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Abstract

Lane detection is a challenging task that requires pre-
dicting complex topology shapes of lane lines and distin-
guishing different types of lanes simultaneously. Earlier
works follow a top-down roadmap to regress predefined an-
chors into various shapes of lane lines, which lacks enough
flexibility to fit complex shapes of lanes due to the fixed an-
chor shapes. Lately, some works propose to formulate lane
detection as a keypoint estimation problem to describe the
shapes of lane lines more flexibly and gradually group ad-
jacent keypoints belonging to the same lane line in a point-
by-point manner, which is inefficient and time-consuming
during postprocessing. In this paper, we propose a Global
Association Network (GANet) to formulate the lane detec-
tion problem from a new perspective, where each keypoint
is directly regressed to the starting point of the lane line in-
stead of point-by-point extension. Concretely, the associa-
tion of keypoints to their belonged lane line is conducted by
predicting their offsets to the corresponding starting points
of lanes globally without dependence on each other, which
could be done in parallel to greatly improve efficiency. In
addition, we further propose a Lane-aware Feature Ag-
gregator (LFA), which adaptively captures the local cor-
relations between adjacent keypoints to supplement local
information to the global association. Extensive experi-
ments on two popular lane detection benchmarks show that
our method outperforms previous methods with F1 score of
79.63% on CULane and 97.71% on Tusimple dataset with
high FPS.

1. Introduction

Autonomous driving [10] has drawn remarkable atten-
tion of researchers from both academia and industry. In
order to ensure the safety of the car during driving, the au-
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Figure 1. (a) Anchor-based methods, which regress the prede-
fined anchors into the shape of lanes. (b) Keypoint-based meth-
ods, which predict offsets between keypoint to its neighbourhood
to group them one-by-one. (c) Illustration of our GANet, which
directly regresses each keypoint to its belonged lane by predicting
offset between each keypoint and the starting point of its corre-
sponding lane line. (d) Illustration of our LFA module, which cor-
relates each keypoint with its adjacent points for local information
supplement.

tonomous system needs to keep the car moving along the
lane lines on the road, requiring accurate perception of the
lane lines. Thus, lane detection plays an important role
in the autonomous driving system, especially in Advanced
Driver Assistance System (ADAS).

Given a front-viewed image taken by a camera mounted
on the vehicle, lane detection aims to produce the accu-
rate shape of each lane line on the road. Due to the slen-
der shapes of lane lines and the need for instance-level dis-
crimination, it is crucial to formulate lane detection task ap-
propriately. Inspired by the anchor-based object detection
methods [22], some works [10, 25] follow a top-down de-
sign as illustrated in Figure 1a. Similar to object detection, a
group of straight lines with various orientations are defined
as anchors. Points on anchors are regressed to lane lines
by predicting the offsets between anchor points and lane
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points. Afterward, Non-Maximum Suppression (NMS) is
applied to select lane lines with the highest confidence. Al-
though this kind of method is efficient in lane discrimina-
tion, it is inflexible because of the predefined anchor shapes.
The strong shape prior limits the ability of describing var-
ious lane shapes, resulting in sub-optimal performances of
these methods.

To describe complex shapes of lane lines flexibly, Qu et
al. [21] propose to formulate lane detection as a keypoint es-
timation and association problem, which takes a bottom-up
design as illustrated in Figure 1b. Concretely, lanes are rep-
resented with a group of ordered key points evenly sampled
in a sparse manner. Each key point is associated with its
neighbours by estimating the spatial offsets between them.
In this way, key points belonging to the same lane are inte-
grated into a continuous curve iteratively. Though keypoint-
based methods are flexible on the shape of lane lines, it is
inefficient and time-consuming to associate only one key-
point to its belonged lane line at each step. Besides, the
point-by-point extension of keypoints is easy to cause error
accumulation due to the lack of global view. Once a partic-
ular keypoint is wrongly associated, estimation of the rest
part of the lane line will fail.

To overcome the above limitations, we formulate the
lane detection problem from a new keypoint-based perspec-
tive where each keypoint is directly regressed to its be-
longed lane, based on which a novel pipeline named Global
Association Network (GANet) is proposed. As illustrated
in Figure 1c, each lane line is represented uniquely with its
starting point, which is easy to determine without ambigu-
ity. To associate a keypoint properly, we estimate the offset
from the keypoint to its corresponding starting point. Key-
points whose approximated starting points fall into the same
neighborhood area will be assigned to the same lane line
instance, thus separating keypoints into different groups.
Different from previous keypoint-based method [21], our
assignment of keypoints to their belonged lanes is inde-
pendent of each other and makes the parallel implementa-
tion feasible, which greatly improves the efficiency of post-
processing. Besides, the keypoint association is more robust
to the accumulated single-point errors since each keypoint
owns a global view.

