the search efficiency of ATPFL. Besides, we choose
the most effective federated training method to train the op-
timal TP model discovered by ATPFL, so as to further im-
prove the final performance of ATPFL.

Our major contributions are summarized as follows.

1. Knowledge: We construct a detailed knowledge graph
for operations in the TP area. This graph can deepen
our understanding of TP models and provide favorable
help for further study.

2. Novelty: We simultaneously break the data island
and professional restrictions, empower non-experts
to combine multi-source trajectory datasets to design
powerful TP models automatically.

3. Effectiveness: Extensive experiments show that our de-
signed search strategy and selected federated training
methods are well suited to the TP area, and helpful for
obtaining more powerful TP models, which demon-
strate the effectiveness of ATPFL.

2. Related Works
2.1. Trajectory Prediction Models

The deep neural network based TP models [1, 2, 11, 13,
14,16,20,25,29,30,32] have emerged recently as powerful

tools for forecasting future trajectories of humans. Social-
LSTM [1] is one of the earliest deep TP models, which ap-
plies an RNN and a pooling mechanism to model the mo-
tion pattern of pedestrians and form social features between
them. Social-GAN [11] extends Social-LSTM into a gener-
ative adversarial model to further explore the multimodality
of human behaviors and achieve better results. STGAT [13]
presents a novel spatial-temporal graph attention network to
capture both spatial and temporal features of the crowd in-
teractions, and achieves good performance. More recently,
Social-STGCNN [20] proposes to model the pedestrians’
trajectories as a spatio-temporal graph, and directly manipu-
lates over the graph to model pedestrians’ interactions using
a graph Convolutional Neural Network(CNN) and a tempo-
ral CNN.

These existing neural models focus on different insights
to solve the TP problems, having made promising progress
in real applications. In this paper, we aim to flexibly use the
model design experience provided by them to support the
automatic design of TP models.

2.2. Federated Training Methods

FL [31] aims to train a high-quality centralized model
based on datasets that are distributed across multiple clients
without sharing their data. It makes it possible to vigor-
ously develop neural models in the privacy-preserving era,
and attracts great attention of scholars. FedAvg [19] is the
first federated training method designed for neural models.
It uses local SGD updates in each client and builds a global
model from a subset of clients with non-i.i.d. data. Per-
FedAvg [7] adds the idea of personalization to FedAvg. It
allows each client to perform one gradient update based on
the global model using its local dataset to obtain a person-
alized model solution. More recently, pFedMe [6] was pro-
posed to further improve the performance of Per-FedAvg. It
allows each client to use any optimization method for multi-
step updates without deviating too much from the global
model parameters to obtain better personalized model so-
lutions. It can parallelly optimize the personalized models
with low complexity and achieve good results.

These federated training methods on neural models pro-
vide strong supports for TP model training under the FL
framework. But previous works only analyze their perfor-
mance on classification models or other motion prediction
models [9, 18], while ignoring their characteristics on TP
ones. In this paper, we aim to fill the gap and identify ap-
propriate federated training methods for TP models, ensur-
ing the search efficiency and final performance of ATPFL
under the FL framework.

2.3. Neural Architecture Search Algorithms

The Neural Architecture Search (NAS) which leans to
automatically search for good neural architectures [27],
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is an important research topic in AutoML. The existing
NAS algorithms can be classified into three categories,
Reinforcement Learning (RL) based methods, Evolutionary
Algorithm (EA) based methods and gradient-based meth-
ods. The RL-based NAS [3, 10] uses an RNN as the con-
troller to determine a sequence of operators and connection
tokens, thus constructing networks sequentially. EA-based
NAS [5,24] initializes a population of architectures first and
then evolves them with their validation accuracies as fit-
nesses. As for the gradient-based NAS methods [12,17,21],
they relax the search space to be continuous, so that the ar-
chitecture can be optimized with respect to its validation
performance by gradient descent.

These NAS algorithms are generally designed for CNN
or GNN classification models, where operations in the
search space do not have complex relations. They are un-
able to tackle valuable connections among TP operations
to further improve the final performance, which is not well
suited for TP-based NAS problems. This paper aims to fill
this gap and design a more suitable NAS solution for the TP
area, realizing efficient and automatic TP model design.

