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Abstract

This paper studies the BERT pretraining of video trans-
formers. It is a straightforward but worth-studying ex-
tension given the recent success from BERT pretraining
of image transformers. We introduce BEVT which decou-
ples video representation learning into spatial represen-
tation learning and temporal dynamics learning. In par-
ticular, BEVT first performs masked image modeling on
image data, and then conducts masked image modeling
jointly with masked video modeling on video data. This
design is motivated by two observations: 1) transformers
learned on image datasets provide decent spatial priors
that can ease the learning of video transformers, which
are often times computationally-intensive if trained from
scratch; 2) discriminative clues, i.e., spatial and tempo-
ral information, needed to make correct predictions vary
among different videos due to large intra-class and inter-
class variations. We conduct extensive experiments on three
challenging video benchmarks where BEVT achieves very
promising results. On Kinetics 400, for which recogni-
tion mostly relies on discriminative spatial representations,
BEVT achieves comparable results to strong supervised
baselines. On Something-Something-V2 and Diving 48,
which contain videos relying on temporal dynamics, BEVT
outperforms by clear margins all alternative baselines and
achieves state-of-the-art performance with a 71.4% and
87.2% Top-1 accuracy respectively. Code is available at
https://github.com/xyzforever/BEVT.

1. Introduction
Transformers [54, 59] have become the dominant net-

work structures in the natural language processing (NLP)
field and have demonstrated tremendous success in differ-
ent NLP tasks. Recently, the pioneering work ViT [19]
tokenizes one image into a series of patch-based tokens
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Figure 1. A conceptual overview of BEVT. With a decoupled de-
sign, BEVT first conducts masked image modeling on image data,
and then conducts jointly masked image modeling and masked
video modeling on image&video data by weight sharing.

and applies the transformer architecture for image recogni-
tion. Many approaches [12, 17, 36, 60] further demonstrate
the power of transformers as generic vision backbones and
achieve impressive performance on various vision tasks.
Beyond image tasks, there are also a few studies showing
the promise of transformers for video understanding [2,37].

The key to the success of Transformers in NLP is BERT
pretraining [4, 14, 35], one of the most successful pretrain-
ing tasks, which predicts masked tokens in corrupted texts.
This motivates a few recent studies to explore the BERT-
style pretraining for image representation learning by re-
covering raw pixels [29] or latent codes [3, 18] of masked
image patches. However, how to leverage such a strategy
for video understanding has never been explored.

In this paper, we study BERT pretraining of video trans-
formers. Unlike static images, videos depict how objects
move and interact over time. Such dynamic nature brings
additional difficulty for representation learning. It is often
found that learning representations from scratch on videos
is computationally expensive and requires extremely large-
scale datasets with millions of samples [24], if not hun-
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dreds of millions of samples [1]. Instead of training from
scratch, a few methods demonstrate that self-supervised
models pretrained on image datasets benefit video recog-
nition under both supervised [2, 37] and unsupervised set-
tings [5]. These approaches simply leverage pretrained
models as better initializations to learn spatial-temporal fea-
tures in videos. While widely used and sometimes effective,
the spatial context relationships learned from the image pre-
rtaining phase are likely to be drastically modified during
video feature learning.

We argue that spatial priors encoded in pretrained self-
supervised models should be explicitly preserved when per-
forming video representation learning. The intuition behind
is that there are large inter-class variations among different
videos and their dependencies on what discriminative in-
formation to use (i.e., spatial and temporal clues) to make
correct predictions differ. For instance, for actions like “ap-
plying lipstick”, spatial knowledge is generally sufficient,
as evidenced by the fact simply using 2D features offers de-
cent results on datasets like Kinetics [9]. On the other hand,
temporal dynamics are crucial for differentiating actions be-
tween two fine-grained diving sequences [33]. This high-
lights the importance of considering the differences among
video samples during feature learning.