Although keypoints belonging to the same lane line are
integrated during post-processing, it is important to ensure
the correlations between adjacent points in order to obtain
a continuous curve. To this end, we develop a local in-
formation aggregation module named Lane-aware Feature
Aggregator (LFA) to enhance the correlations between ad-
jacent keypoints. To adapt to the slender and long shapes
of lanes, we modify the sampling positions of the standard
2D deformable convolution [3] by predicting offsets to ad-
jacent points to sample within a local area on the lane each
time. In this way, features of each keypoint are aggregated

with other adjacent points, thus acquiring more represen-
tative features. We further add an auxiliary loss to facili-
tate estimating the offset predicted on each key point. Our
LFA module complements the global association process to
enable both local and global views, which is essential for
dense labeling tasks like lane detection.

Our contributions are summarized as follows:

• We propose a novel Global Association Network
(GANet) to formulate lane detection from a new
keypoint-based perspective which directly regress each
keypoint to its belonged lane. To the best of our knowl-
edge, we are the first to regress keypoints in a global
manner, which is more efficient than local regression.

• We develop a local information aggregation module
named as Lane-aware Feature Aggregator (LFA) to en-
hance correlations among adjacent keypoints to sup-
plement local information.

• Our proposed GANet achieves state-of-the-art per-
formances on two popular benchmarks of lane de-
tection with faster speed, which shows a superior
performance-efficiency trade-off and great potential of
our global association formulation.

2. Related Works
2.1. Lane Detection Methods

Lane detection aims at obtaining the accurate shape of
lane lines as well as distinguishing between them. Accord-
ing to the way of lane modeling, current deep-learning-
based methods can be roughly divided into several cate-
gories. We will elaborate on these methods separately in
this section.

Segmentation-based methods. Segmentation-based
methods model lane line detection as a per-pixel classifi-
cation problem, with each pixel classified as either lane
area or background [6, 8, 16, 18]. To distinguish different
lane lines, SCNN [18] treats different lane lines as differ-
ent categories and thus lane detection is transformed into a
multi-class segmentation task. A slice-by-slice CNN struc-
ture is also proposed to enable message passing across rows
and columns. In order to meet the real-time requirement in
practice, ENet-SAD [6] applies a self-attention distillation
mechanism for contextual aggregation so as to allow the use
of a lightweight backbone. LaneNet [16] adopts a differ-
ent way of lane representation by casting lane detection as
an instance segmentation problem. A binary segmentation
branch and an embedding branch are included to disentan-
gle the segmented results into lane instances. Different from
LaneNet, our method use offsets instead of embedding fea-
tures to cluster each lane lines, which is more efficient and
time-saving.
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Detection-based methods. This kind of method usually
follows a top-down manner to predict lane lines. Among
them, anchor-based methods [10, 25, 28] design line-like
anchors and regress the offsets between sampled points
and predefined anchor points. Non-Maximum Suppression
(NMS) is then applied to select lane lines with the highest
confidence. LineCNN [10] uses straight rays emitted from
the image boundaries with certain orientations as a group
of anchors. Curve-NAS [28] defines anchors as vertical
lines and further adopts neural architecture search (NAS)
to search for better backbones. LaneATT [25] proposes
an anchor-based pooling method and an attention mecha-
nism to aggregate more global information. Another kind
of methods [14,20] formulates lane detection as a row-wise
classification problem. For each row, the model predicts the
locations that possibly contain lane lines.

Keypoint-based methods. Inspired by human pose es-
timation, some works treat lane detection as a keypoint
estimation and association problem. PINet [9] uses a
stacked hourglass network [17] to predict keypoint posi-
tions and feature embedding. Different lane instances are
clustered based on the similarity between feature embed-
dings. FOLOLane [21] produces a pixel-wise heatmap with
the same resolution as input to obtain points on lanes. A
local geometry construction manner is also developed to as-
sociate keypoints belonging to the same lane instance. Our
GANet adopts a more efficient postprocessing approach,
which needs neither feature embeddings nor local associa-
tion to cluster or reconstruct the whole lane. Each keypoint
finds its corresponding lane by adding its coordinate with
the offset to the lane line start points in a parallel manner.