3. Our Approach

In this section, we first design an AutoML algorithm to
realize the automated design of the TP model in ATPFL
(Section 3.1). Then, we determine the appropriate feder-
ated training methods to guide ATPFL to effectively and
efficiently work under the FL framework (Section 3.2).

3.1. Automatic design of TP model

We utilize the existing TP model design experience to
construct an effective TP search space ( 3.1.2), and design a
relation-sequence-aware search strategy to guide ATPFL to
efficiently search for a high-performance TP model ( 3.1.3).
Section 3.1.1 gives the notations on the TP model and de-
fines the search target of ATPFL.

3.1.1 Notations and Search Target

Notations. Assume there are N pedestrians involved in a
scene, represented as p1, p2, . . . , pN . The position of pedes-
trian pi at time-step t is denoted as pti = (xti, y

t
i), and the

set of observed history positions of all pedestrians over a
time period tobs is denoted as X =

{
p1:tobs
i

∣∣i = 1, . . . , N
}

.
A TP modelM can predict the upcoming trajectories of all
pedestrians over a future time horizon tpred, which is de-

noted by Y =
{
p
tobs+1:tpred

i

∣∣∣i = 1, . . . , N
}

, according to

X. We use Ŷ =M (X) to represent the prediction of model
M, and compare Ŷ and Y using the Average Displacement
Error (ADE) metric or a certain loss function, so as to ex-
amine the effectiveness of the TP modelM.

Search Target. Given a TP search space S and a feder-
ated TP dataset D = {D1, . . . , DC} that are distributed and
non-shared across C clients, the AutoML part of ATPFL
algorithm aims to find an optimal TP modelM∗ ∈ S that
minimizes the overall validation ADE score on D.

M∗ = argmin
M∈S

ADEDval
(W∗
M,M)

s.t.W∗
M = argmin

W
LDtrain

(W,M)
(1)

where LDtrain(W,M) denotes the overall training loss of
TP model M on D under weights W, and W∗

M can be
learned using a federated training method.

3.1.2 Search Space

We sum up 5 stages of the TP model design by learning
from the existing TP models (these stages are common to
existing TP models). We apply 10 parameters to describe
the main contents of these stages and extract effective oper-
ations of each parameter from 5 state-of-the-art TP models,
including SGCN [26] (M1), LB-EBM [22] (M2), Social-
STGCNN [20] (M3), Social Ways [2] (M4), STGAT [13]
(M5). Table 1 summarizes all contents of this part.

In ATPFL, we utilize the experience information in Ta-
ble 1 to construct an effective TP search space. Specifi-
cally, apart from the 10 parameters defined above, which
outline the design process of a TP model, we add two pa-
rameters: FExMadd and FEnMadd to TP search space,
corresponding to an additional group of feature extraction
and enhancement operation in Stage 2, so as to acquire more
powerful TP models. We apply these 12 parameters to de-
scribe the design scheme of a TP model, allowing them to
be set to their options in the fourth column of Table 1, and
thus obtain a search space with diversified TP models (about
1.3×106 TP models design scheme contained in the search
space).

3.1.3 Relation-Sequence-Aware Search Strategy

In this part, we aim to design an effective strategy for
ATFFL to efficiently search for the high-performance TP
model from the huge search space designed in Section 3.1.2.

Features of TP search space. We notice that TP search
space is more complex than the traditional CNN search
space, where operations are simple and do not have restric-
tions on use. There are multiple associations among opera-
tions in the TP search space (Details are shown in Figure 2):

R1 Temporal Relations. Each operation in the search
space corresponds to only one of the stages of TP
model design, and the operations of Stage 1 to Stage
5 should be sequentially selected (as follows) during
the TP model design process.
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Table 1. 5 stages of the TP model design. The 4th column lists options of 10 parameters used to describe a TP model. Options are extracted
from 5 TP models: SGCN [26] (M1), LB-EBM [22] (M2), Social-STGCNN [20] (M3), Social Ways [2] (M4), STGAT [13] (M5).

Stage Function Description Involved Operations (Parameters) Solutions (Parameters’ Options) Provided by Existing Works

Stage 1: Data
Preprocessing
Stage

Enhance the representa-
tion power of the input.

Input Processing Method (IPM)
X′ = IPM(X)

IPM1: Real Position (M2)
IPM2: Relative Position (M1,M3,M5)
IPM3: Real + Relative Position (M4)

Stage 2: Feature
Extraction
Stage

Capture features of the
historical trajectory.