In light of this, we introduce BEVT, which decou-
ples video representation learning into spatial representa-
tion learning and temporal dynamics learning. More specif-
ically, BEVT builds upon the Video Swin Transformer [37]
due to their computationally efficient architectures ∗, and
is trained with a BERT-style objective to fully unleash the
power of transformers for representation learning. BEVT
contains an image stream for spatial modeling and a video
stream for temporal modeling, interacting with each other
for video modeling. In particular, the image stream, oper-
ating on RGB images, learns spatial priors first in an un-
supervised fashion by predicting masked image patches in
the form of latent codes derived from a pretrained VQ-
VAE [3]. It is then used to initialize the attention weight ma-
trices of the video stream, whose inputs are sampled video
clips, so as to save computation for video transformers. The
video stream, on the other hand, learns temporal dynamics
through predicting masked 3D tubes represented by latent
codes. The two streams, taking image and video pairs as in-
puts, are then jointly trained on video data through a weight
sharing strategy. Such a design not only maintains spatial
knowledge learned from image datasets to ensure decent
results for static video samples but also learns temporal in-
formation to guarantee correct predictions for samples that
contain dynamic movements. Finally, BEVT is finetuned
on targeted datasets for downstream evaluation.

We conduct extensive experiments on three challenging

∗Note that we only use the architecture and do not load the pretrained
weights.

video datasets, i.e., Kinetics-400 (K400) [9], Something-
Something-v2 (SSV2) [26], and Diving-48 (DIVING-
48) [33]. On K400, BEVT offers 81.1% Top-1 accu-
racy, which is better than the strong supervised baseline
80.6% [37]. On SSV2 and DIVING48, BEVT achieves
71.4% and 87.2% Top-1 accuracy outperforming state-of-
the-art methods [2, 5, 23, 37] by clear margins. To fur-
ther analyze the performance difference among these three
datasets, we further provide the temporal dependency anal-
ysis and demonstrate that videos in K400 mainly rely
on spatial clues for correct predictions while videos from
SSV2 and DIVING48 require more temporal information.

Our main contributions are summarized as follows:
(1) We explore the BERT-style training objective to fully
unleash the power of transformers to learn discriminative
video representations; (2) We introduce a novel two-stream
network that decouples spatial representation learning and
temporal dynamics learning; (3) We demonstrate different
video samples have different preferences towards spatial
and temporal clues; (4) We conduct extensive experiments
on three challenging video benchmarks and achieve compa-
rable or better results with state-of-the-art methods.

2. Related Work

Video understanding with CNNs. There is a plethora of
work on video understanding with CNNs, most of which
focus on learning spatial-temporal features [9, 22, 23, 34,
50, 53, 57, 61, 62]. These approaches can be divided into
two categories: (1) temporal aggregation and (2) 3D CNNs.
In particular, temporal aggregation methods typically ex-
tract image features/scores frame-by-frame and then com-
bine frame-level information to achieve video-level pre-
dictions through recurrent networks [15, 66] or average
pooling [47, 57]. On the other hand, 3D CNNs extend
2D convolutions into the time domain by using 3D con-
volutions on stacked RGB frames for the joint-modeling
of spatial-temporal relationships [9, 22, 23, 50, 53]. 3D
CNNs are generally computationally expensive, and this
motivates a line of research on efficient video recogni-
tion [13, 22, 34, 51, 53, 72, 74]. Instead of using CNNs, we
explore transformers for video understanding due to their
strong results on image recognition tasks.

Vision transformers. Motivated by the impressive perfor-
mance of transformers in a wide range of NLP tasks, there
is a growing interest in using transformers for computer vi-
sion tasks [19,20,28,36,38,43,49,56,73]. More specifically,
ViT [19] generalizes transformers to the image domain by
splitting images into patches which are further embedded
with a linear layer as inputs to a Transformer. While demon-
strating great potential in image recognition tasks, ViT re-
lies on pretraining on substantially large-scale datasets and
the training process is computationally expensive. To mit-
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igate these issues, extensive studies have been introduced.
For example, DeiT [49] uses a distillation loss to speed
up the training process. CSwin Transformer [17] proposes
multi-head grouping and performs attention within cross-
shaped windows. Mobile-Former [12] further introduces
lightweight transformers. There are also a few very re-
cent studies that extend image transformers for video under-
standing [2, 20, 37, 68]. Fan et al. use a multi-scale design
to generate spatial-temporal tokens in different sizes for ac-
tion recognition [20]. Liu et al. extend Swin Transformers
into the video domain [37]. In contrast, we study BERT
pretraining of video transformer in a self-supervised way,
which is orthogonal to transformer network design.