2.2. Deformable Modeling

Traditional CNNs are inherently limited to model irreg-
ular structures due to the fixed grid-like sampling ranges
of convolution operations. To overcome this limitation,
Dai et al. [3] proposes deformable convolution to adap-
tively aggregate information within local areas. Compared
with standard convolutions, 2D offsets obtained by an extra
convolution are added at each spatial location during sam-
pling to enable free-form deformation of the sampling grid.
Through the learned offsets, the receptive field and the sam-
pling location of convolutions are adaptively adjusted ac-
cording to the random scale and shape of objects. The spirit
of deformable modeling has been applied in many tasks
such as object detection [30, 34], object tracking [33] and
video comprehension [2, 29, 31]. RepPoints [30] models an
object as a set of points and predicts the offsets of these
points to the object center with deformable convolutions.
This deformable object representation provides accurate ge-
ometric localization for object detection as well as adap-
tive semantic feature extraction. Ying et al. [31] proposes
deformable 3D convolution to explore spatio-temporal in-

formation and realize adaptive motion comprehension for
video super-resolution. Different from these methods, our
LFA module adapts to the long structure of lane lines and
restricts the range of feature aggregation to adjacent points
on each lane with lane-aware deformable convolutions.

3. Method
The overall architecture of our proposed Global Asso-

ciation Network (GANet) is illustrated in Figure 2. Given
a front-viewed image as input, a CNN backbone together
with an FPN [12] neck is adopted to extract multi-level vi-
sual representations of the input images. For better feature
learning, a self-attention layer [27] is further inserted be-
tween the backbone and the neck to obtain rich context in-
formation. In the decoder, a keypoint head and an offset
head are exploited to generate confidence map and offset
map respectively. Both heads are composed of fully convo-
lutional layers. We further devise a Lane-aware Feature Ag-
gregator module before keypoint head to enhance the local
correlations between adjacent keypoints, which facilitates
to produce continuous lane lines. For each lane instance, we
first obtain its starting point as cluster centroid by selecting
points with value less than 1 over the offset map. Afterward,
keypoints belonging to the same lane are clustered around
the sampled starting point with the combination of the con-
fidence map and offset map to construct the complete lane
line.

3.1. Global Keypoint Association

3.1.1 Keypoint Estimation

Given an input image I ∈ RH×W×3, the goal of our GANet
is to predict a collection of lanes L = {l1, l2, ..., lN}, where
N is the total number of lanes, with each lane line being
denoted with K sampled keypoints as:

li = {p1i , p2i , ..., pKi }Ni=1, (1)

where pji = (xj
i , y

j
i ) denotes the coordinate of the j-th

keypoint on the i-th lane. To estimate all the keypoints,
we develop a keypoint head to produce a confidence map
Ŷ ∈ RH

r ×W
r , where r is the output stride. The confidence

map represents the probability of each location being a key-
point on the lane. As shown in Figure 2(a), the brighter
location indicates a higher probability.

During the training phase, we sample K keypoints on
each lane line as ground truth keypoints and then splat
them all onto a confidence map Y ∈ RH

r ×W
r using a non-

normalized Gaussian kernel Yyx = exp(− (x−x̃)2+(y−ỹ)2

2σ2 ),
where x̃ and ỹ denote the coordinate of each keypoint and
the standard deviation σ depends on the scale of input. If
there is overlap between two Gaussian maps, we take the
element-wise maximum between them.
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Figure 2. The overall architecture of GANet. Given a front-viewed image as input, a CNN backbone followed by a Self-Attention layer
(SA) and an FPN neck are used to extract multi-scale visual features. In the decoder, a keypoint head and an offset head are used to
generate confidence map and offset map respectively, which are then combined to cluster keypoints into several groups, with each group
indicating a lane line instance. Our LFA module is applied before the keypoint head to better capture local context over lane lines for
keypoint estimation.