Feature Extraction Method (FExM)
F = FExM(X′,X)

FExM1: Sparse Graph Convolution Network (M1)
FExM2: Multilayer Perceptron Network (M2)
FExM3: Spatio-Temporal Graph CNN (M3)
FExM4: LSTM based Motion Encoder Module (M4)
FExM5: GAT-based Crowd Interaction Modeling (M5)

Feature Enhancement Method (FEnM)
F′ = FEnM(X′,X,F)

FEnM1: None (M1,M3)
FEnM2: Latent Belief Energy-based Module (M2)
FEnM3: Attention Pooling Module (M4)
FEnM4: LSTM-based Temporal Correlation Modeling (M5)

Stage 3: Feature
Fusion Stage

Combine features of his-
torical trajectory.

Feature Fusion Method (FFM)
Fall = FFM(F,F′)

FFM1: Concentrate All Features in Stage 2 (M1,M2,M3)
FFM2: Concentrate All Features in Stage 2 and Noise (M4,M5)

Stage 4:
Trajectory
Prediction Stage

Transform the output of
the Stage 3 into the
expected prediction.

Prediction Processing Structure
(PPS) Ŷ = PPS(Fall)

PPS1: Time Convolution Network (M1)
PPS2: Time-Extrapolator Convolution Neural Network (M3)
PPS3: Multiple Fully-Connected Layer (M2,M4)
PPS4: LSTM + Fully-Connected Layer (M5)

Output Contents (OC)
OC1: Predict Coordinates Sequentially (M4)
OC2: Predict Coordinates Directly (M2,M5)
OC3: Predict Parameters of Bi-Variate Gaussian Distribution (M1,M3)

Stage 5: Model
Training Stage

Determine suitable
training setting for the
designed Trajectory
Prediction model.

Loss Function (LF)
LF1: L2 loss (M2,M4,M5)
LF2: Distribution-based Negative Log-Likelihood Loss (M1,M3)

Training Mode (TM)
TM1: General LF-based Model Training (M1,M2,M3)
TM2: Generative Adversarial Network based Model Training (M4)
LM3: Variety Loss based Model Training (M5)

Learning Rate (LR) LR1: 1e-2 (M1,M3) LR2: 1e-4 (M2)
LR3: 0.0015 LR4: 1e-3 (M4,M5)

Optimization Function (OF) OF1: Adam (M1,M2,M4,M5) OF2: SGD (M3)

IPM→FExM→FEnM→FExMadd→FEnMadd

→FFM→PPS→OC→LF→TM→LR→OF

R2 Restrictive Relations. Some operations may fail to
cooperate with certain operations to construct effective
TP models due to special requirements.

For example, LF2 in Table 1 is designed for TP mod-
els which estimate bi-variate distribution (OC3), not
applicable to OC1 and OC2. FExM2 is unable to
deal with variable-length trajectories, and thus fail to
predict coordinates sequentially (OC1).

R3 Technical Connections. Some operations may apply
the same type of neural architectures or techniques.

For example, both FExM3 and PPS1 use CNN,
FExM5 and FEnM3 apply the attention mechanism.

These association relationships are valuable and can help
improve the search performance: R1–R3 can assist search
strategy better understanding characteristics of each opera-
tion, obtaining better TP models; R1 and R2 can guide the
search strategy to avoid invalid operation combinations and
thus improve the search efficiency. In addition, we note that
the valid and optimal options of the subsequent operations
can be affected by the selected TP operation sequence.

Relation-Sequence-Aware Strategy. Based on above
features, we design a relation-sequence-aware search strat-
egy in ATPFL, which can utilize relational information
among operations, combining with the historical operation
sequence to sequentially and efficiently select the optimal
subsequent operations, and thus obtain effective TP mod-
els. Figure 2 gives the overall framework of our strategy.

Our strategy contains two parts, i.e., GNN based embed-
ding learning and masked RNN optimizer.

Part1: GNN based Embedding Learning. We firstly
use GNN to learn the effective embedding representation of
each operation from relational information in the TP search
space. We treat the operations in search space as nodes
and transform R1–R3 into three different types of edges
to connect related operation pairs, and thus construct a het-
erogeneous graph to represent relations among operations.
Then, we introduce FAGCN [4], an effective GCN with a
self-gating mechanism, to automatically learn associations
between nodes and obtain high-level node features by adap-
tively integrating related neighboring information.