Self-supervised representation learning. At the core of
many computer vision tasks is how to learn discrimina-
tive features for targeted datasets. Since collecting la-
beled datasets is labor-intensive and costly, there is an
ever-increasing trend in learning representations in a self-
supervised manner [6, 7, 16, 27, 32, 67]. The main idea
is to design surrogate tasks including inpainting [44], col-
orization [70, 71], jigsaw predictions [42], rotation predic-
tions [25], etc., as a form of supervisory signals in lieu of
manual labels. More recently, contrastive learning has been
a popular paradigm for feature learning by forcing images
to be closer to their augmented copies than other samples
[10, 30, 40, 63, 65]. In contrast to these approaches using
CNNs as backbones, there are a few very recent studies
leveraging contrastive learning [8, 11] for transformers.

BERT pretraining. In contrast to contrastive learning
widely used in vision, BERT pretraining [14] is extremely
popular and extensively studied [4, 35] in NLP. As an ef-
fort that unifies vision and NLP under the same BERT pre-
training framework, the recent work BEiT [3] and ICT [55]
utilizes the masked image modeling task to do BERT pre-
training of image transformers and achieves great success
for different tasks. And one concurrent work PeCo [18]
further proposes a perceptual codebook to improve the per-
formance. Another concurrent work [29] extends it from
recovering patch tokens to raw pixels. In this paper, we
study BERT pretraining for video transformers as an or-
thogonal unifying effort. Different from BERT pretraining
of image transformers and the concurrent effort [48], we de-
couple video pretraining into spatial representation learning
and temporal dynamics learning so as to accommodate the
varying need of distinct salient clues for different videos.

3. Method

The goal of BEVT is to learn video representations effec-
tively for both relatively static videos and dynamic videos
in a self-supervised manner. Here, “relatively static videos”
mean the videos only requiring discriminative spatial rep-
resentation for recognition, while “dynamic videos” mean

that videos that also require temporal dynamics for recogni-
tion. Besides the effectiveness, another key problem to con-
sider in video pretraining is efficiency. Compared to image
pretraining, video pretraining is more computationally ex-
pensive, thus making pretraining on large-scale video data
from scratch inefficient or even inapplicable without mas-
sive computational resources.

To this end, BEVT decouples the video pretraining
into spatial representation learning and temporal dynam-
ics learning. And the spatial representation learning is
only conducted on image data, while the temporal dynam-
ics learning is conducted on video data. To implement this
idea, our BEVT contains two streams, operating on images
and videos, respectively. In the following, we introduce
different components of our framework. Figure 2 gives an
overview of our framework.

Image and video patches. For the video stream, given a
video clip Xvid ∈ RT×H×W×3 with T frames, we follow
VideoSwin [37] and convert it into T

2 ×
H
4 ×

W
4 3D patches,

each with a size of 2×4×4×3; each 3D patch contains a 96-
dimensional features. For the image stream, given an input
image Ximg ∈ RH×W×3, we consider each patch with a
size of 4 × 4 × 3 as a token and set the feature dimension
of each token as 48. We then project each token to a token
embedding vector of dimension C by a linear embedding
layer. Then the sequence of token embedding is input into
the following transformer architectures.

Masked image and video tokens. Motivated by the great
success of BERT in NLP tasks, BEVT is optimized to si-
multaneously perform masked image modeling (MIM) and
masked video modeling (MVM) by predicting “corrupted”
image and video tokens, respectively. The MIM is designed
to capture spatial priors while the MVM is used to capture
temporal dynamics in videos. In particular, for the image
stream, since input images are divided into non-overlapping
patches, we randomly mask several patches and the image
stream is trained to recover them as in [3]. More specif-
ically, the embedded feature of each masked patch is re-
placed by a learnable mask token embedding. For the video
stream, we randomly mask 3D tokens and train the video
stream to predict those masked tokens. The set of masked
image and video tokens and the remaining patch features
are sent to encoders, as will be introduced below.