We adopt penalty-reduced focal loss [13] to deal with
the imbalance between keypoint regions and non-keypoint
regions as follows:

Lpoint =
−1

H′ × W ′

∑
yx

{
(1 − Ŷyx)

αlog(Ŷyx)) Yyx = 1

(1 − Yyx)
β Ŷ α

yxlog(1 − Ŷyx)) otherwise,

(2)
where α and β are hyper-parameters of focal loss and H ′×
W ′ denotes H

r × W
r . The subscript yx represents obtaining

the value at coordinate (x, y).
Due to the output stride r, the point (xj

i , y
j
i ) of the input

image is mapped to the location (⌊xj
i

r ⌋, ⌊yj
i

r ⌋), which can
cause performance degradation. To address this quantiza-
tion error, we additionally predict a compensation map δ̂yx
and apply L1 loss to keypoint locations only:

Lquant =
1

H ′ ×W ′

∑
yx

∣∣∣δ̂yx − δyx

∣∣∣, (3)

where δyx = (
xj
i

r − ⌊xj
i

r ⌋, yj
i

r − ⌊yj
i

r ⌋) denotes the ground
truth of quantization compensation map. This part is not
shown in Figure 2 for simplicity.

3.1.2 Starting Point Regression

To distinguish different lane lines, we propose to use the
starting point to represent each lane instance uniquely due
to its stability and largest margins between each other. In-
stead of regressing the absolute coordinate (sxi, syi) of the
starting point directly, we regress the offset from each key-
point to it, which can be defined as:

(∆xj
i ,∆yji ) = (sxi, syi)− (xj

i , y
j
i ), (4)

Thus, we can generate the ground truth offset map Oyx

with the shape of H
r × W

r × C. In particular, the subscript

(a) (b) (c)

x

y

x

y

x

y

       

     

       

         

Figure 3. Illustration of lane construction. (a) Valid keypoints are
selected from the confidence map. (x, y) is taken as an exam-
ple. (b) Starting point (sx, sy) (blue dot) is sampled first. The
rest keypoints point to the starting point with the predicted off-
set (δx, δy) and estimate the coordinate of the starting points as
(sx′, sy′) = (x, y) + (δx, δy) (hollow dots). (c) Keypoints that
point to the neighbourhood of starting point (sx, sy) are grouped
as a whole lane.

yx denotes the value on location (xj
i , y

j
i ) which is equal to

(∆xj
i ,∆yji ) while other locations have zero values. C = 2

contains the x-direction and y-direction offsets respectively.
In order to estimate the offset map Ôyx, we introduce an

offset head as shown in Figure 2. Similarly, L1 loss is used
to constrain the offset map as follows:

Loffset =
1

H ′ ×W ′

∑
yx

∣∣∣Ôyx −Oyx

∣∣∣, (5)

The supervision applies only on keypoint locations and the
rest locations are ignored.

3.1.3 Lane Construction

The pipeline of lane construction is presented in Figure 3,
which includes obtaining the locations of all the possible
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lane points and then grouping them into different lane in-
stances. We first apply a 1 × 3 max pooling layer on the
keypoint confidence map Ŷ to select points of maximum re-
sponses within a horizontal local region as valid keypoints,
which is shown in Figure 3(a). Then, we group them to de-
scribe each lane as an ordered list of keypoints as follows:

l = {(sx, sy), (x2, y2), (x3, y3), ..., (xK , yK)}, (6)

where (sx, sy) denotes the starting point of the lane and
(xj , yj), j ∈ [2,K] are the subsequent keypoints.

To obtain the starting point of each lane, we select key-
points whose values are less than 1 on the offset map as
the candidate starting points. Since there might be multiple
keypoints matching the above criteria within the same local
region, the geometric center point of the region is chosen to
ensure uniqueness. By this means, instances of all the lanes
are preliminarily determined with their starting points.

Afterward, we associate the rest keypoints to their be-
longed lanes according to the estimated offsets between
keypoints and corresponding starting points, which is
shown in Figure 3(b). Each keypoint estimates the coor-
dinate of the lane line starting point as follows:

(sx′, sy′) = (x, y) + (δx, δy), (7)

where (x, y) is the coordinate of the observed keypoint and
(δx, δy) = Oyx denotes the corresponding offset obtained
in Section 3.1.2. The keypoint (x, y) is associated to the i-
th lane only if the distance between (sx′, sy′) and (sx, sy)
is less than a predefined threshold θdis. As shown in Fig-
ure 3(c), keypoints that point to the neighborhood of the
same starting point are grouped to produce a whole lane.
The above procedures are done by matrix operations to en-
sure parallel keypoints association.