Note that different types of neighbors may make differ-
ent contributions to the final embedding of the target oper-
ation node. Therefore, we make FAGCN adaptively learn
the importance of different edge types on the target node.
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Figure 2. The overall framework of the relation-sequence-aware search strategy in ATPFL. Note that R1, i.e., temporal relation, exists
between adjacent operations with different types and we omit these edges in the heterogeneous graph.

The embedding learning formula for each operation in the
search space is as follows:

E′i = ε · xi +
3∑
k=1

∑
j∈Ni,Rk

αi,j,Rk√
di,Rk

dj,Rk

xj (2)

where xi, Ni,Rk
and di,Rk

denote the initial embedding
representation, neighbor set and node degree w.r.t. edge Rk

of node i, respectively. The attention coefficients αi,j,Rk

are computed based on the trainable parameter vector aRk
.

αi,j,Rk
= tanh(a>Rk

[xi,xj ]) (3)

Part2: Masked RNN Optimizer. Then, we use RNN,
heterogeneous graph and the learned high-level operation
embeddings to sequentially and efficiently obtain the opti-
mal and valid TP model design scheme.

We fed embeddings of the selected operations o1∼t =
(o1, . . . , ot) into RNN sequentially to extract the effective
features Fo1∼t of the historical operation sequence. And
predict the possibility Po1∼t

t+1 that each next-step operation is
the optimal according to Fo1∼t

.

Po1∼t
t+1 = softmax (FC (RNN (Eo1 , . . . ,Eot))) (4)

Po1∼t
t+1 ∈ R|St+1|, where St+1 denotes the set of opera-

tions in the next step, can guide us to explore more promis-
ing TP models, but may recommend invalid TP model de-
sign schemes due to ignorance of R2 restrictive relations
among operations. In order to avoid invalid exploration and
further improve the search efficiency, we construct a mask
vector Mo1∼t

t+1 ∈ R|St+1| for Po1∼t
t+1 to shield out invalid next-

step operations. Specifically, we identify R2 neighbors of
o1∼t from St+1, setting their mask values to 0 while keep
the other values to 1, and thus obtain Mo1∼t

t+1 . With the help

of Mo1∼t
t+1 , Po1∼t

t+1 is modified to P̃o1∼t
t+1 , and thus RNN can

filter out the effective operation options and obtain the next
best operation more efficiently.

P̃o1∼t
t+1 = softmax

(
Mo1∼t
t+1 · P

o1∼t
t+1

)
(5)

Repeat above steps, then a promising and valid TP model
design scheme can be obtained.

As for the model parameters θ involved in the GCN and
RNN optimizer, we optimize their weights following the re-
inforce policy [10, 28].

∇θEP (o1∼12;θ)[Reward]

=

12∑
t=1

EP (o1∼t;θ)

[
∇θ log P̃o1∼t−1

t (Reward− b)
] (6)

where b is an exponential moving average of the previous
model rewards, and Reward is the negative ADE score of
the TP model generated by RNN optimizer. This reinforce
strategy can effectively update the model weights by max-
imizing the expected benefits of the strategy, guiding our
search strategy to recommend better TP models.

3.2. Federated Training of the TP Model

ATPFL needs to find suitable federated TP model train-
ing methods, to be able to work effectively and efficiently
under the FL framework.

Specifically, the optimal model search stage of ATPFL
generally needs to evaluate many TP models, and requires
a federated training method with fast convergence. In this
way, ATPFL can distinguish TP models with different per-
formances using few federated training epochs, and thus re-
ducing evaluation cost and increasing search efficiency. In
addition, the optimal TP model training stage of ATPFL re-
quires the most effective federated training method. In this
way, ATPFL can gain a more powerful TP model under the
FL framework, further improving the final performance.

Based on the above demands, we analyze the conver-
gence speed and federated performance of three federated
training methods, including FedAvg [19], Per- FedAvg [7]
and pFedMe [6], on TP models, aiming to find appropriate
ones to work for ATPFL.