Mask strategy. For masked image modeling, following
[3], we use blockwise masking instead of randomly select-
ing each masked patch. When generating masked positions
for an image, we mask a block of patches each time and
set the minimum number of patches for each block. The
position, the aspect ratio and the size of each block are ran-
domly selected under a preset range. We repeat masking
blocks until the ratio of masked patches exceeds the pre-
set lower bound. For masked video modeling, we employ
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Figure 2. An overview of our framework. BEVT contains an image stream and a video stream that learns video representations jointly
using a BERT-style objective. In particular, the image and video stream, operating on single images and video cubes, respectively, predict
masked image patches and 3D cubes derived from a tokenizer.

a tube masking strategy that is a straightforward extension
of blockwise masking. Given an input video clip of length
T , we first randomly choose the number of masked frames
(tube length) l and the start frame t. Then we employ block-
wise masking to generate a 2D mask, and apply this 2D
mask to each frame from t to t+ l. In other words, for each
masked frame, the set of masked positions is the same and
the shape of the whole 3D mask is a tube. The range of
the masked tube length is [0.5T, T ] and the masking ratio
of each masked frame is 0.5.

BEVT encoders. BEVT contains two encoders, one for the
image stream and one for the video stream. Both encoders
are instantiated with the Video Swin Transformer [37] due
to its strong performance with a moderate computational
cost. Note that in contrast to [37] that performs fully-
supervised training, we use the Video Swin Transformer
as our backbone for self-supervised learning. In particular,
Video Swin Transformer [37] follows the design of Swin
Transformer [36] and is a hierarchical architecture consist-
ing of four stages. Between every two stages, spatial down-
sampling is performed by patch merging layers, which con-
catenates the features of each group of 2×2 spatially neigh-
boring patches. After downsampling, a linear layer maps
the features of each concatenated token to half of their di-
mension. A series of Swin attention blocks comes after to
apply feature transformation.

Given a sequence of tokens as inputs, the video encoder
outputs a feature map with the size of T

2 ×
H
32 ×

W
32 × 8C.

Since Video Swin Transformer only performs temporal
downsampling in the beginning linear embedding layer, it
degrades to a 2D architecture when the temporal dimension
of the input is 1. As a result, for the image encoder, the

output feature map has a size of H
32 ×

W
32 × 8C.

Tokenizer. Following [3], we use the visual tokens gener-
ated by a pretrained image VQ-VAE [46] as the groundtruth
tokens and our pretraining task is to predict the tokens for
masked patches. The pretrained VQ-VAE tokenizer maps
image patch into discrete tokens z by searching the closest
latent codes in its pre-learnt visual codebook. Given an in-
put image Ximg ∈ RH×W×3, it will be tokenized into the
visual token map Zimg ∈ V

H
16×

W
16 . Similarly for an input

video Xvid ∈ RT×H×W×3, it is tokenized into visual token
map Zvid ∈ V T×H

16×
W
16 . Note that, considering the pre-

trained VQ-VAE only downsamples 8 × 8 patch into one
token, we downsample the input images/frames by 1/2 be-
fore feeding into the tokenizer so that the output token map
has the spatial resolution of H

16 ×
W
16 .

BEVT decoders. To learn meaningful representations by
predicting the tokens for the masked image and video
patches, BEVT has an image decoder and a video decoder
as the auxiliary prediction heads, which will be discarded
in finetuning stage. Existing modern vision transformers
including Swin Transformer follow the hierarchical design
and downsample the input into decreased spatial/temporal
resolutions. Taking the VideoSwin of video stream shown
in Figure 3 as an example, it consists of four stages, and
the feature maps F4 in the last stage have the dimension of
T
2 ×

H
32 ×

W
32 . In order to match the dimension of feature

maps to the number of groundtruth visual tokens, we de-
sign a lightweight decoder for the video stream in BEVT.
As shown in Figure 3, it first spatially upsamples the stage-
4 feature F4 by using a transposed convolutional layer, and
then concatenate the upsampled stage-4 feature F̂4 with
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Figure 3. BEVT encoder and decoder for masked video modeling.