3.2. Lane-aware Feature Aggregator

Traditional 2D convolutions sample features within a
fixed grid-like region, which is not suitable for handling the
slender shapes of lane lines. Inspired by Dai et al. [3], we
propose a Lane-aware Feature Aggregator (LFA) module to
adaptively gather information from adjacent points on the
lanes, so as to enhance the local feature representation of
each keypoint. The illustration of our LFA module is shown
in Figure 4. Take a specific keypoint as an example, we first
use a convolution layer to predict the offset between it and
its surrounded M keypoints on the same lane as follows:

∆Pi = ϕ(F(pi)), (8)

where pi denotes the coordinate of the i-th keypoint, F(pi)
denotes the feature representation of the i-th keypoint and
∆Pi = {∆pmi |m = 1, ...,M} ∈ R2M denotes the pre-
dicted offsets. Afterwards, features of adjacent points are

Local offset map
Offsets

Figure 4. Illustration of LFA module. The red dot denotes the
observed keypoint. We first predict offsets between the red dot
and its adjacent keypoints (in blue) and then gather features of
these keypoints to enhance the context of the red keypoint.

integrated with a deformable convolution to aggregate con-
text of the i-th keypoint as:

F̂(pi) =

M∑
m=1

wm · F(pi +∆pmi ), (9)

where wm,m = 1, ...,M is the weight of the convolution
and (·) means multiplication.

To enhance the ability of LFA for learning the local
shapes of lane lines, we further introduce an auxiliary loss
to supervise the offsets ∆Pi. We denote the ground truth of
offsets between the i-th keypoint and the keypoints on the
corresponding lane line as ∆Gi = {∆gki |k = 1, ...,K},
which is calculated with ∆gki = gki − pi, where gki is the
ground-truth coordinate of the k-th keypoint on the same
lane line with the i-th keypoint.

As is shown in Figure 5, a matching need to be estab-
lished between ∆pi and ∆gi. We search for an assignment
σ with the lowest matching cost:

σ̂ = argmin
σ

M∑
m

Lmatch(∆pmi ,∆gi
σ(m)), (10)

where Lmatch = L2(∆pmi ,∆gi
σ(m)). Following prior

works [1, 23], the Hungarian algorithm is adopted to effi-
ciently compute the optimal assignment. SmoothL1 loss
is then applied to supervise the prediction of adjacent key-
points:

Laux =
1

KNM

KN∑
i=1

M∑
m=1

SmoothL1(∆pmi ,∆gi
σ̂(m)),

(11)
where K denotes the number of keypoints on each lane line,
N denotes the number of lane lines and M denotes the num-
ber of sampled adjacent keypoints.

The total loss function is the combination of different
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Figure 5. Illustration of the matching between predict points and
their ground truth. The red dot is the observed keypoint. The blue
dots are the predicted locations of adjacent keypoints. The green
dots are the ground-truth locations of adjacent keypoints on the
lane line.

losses with corresponding coefficients:

Ltotal = λpointLpoint + λquantLquant

+λoffsetLoffset + λauxLaux.
(12)

4. Experiments
In this section, we first introduce the experimental setting

of our method. The next subsection discusses the results
for each dataset. Ablation experiments for each module is
presented in the last subsection.

4.1. Experimental Setting

4.1.1 Datasets and Evaluation Metrics

We conduct experiments on two popular lane detection
benchmarks including CULane [18] and TuSimple [26].

CULane: CULane dataset contains 88, 880 training im-
ages and 34, 680 testing images, including both urban and
highway scenes. The test images are classified as 9 differ-
ent scenarios. F1 measure is the only metric for evalua-
tion, which is based on IoU. A predicted lane whose IoU is
greater than 0.5 is judged as true positive (TP), otherwise
false positive (FP) or false negative (FN). F1 measure is de-
fined as the harmonic average of precision and recall.

TuSimple: TuSimple is a real highway dataset which
consists of 3, 626 images for training and 2, 782 images for
testing. The main evaluation metric of TuSimple dataset is
accuracy, which is formulated as follows:

accuracy =

∑
clip Cclip∑
clip Sclip

where Cclip is the number of points correctly predicted by
the model and Sclip is the total number of points in the clip
(or image). A predicted point is considered correct only if
it is within 20 pixels to the ground truth point. The pre-
dicted lane with accuracy greater than 85% is considered as
a true positive. We also report the F1 score in the following
experiments.