Three Federated Training Methods. Given a dataset
D = {D1, . . . , DC} that are distributed and non-shared
across C clients, federated training methods optimize the
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(a) Social-STGCNN Model (b) STGAT Model

Figure 3. Performance curves of different federated training meth-
ods on TP models and a federated TP dataset. We simulates
this federated dataset by equally distributing trajectory data of
ETH [23] and UCY [15] to 20 clients.

global model weight w as follows.

∇F (w) =
1

C

C∑
i=1

∇Fi(w)

w = w + η∇F (w)

(7)

where Fi(w) is the local training loss of client i, and is cal-
culated differently in different federated training methods.
FedAvg directly considers fi (w), i.e., the training loss of
w on local dataset Di, as Fi(w):

Fi (w) := fi (w) (8)

Per-FedAvg uses personalized models to obatin Fi(w):

Fi (w) := fi (θi (w)) = fi (w − α∇fi (w)) (9)

pFedMe generates more flexible personalized weights ϑi
under the guidance of global weight w to measure Fi(w):

Fi (w) := min
ϑi

{
fi (ϑi) +

λ

2
‖ϑi −w‖2

}
(10)

Features of Three Methods. We analyze the perfor-
mance curves of above three methods on existing TP mod-
els (Figure 3 gives an example). We find that FedAvg cov-
erage the fastest among them at the early training stage,
and also achieves the best final performance among them.
pFedMe and Per-FedAvg are not prominent in both conver-
gence speed and federated performance, and thus not suit-
able for our ATPFL algorithm. These findings show us that
powerful TP models heavily rely on abundant data sources,
and personalized training methods, which pay more atten-
tion to the local data, do not help much in TP area.

Based on these observations, we use FedAvg to quickly
evaluate TP models during the TP model search stage of
ATPFL, and train the optimal TP model in ATPFL. With
its help, ATPFL can achieve better performance under FL
framework.

4. Experiments
In this section, we examine the performance of ATPFL.

We analyze the importance of federated training on TP
models, and compare the AutoML part of ATPFL with ex-
isting AutoML algorithms (Section 4.2). In addition, ab-
lation experiments are conducted to analyze the relation-
sequence-aware search strategy designed in ATPFL (Sec-
tion 4.3). All experiments are implemented using Pytorch.

4.1. Experimental Setup

Datasets. In order to evaluate the performance of our
approach under FL framework, we construct a federated
TP dataset D by equally distributing trajectory data of two
publicly available datasets: ETH [23] and UCY [15], to 20
clients. The ETH dataset contains two scenes of real-world
human trajectories, i.e., ETH and Hotel, each with 750 dif-
ferent pedestrians. The UCY dataset has 3 components:
ZARA01, ZARA02 and UNIV, containing two scenes with
786 people. In total, our federated TP dataset D contains
5 sets of data with 4 different trajectory scenes. For each
client, we hold the 60%, 20%, 20% of its local dataset as the
training set, validation set and test set, respectively. As for
the evaluation of TP models under single-source datasets,
we take ETH, Hotel, ZARA01, ZARA02 and UNIV as 5
single-source datasets applying the same split ratio.

Evaluation Metrics. We use Average Displacement
Error (ADE) [23] and Final Displacement Error (FDE) [1]
to examine prediction errors of the TP models.

ADE =

∑
i∈P

∑tpred
t=tobs+1

∥∥((x̂it, ŷit)− (xit, y
i
t))
∥∥
2

|P| · tpred

FDE =

∑
i∈P

∥∥((x̂it, ŷit)− (xit, y
i
t))
∥∥
2

|P|
, t = tpred

(11)

where P = {p1, p2, . . . , pN} is the set of pedestrians,
(x̂it, ŷ

i
t) are the predicted coordinates at time t and (xit, y

i
t)

are the ground-trurth coordinates.
As for the final federated performance of TP models, we

use the federated ADE/FDE score on test set to compare
their performance under FL framework:

ADEDtest =

C∑
i=1

|Di,test|
|Dtest|

ADE(M, Di,test) (12)

where Di,test is the test set of client i, and Dtest denotes all
test data in the federated TP dataset D. Replace ADE to
FDE then we get ADEDtest

.
Baselines. We compare ATPFL with two popular search

strategies for AutoML: an RL search strategy that com-
bines recurrent neural network controller [10] and EA-
based search strategy for multi-objective optimization [5],
and a commonly used baseline in AutoML, Random Search.
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Table 2. Performance comparison of ATPFL, AutoML algorithms and manually designed TP models. The first part examines the perfor-
mance of existing TP models on single-source TP datasets. The second part compares different federated training methods on a TP model.
The third part compares different AutoML methods under FL framework. Best-i denotes the ist best ADE score achieved by the clients.