stage-3 feature F3 together and fuse them with a simple
linear layer. Finally, the fused feature F will be tempo-
rally upsampled with another transposed convolution layer
to obtain F̂ . To predict the token for each position (t, i, j),
a simple softmax based classifier is applied upon F̂ .

pt,i,j = softmax(Wft,i,j + b) (1)

where ft,i,j is the feature vector of the output feature map F̂
at position (t, i, j), pt,i,j denotes the corresponding proba-
bility vector. W and b are the weight and the bias of a linear
layer. For the decoder in the image stream, it follows a simi-
lar design, and the only difference is without the temporally
upsampling part.

Training objectives. Denote the positions of masked
patches in the input images and videos as MI and MV ,
the objective of masked image modeling is to maximize the
log-likelihood of the groundtruth token zi,j for each mask
position (i, j).

LMIM = − 1

|MI |
∑

(i,j)∈MI

logp
zi,j
i,j (2)

where the superscript of p denotes indexing the proba-
bility value of one specific position. Similarly, the target of
masked video modeling can be denoted as:

LMVM = − 1

|MV |
∑

(t,i,j)∈MV

logp
zt,i,j
t,i,j (3)

The objective of two-stream joint training is a simple
combination of two objectives:

L = LMIM + λLMVM (4)

where λ is the hyper-parameter that balances the weights of
the image stream and the video stream.

Training strategies. Following our decoupled design, we
first train the image stream on ImageNet with the masked

image modeling task to learn discriminative spatial repre-
sentation. The resulting model is then used to initialize the
video stream, and both streams are jointly trained by opti-
mizing Equation 4 such that the objective LMIM preserves
spatial information while LMVM learns to capture temporal
dynamics in videos. Such a strategy not only makes BEVT
much more efficient than pretraining video transformers on
large-scale video data from scratch, but also satisfies the
need of learning different discriminative clues for different
types of video samples.

Weight sharing between streams. When jointly training
the image and video stream, instead of learning two sets of
model weights for the two streams independently, we de-
sign a weight sharing strategy so that they can share model
weights for the encoder except some image/video specific
parts. This is motivated by the good property of transformer
networks, i.e., most operators (including multi-head atten-
tion and FFN) are oriented to tokens but not specific in-
put types. Taking the Video Swin transformer as an exam-
ple, we use the following strategies for weight sharing: (1)
We use independent 2D patch partitioning layers instead of
3D patch partitioning, and add a linear embedding layer in
the first stage for projecting image tokens to the same di-
mension as the original 3D video patch embedding; (2) We
adapt 3D shifted local window to the 2D scenario. This is
fulfilled by reusing the submatrix of the original 3D relative
positional embedding where the relative temporal distance
is 0 as the 2D relative positional embedding. With such a
design, the image stream and the video stream can help each
other by optimizing one “mostly-unified” encoder.

Finetuning and inference. Once pretrained, BEVT pro-
vides decent video representations that can be transferred
for downstream tasks. On targeted datasets, we simply use
the 3D patch embedding layers and the video encoder, to
which a few task-specific layers (e.g., classification head
for video recognition) are appended, for finetuning. The re-
sulting model can then be readily used for inference.

4. Experiments
4.1. Experimental Setup

Datasets and evaluation metrics. We evaluate our method
on three representative video recognition datasets: Kinetics-
400 (K400) [9], Something-Something-v2 (SSV2) [26],
and Diving-48 (DIVING48) [33]. K400 contains videos
clips from YouTube with an average duration of 10 seconds
and the videos are manually labeled into 400 categories.
Following [23], we use ∼240K videos for training and
∼20K videos for testing. SSV2 is also a large-scale video
dataset that contains ∼160K videos for training and ∼20K
videos for testing. The videos in SSV2 are labeled into 174
classes the average duration is 4 seconds. DIVING48 con-
tains ∼17K fine-grained diving sequences, which are fur-
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ther split into a training set with around ∼15K clips and a
testing set with ∼2K clips. Compared to K400, recogniz-
ing videos in SSV2 and DIVING48 requires more temporal
information, as will be introduced below. Following official
instructions, we report Top-1 accuracy on all three datasets.
And the default resolution 224× 224 is used.