Model version Backbone FPN layers Output downscale
GANet-S resnet-18 3 8
GANet-M resnet-34 3 8
GANet-L resnet-101 4 4

Table 1. Details of different versions of GANet.

4.1.2 Implementation Details

We choose ResNet-18, ResNet-34 and ResNet-101 [5] as
the backbones to form three different versions of GANet,
which are referred as GANet-S, GANet-M and GANet-L.
The detail of each version is shown in Table 1. We first re-
size the input images to 800 × 320 during the training and
testing phases. The number of sampled points in LFA is
set as M = 9. The loss weights are set as λpoint = 1.0,
λquant = 1.0, λoffset = 0.5, λaux = 1.0. The hyper-
parameters α and β in Equation 2 are set as 2 and 4 respec-
tively. For optimization, we used Adam optimizer and poly
learning rate decay with an initial learning rate of 0.001. We
train 300 and 40 epochs for Tusimple and CULane respec-
tively with a batchsize of 32 per GPU. Data augmentation
is applied to the training phase, including random scaling,
cropping, horizontal flipping, random rotation, and color jit-
tering. In the test phase, we set the threshold of keypoints
as 0.4 and θdis for keypoint association as 4. Training and
testing are both performed on Tesla-V100 GPUs.

4.2. Quantitative Results

4.2.1 Results on CULane

The results on CULane test set are shown in Table 2. Our
GANet-L achieves the state-of-the-art result on CULane
dataset with 79.63% F1 score and 63 FPS, which exceeds
models of similar size, like LaneATT-ResNet122, with large
margins on both performance and speed. Compared with
another keypoint-based method, FOLOLane-ERF [21], our
GANet-S achieves a comparable performance of 78.79%
F1 score but runs 3.8 times faster, which shows a superior
trade-off between performance and efficiency and demon-
strate the speed advantage of our global association formu-
lation. Furthermore, our methods achieve the highest F1
score in six scenarios, especially in Curve scenario. Our
GANet-L achieves 77.37% in this scenario and outperforms
previous state-of-the-art method, ERF-E2E [32], with more
than 5%, indicating the superiority of our method in de-
scribing complex lane line shapes.

4.2.2 Results on TuSimple

The comparison results on TuSimple test set are shown in
Table 4. Our GANet-S outperforms all other methods and
achieves the highest F1 score of 97.71% with high FPS.
It is worth noting GANet-S exceeds UFast-ResNet34 and

1397



Method Total Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night FPS
Segmentation-based
SCNN [18] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5
ENet-SAD [7] 70.80 90.10 68.80 60.20 65.90 41.60 84.00 65.70 1998 66.00 75
Detection-based
FastDraw [19] - 85.90 63.60 57.00 69.90 40.60 79.40 65.20 7013 57.80 90.3
UFAST-ResNet18 [20] 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 322.5
UFAST-ResNet34 [20] 72.30 90.07 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 175
ERF-E2E [32] 74.00 91.00 73.10 64.50 74.10 46.60 85.80 71.90 2022 67.90 -
CurveLanes-NAS-L [28] 74.80 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90 -
LaneATT-ResNet18 [25] 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58 250
LaneATT-ResNet34 [25] 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 171
LaneATT-ResNet122 [25] 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 26
Keypoint-based
FOLOLane-ERF [21] 78.80 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50 40
GANet-S 78.79 93.24 77.16 71.24 77.88 53.59 89.62 75.92 1240 72.75 153
GANet-M 79.39 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67 127
GANet-L 79.63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85 63

Table 2. Comparison with state-of-the-art methods on CULane test set. The evaluation metric is F1 score with IoU threshold=0.5. For
cross scenario, only FP are shown.

Image Confidence map w/o LFA Prediction w/o LFA Confidence map w/ LFA Prediction w/ LFA Groundtruth

Figure 6. Visualization results of GANet w/wo LFA. The first column is the input image. The second and third columns are the predicted
point confidence map and lane lines without LFA. The fourth and fifth columns are the predicted point confidence map and lane lines with
LFA. The last column is the ground-truth lane lines

Baseline LFA AuxLoss F1
✓ 77.84
✓ ✓ 78.30
✓ ✓ ✓ 78.79

Table 3. Ablation study of LFA module

LaneATT-ResNet34 which have similar speed with large
margins, showing the great potential of our global associa-
tion formulation. Similar to LaneATT [25], enlarging model

capacity does not necessarily bring performance improve-
ment. It is possibly because of the small amount and the
single scenario of Tusimple dataset. Results have already
been saturated and a larger model may cause the overfitting
problem.