FL Methods TP Models
ADE/FDE on single-sorce dataset

AVG STD MIN MAX Datasets
ETH Hotel UNIV ZARA01 ZARA02

None

Social-STGCNN 0.78/1.06 0.4142 /0.7060 0.31/0.45 2.04/2.71 2.04/2.71 0.45/0.52 0.53/0.94 0.46/0.70 0.31/0.45
Social Ways 1.07/1.88 1.4042 /3.9911 0.23/0.40 3.39/5.76 3.39/5.76 0.43/0.90 0.23/0.40 0.35/0.56 0.94/1.79

STGAT 0.97/1.78 0.2421 /0.6898 0.65/1.27 1.94/3.41 1.94/3.41 0.68/1.28 0.68/1.26 0.89/1.67 0.65/1.27
SGCN 0.38/0.58 0.0761 /0.1516 0.13/0.18 0.92/1.32 0.92/1.32 0.13/0.18 0.34/0.50 0.26/0.49 0.26/0.39

FL Methods TP Models Federated ADE/FDE under FL framework
AVG STD MIN STD Best-1 Best-2 Best-3 Best-4 Best-5

FedAvg SGCN 0.32/0.59 0.0004 /0.0023 0.27/0.50 0.35/0.66 0.27/0.50 0.29/0.51 0.29/0.52 0.29/0.52 0.30/0.55
Per-FedAvg SGCN 0.50/0.86 0.0013 /0.0046 0.42/0.73 0.55/0.98 0.42/0.73 0.44/0.76 0.45/0.78 0.46/0.79 0.47/0.79

pFedMe SGCN 0.42/0.75 0.0005 /0.0022 0.37/0.65 0.46/0.83 0.37/0.65 0.38/0.67 0.39/0.69 0.40/0.71 0.41/0.71

FL Methods AutoML Methods Federated ADE/FDE under FL + AutoML framework
AVG STD MIN MAX Best-1 Best-2 Best-3 Best-4 Best-5

FedAvg RL 0.40/0.65 0.0006 /0.0038 0.36/0.53 0.46/0.79 0.36/0.53 0.36/0.56 0.37/0.58 0.37/0.59 0.37/0.60
FedAvg Evolution 0.57/1.14 0.0008 /0.0042 0.52/1.05 0.63/1.26 0.52/1.05 0.53/1.05 0.54/1.06 0.541/1.10 0.55/1.11
FedAvg Random 0.49/1.02 0.0008 /0.0051 0.45/0.89 0.55/0.11 0.45/0.89 0.46/0.92 0.46/0.92 0.47/0.93 0.47/0.96
FedAvg ATPFL 0.30/0.57 0.0003 /0.0029 0.27/0.46 0.35/0.65 0.27/0.46 0.28/0.47 0.28/0.48 0.28/0.51 0.28/0.53

Figure 4. The federated performance of the optimal TP model
searched by different AutoML algorithms.

We replace the relation-sequence-aware strategy in ATPFL
to these three search strategies, so as to examine their per-
formance under TP models and FL framework.

In addition, we take 4 state-of-the-art human-invented
TP models: Social Ways [2], STGAT [13], NS [20] and
SGCN [26], as baselines, to show the importance of auto-
matic TP model design under FL framework.

1. Social Ways: It uses a GAN to sample plausible pre-
dictions for any agent in the scene avoid mode collaps-
ing and dropping.

2. STGAT: A spatial temporal graph attention network
which based on a sequence-to-sequence architecture to
predict future trajectories of pedestrians.

3. Social-STGCNN: It substitutes the need of aggrega-
tion methods by modeling the interactions as a graph.
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Figure 5. Optimal TP model design scheme searched by ATPFL.

4. SGCN: It models the sparse directed interaction and
motion tendency with a sparse directed graph to im-
prove the predicted trajectories.