Implementation Details. We use Video Swin-Base for
experiments throughout the paper unless mentioned other-
wise. For pretraining the image stream BEVT-I alone, we
train for 800 epochs on ImageNet-1K with a batch size of
2048. For pretraining the video stream BEVT-V alone or
the two-stream BEVT, we train for 150 epochs on K400
with a batch size of 256 and the clip length T is 16. For two
stream pretraining, IMAGENET images are used to train the
image stream with a batch size of 2048, and the loss weight
λ is simply set to 1. We use the DALL-E tokenizer [46]
unless explicitly stated. The image stream pretraining takes
about 4 days on 32 V100 GPUs. The two-stream pretraining
of 150 epochs takes about 4 days on 32 V100 GPUs.

4.2. Main Results

Effectiveness of BEVT for video transformer pretrain-
ing. To demonstrate the effectiveness of BEVT, we com-
pare it with the four image transformer pretraining base-
lines: (1) Image Sup: pretraining the image Swin Trans-
former on Imagenet-1K in a supervised way. Similar strate-
gies are commonly used in existing video transformer pa-
pers [2, 5, 37]. (2) Image CL: pretraining the image Swin
Transformer on Imagenet-1K with a self-supervised con-
trastive learning method [64]. (3) BEVT-I: pretraining
the image Swin Transformer only with the image stream,
which is similar to BEiT [3]. (4) BEVT-V: pretraining
the video Swin Transformer only with the video stream.
The pretrained weights from Image Sup, Image CL and
BEVT-I used as the initialization of the Video Swin Trans-
former for finetuing. For the video stream, we design
two baselines by conducting BERT pretraining on K400
and HowTo100M [39] from scratch, i.e., BEVT-V, which
is our framework without the decoupled design. As em-
phasized before, because video pretraining is more com-
putationly expensive than image pretraining, pretraining on
HowTo100M dataset with many epochs is not applicable.
For fair comparisons, we also use 32 V100 GPUs to pre-
train HowTo100M about 8 days (about 2 epochs).

The comparison results are summarized in Table 1. We
observe that: (1) BEVT outperforms the Image Sup baseline
by clear margins (4.3% and 2.7%) on SSV2 and DIVING48,
respectively. This not only suggests that learning represen-
tations with BEVT using a BERT-style training objective
is promising without the need for manual labels, but also
shows that only image-based pretraining is not enough for
these two datasets. On K400, the performance of BEVT is
on par with the Image Sup baseline. (2) We also see that

Method Pretrain SSV2 DIVING48 K400

Image Sup IN-1K 66.3 84.0 80.6

Image CL IN-1K 67.1 85.5 80.9

BEVT-I IN-1K 69.2 81.2 80.5
BEVT-V K400 67.1 83.7 76.2
BEVT-V HowTo100M 64.2 82.3 75.1

BEVT IN-1K+K400 70.6 86.7 80.6
Table 1. Comparison of different pretraining methods. Video
Swin-Base is used here.

Dataset Normal Single-frame Random-Shuffling

K400 80.6 65.3 ↓15.3 77.8 ↓ 2.8
SSV2 66.3 6.3 ↓60.0 19.0 ↓47.3
DIVING48 84.0 13.8 ↓70.2 50.4 ↓33.6

Table 2. Effects of removing temporal information for differ-
ent video datasets. Video Swin-Base models trained with labeled
video data are used. We show top-1 accuracy for evaluation.

BEVT offers comparable or better results compared to Im-
age CL on these three datasets. (3) Compared to BEVT-I,
BEVT is better on SSV2 and DIVING48 by 1.4% and 5.5%
respectively, highlighting the gains brought by the video
stream. Similarly, BEVT obtains similar results as BEVT-I
on K400. (4) Compared to BEVT, BEVT-V pretraining on
K400 or HowTo100M from scratch under the similar com-
putation budget achieves much worse results. We hypothe-
size it may be because the data diversity of K400 is not as
good as ImageNet. And for HowTo100M, pretraining much
more epochs may help learn better video representation, but
it is too costly. This also further justifies the decoupled de-
sign in our BEVT.