4.2.3 Ablation Study

To explore the properties of our proposed LFA module, we
conduct an ablation study on the CULane dataset. All the
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Method F1 Acc FP FN FPS
Segmentation-based
SCNN [18] 95.97 96.53 6.17 1.80 7.5
EL-GAN [4] 96.26 94.90 4.12 3.36 10
ENet-SAD [7] 95.92 96.64 6.02 2.05 75
Detection-based
FastDraw [19] 93.92 95.20 7.60 4.50 90.3
UFAST-ResNet18 [20] 87.87 95.82 19.05 3.92 312.5
UFAST-ResNet34 [20] 88.02 95.86 18.91 3.75 169.5
ERF-E2E [32] 96.25 96.02 3.21 4.28 -
LineCNN [11] 96.79 96.87 4.42 1.97 30
LaneATT-ResNet18 [25] 96.71 95.57 3.56 3.01 250
LaneATT-ResNet34 [25] 96.77 95.63 3.53 2.92 171
LaneATT-ResNet122 [25] 96.06 96.10 5.64 2.17 26
Other Methods
PolyLaneNet [24] 90.62 93.36 9.42 9.33 115
LSTR [15] 96.86 96.18 2.91 3.38 420
Keypoint-based
FOLOLane-ERF [21] - 96.92 4.47 2.28 40
GANet-S 97.71 95.95 1.97 2.62 153
GANet-M 97.68 95.87 1.99 2.64 127
GANet-L 97.45 96.44 2.63 2.47 63

Table 4. Comparison with state-of-the-art methods on TuSimple
test set.

Figure 7. Visualization results of LFA w/wo auxiliary loss. The
red point is the observation point. The green points are the pre-
dicted aggregation points. The light blue points are the ground-
truth points on the lane line.

following experiments are based on the small version of
GANet. Results are shown in Table 3. The first row shows
the baseline method without our LFA module. In the sec-
ond row, the LFA module is integrated into GANet without
auxiliary loss. The last row shows the result of our whole
GANet.

From the first two rows we can observe that LFA module
without auxiliary loss is effective for lane line detection,
which is due to flexible integration of context. Comparing
the last two rows, we can also find that the auxiliary loss
is vital to the LFA module, which can guide LFA to focus

on the key information on the lane line. The visualization
analysis is performed in Section 4.3.

4.3. Qualitative results

We visualize the qualitative results w/wo LFA in Fig-
ure 6. The 2-nd and 4-th columns are the visualization of
confidence map without and with LFA correspondingly. As
shown in the results from the first row, the LFA module
makes correct prediction even with vehicle occlusion due to
the fact that predicted lane points enhance each other. From
the results in second and third rows, it can also be concluded
that the LFA module is able to suppress background noise
which may be introduced by global attention.

To intuitively investigate the properties of the LFA mod-
ule, we visualize the predicted feature aggregation points
in Figure 7. The first row shows a common straight lane
case. With the addition of auxiliary losses, the LFA mod-
ule can predict the aggregation points around the lane line.
Meanwhile, the predicted aggregation points are irregular
without the auxiliary loss. The last two rows show the ag-
gregation points in the curved lane case. It is demonstrated
that the LFA module is robust in its understanding of the lo-
cal structures of the lane lines. This property contributes to
the enhancement of lane line features and the suppression
of background noise.

5. Conclusion and Discussion

In this paper, we propose a Global Association Network
(GANet) to formulate the lane detection problem from a
new perspective, where each keypoint is directly regressed
to the starting point of the lane line instead of point-by-
point extension. The association of keypoints to their be-
longed lane line is conducted by predicting their offsets to
the corresponding starting points of lanes globally, which
greatly improves the effectiveness. We further propose a
Lane-aware Feature Aggregator (LFA) to adaptively capture
the local correlations between adjacent keypoints to sup-
plement local information. Experimental results show our
GANet outperforms previous methods with higher speed.

Limitation. The limitation of our method is that the off-
sets to the starting point may become difficult to regress
when the output stride is set to 1 due to the large absolute
value of the offsets. In the future, we hope to address this
problem by regressing the offsets with multiple levels to al-
leviate the regression difficulty.
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