Implementation Details. In ATPFL, the embedding
size and hidden size are set to 100. RNN optimizer is
trained with the Adam optimizer with a learning rate of
3.5e-4. For each TP model candidate, we train it for 5
epochs using FedAvg. After ATPFL searches for 1.5 GPU
days, we choose the best TP model that achieves the highest
federated performance on validation datasets, and train it for
500 epochs using FedAvg. As for the compared AutoML
algorithms, we follow implementation details reported in
their papers, and control the running time of each AutoML
algorithm to be the same.

4.2. Performance Evaluation

The performance of 4 AutoML algorithms under FL
framework and 4 manually designed TP models are shown
in Table 2 and Figure 4, and Figure 5 visualizes TP models
searched by ATPFL algorithm.
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Figure 6. The federated performance of the optimal TP model
searched by different versions of ATPFL.

We can observe from the third part of Table 2 and Fig-
ure 4 that ATPFL exceeds the other AutoML algorithms
on the federated TP dataset, discovering more powerful TP
models within the same search time. This result shows the
effectiveness of our proposed algorithm and demonstrates
the importance of considering the relations among opera-
tions in the TP search space. With the help of relation-
sequence-aware search strategy, ATPFL can take full advan-
tage of the relations among operations in the search space to
avoid useless evaluations to improve search efficiency, and
learn effective features of operations to further improve the
prediction precision, thus providing good recommendation
results more efficiently.

In addition, we observe from the second and third part of
Table 2 that TP models discovered by AutoML algorithms
generally outperform existing human-invented TP models
under FL framework. This result shows the practicability
and validity of the automatic design of the TP model un-
der FL framework. Our proposed ATPFL empowers non-
experts to jointly deploy appropriate and powerful TP mod-
els, greatly reduces the labour of human experts, which is
meaningful and practical.

We also notice that federated training methods, espe-
cially FedAvg, can obtain a more powerful TP model, com-
pared to the non-federated method. This result shows the
importance of FL on TP area. The high performance of the
TP model heavily relies on a large number of trajectory data
with multiple scenes, and FL framework is essential for ob-
taining powerful TP models.

4.3. Ablation Experiments

We further investigate the effect of the GNN based em-
bedding method and the masked RNN optimizer, two core
components of our relation-sequence-aware search strategy,
on the performance of ATPFL algorithm using the follow-
ing two variants of ATPFL, thus verifying the innovations
presented in this paper.

1. ATPFL without mask: This version of ATPFL algo-

rithm removes the masking operation from the masked
RNN optimizer. It ignores the restrictive relations
among operations, assuming that all TP model design
schemes contained in the search space are valid.

2. ATPFL without GCN and mask: This version of
ATPFL algorithm applies the RNN optimizer without
the masking operation and replaces the GNN based
embedding method to a common embedding layer. It
ignores the multiple relations among operations in the
search space, and does not apply GNN to extract high-
level representations of the various operations.

Corresponding results are shown in Figure 6, we can see
that ATPFL has much better performance than ATPFL with-
out mask. Owing to neglect of restrictive relations among
operations in the search space, a great amount of invalid de-
sign schemes for the TP model are formed in ATPFL with-
out mask. These noisy choices increase the search diffi-
culty making ATPFL without mask less effective under the
same search time. This result further demonstrates the im-
portance of considering restrictive relations among opera-
tions when designing the AutoML tools for TP area, and
the rationality of our proposed algorithm.

Besides, we observe that ATPFL without GCN and mask
performs much worse than ATPFL. This result shows us
the significance and necessity of considering multiple re-
lations among operations and using GNN technique in the
ATPFL algorithm. GNN can extract high-level features of
each operation in the search space by adaptively aggregat-
ing information from highly relevant operations, and thus
providing a more rational basis for recommending an effec-
tive design scheme of the TP model. Therefore, applying
the GNN technique in ATPFL is reasonable and effective.

5. Conclusion and Future Works
In this paper, we combine AutoML and FL techniques

on the TP area, and propose ATPFL to help users to fed-
erate private and multiple-source trajectory datasets to au-
tomatically design and train powerful TP models. As we
know, this is the first TP work that simultaneously breaks
data island and technical limitations. Extensive experiments
show that our designed search strategy and selected feder-
ated training methods are well suited to the TP area. They
empower ATPFL to gain well-performed TP models under
the FL framework, achieving better results than manually
designed TP models trained on the single-source dataset. In
future works, we will try to further enrich our search space,
and design a more efficient search strategy for further im-
proving the performance of ATPFL.
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