Deeper dataset analysis. To further understand the perfor-
mance variations of BEVT among three datasets, we per-
form a temporal dependency study to investigate the amount
of temporal information required for correct predictions.
Specifically, we use the following two testing strategies: (1)
Single-frame, where we randomly sample a frame and re-
place all other frames with this one, leading to a static video;
(2) Random-Shuffling, where a random shuffling is per-
formed along the temporal axis. The results are summarized
in 2. We observe that both strategies have a relatively small
impact on K400 compared to SSV2 and DIVING48 where
there is a 60% and 70% performance drop when using the
Single-frame strategy. This suggests most videos in K400
can be recognized by discriminative spatial clues whereas
temporal dynamics is particularly important for SSV2 and
DIVING48. Comparing across Table 1 and Table 2, we
make the following conclusions: (1) On datasets like K400
where spatial clues are dominant, finetuning a model with
spatial priors, e.g. pretrained on IMAGENET, can achieve
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Method Pretrain Top-1
GFLOPs
× crops

TimeSformer-HR [5] IN-21K 62.5 1703 × 3
SlowFast R101 [23] K400 63.1 106 × 3
TSM-RGB [34] K400 63.3 62 × 6
MSNet [31] IN-21K 64.7 67 × 1
blVNet [21] SSv2 65.2 129 × 1
ViViT-L [2] - 65.4 903 × N/A
MViT-B [20] K400 67.7 455 × 3
Mformer-L [45] IN-21K+K400 68.1 1185 × 3
Swin-B [37] IN-1K 66.3 321 × 3
Swin-B [37] IN-21K+K400 69.6 321 × 3

BEVT IN-1K+K400 70.6 321 × 3
BEVT † IN-1K+K400 71.4 321 × 3
Table 3. Comparison to state-of-the-art on SSV2. † denotes that
we use the IN-1K pretrained PeCo tokenizer [18] instead of the
DALL-E tokenizer [46] during pretraining.

decent performance. Additional video modeling brings lit-
tle effect to the overall performance; (2) The use of the
video stream in BEVT is crucial to learn necessary tempo-
ral information for datasets like SSV2 and DIVING48. This
confirms our hypothesis that different videos rely on differ-
ent discriminative clues for accurate predictions due to the
large intra-class and inter-class variations among videos.

Comparisons with State-of-the-art methods. We com-
pare BEVT with alternative methods on SSV2, DIVING48
and K400. On SSV2 and DIVING48, we see from Table 3
and Table 4 that our approach achieves the best performance
by clear margins when compared to existing SOTA meth-
ods, including supervised models. It is worth mentioning
that, on SSV2, a common practice to achieve better results
is to perform two rounds of pretraining—a model is pre-
trained on both IMAGENET and K400 in a fully supervised
fashion before finetuning the model on SSV2. Instead, we
pretrain on IMAGENET and K400 without using any man-
ual labels, yet our performance is still better. On K400,
we see from Table 5 that BEVT achieves competitive re-
sults with SOTA methods using similar or less computation
measured by GFLOPs.

4.3. Ablation Study

Importance of image stream pretraining. In our BEVT,
we first conduct the image stream pretraining only on the
large-scale image data to efficiently learn spatial represen-
tations, then use it as the initialization for joint pretrain-
ing. To show its importance, we provide some ablation re-
sults in Table 6, where the column “Init” means whether
to use the image stream pretrained weights as initializa-
tion or not. We have some interesting findings: (1) Us-
ing the image stream pretrained weights as initialization

Method Pretrain Top-1 Params

SlowFast R101 [23] K400 77.6 53.3M
TimeSformer-L [5] IN-21K 81.0 121.4M
TQN [69] K400 81.8 N/A
Swin-B [37] IN-1K 84.0 88.1M

BEVT IN-1K+K400 86.7 88.1M
BEVT † IN-1K+k400 87.2 88.1M
Table 4. Comparison to state-of-the-art on DIVING48. † denotes
that we use the IN-1K pretrained PeCo tokenizer [18] instead of
the DALL-E tokenizer [46] during pretraining.

Method Pretrain Top-1
GFLOPs
× crops

R(2+1)D [53] - 72.0 75 × 10
I3D [9] IN-1K 72.1 108 × N/A
NL I3D-101 [58] IN-1K 77.7 359 × 30
ip-CSN-152 [52] - 77.8 109 × 30
SlowFast R101 [23] - 79.8 234 × 30
X3D-XXL [22] - 80.4 144 × 30

MViT-B, 32×3 [20] - 80.2 170 × 5
MViT-B, 64×3 [20] - 81.2 455 × 9
Mformer [45] IN-21K 79.7 369.5 × 30
ViT-B-VTN [41] IN-21K 78.6 4218 × 1
TimeSformer-L [5] IN-21K 80.7 2380 × 3
ViViT-L/16×2 [2] IN-21K 80.6 1446 × 12
Swin-B [37] IN-1K 80.6 282 × 12

BEVT IN-1K+K400 80.6 282 × 12
BEVT † IN-1K+K400 81.1 282 × 12
Table 5. Comparison to state-of-the-art on K400. † denotes that
we use the IN-1K pretrained PeCo tokenizer [18] instead of the
DALL-E tokenizer [46] during pretraining.

can benefit both pure video stream pretraining (i.e.,“BEVT-
V”) and the following joint pretraining of image stream
and video stream (i.e.,“BEVT”). (2) Even with the initial-
izations, jointly training the image stream with the video
stream is still necessary and can bring desirable perfor-
mance gain.

Image data in joint training. By default, when jointly
learning spatial and temporal representations, the image
stream in BEVT continues to use the IMAGENET images as
training images. In this ablation, we also experiment with
a variant that uses K400 frames for the image stream. The
results are shown in Table 7. We see that images from IM-
AGENET are slightly better than those from K400, i.e. less
than 0.3% on all three datasets. This suggests that the image
stream, designed to preserve spatial knowledge, is not very
sensitive to data domains.

Different Pretrained Tokenizer. We also experiment
with the PeCo tokenizer [18] instead of the DALL-E tok-
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Method Init SSV2 DIVING48 K400

BEVT-I - 69.2 81.2 80.5

BEVT-V × 67.1 83.7 76.2
BEVT-V X 70.0 85.2 79.6

BEVT × 67.9 85.1 78.5
BEVT X 70.6 86.7 80.6
Table 6. Ablation study to show the importance of image stream
pretraining. Init means models are initialized from image trans-
formers pretrained with the image stream on ImageNet-1K.

Method Video Image SSv2 Diving48 K400

BEVT-V K400 - 70.0 85.2 79.6

BEVT K400 K400 70.3 86.6 80.5
BEVT K400 IN-1K 70.6 86.7 80.6
Table 7. Ablation study on the image data of joint pretraining.
Models are initialized from image transformers pretrained with the
image stream on ImageNet-1K.

Method Pretrain SSV2 DIVING48 K400

Image Sup IN-1K 57.6 77.4 75.4
BEVT-I IN-1K 61.8 77.2 76.5
BEVT IN-1K+K400 65.7 82.3 77.1
Table 8. Comparison of different pretraining methods with TimeS-
former [5]. PeCo tokenizer is used here.

enizer [46] in BEVT. PeCo is only pretrained on ImageNet-
1K and uses the same codebook size as in DALL-E. As
shown in Table 3-5, PeCo outperforms the DALL-E on all
three datasets and pushes BEVT to better results with 71.4%
and 87.2% Top-1 accuracy on SSV2 and DIVING48 respec-
tively. This demonstrates that better performance can be
achieved with a better visual tokenizer.

Extension to different model architectures. We also in-
stantiate the BEVT framework with TimeSformer [5]. The
results in Table 8 demonstrate that BEVT offers better re-
sults compared to IN-1K supervised pretraining and image
stream pretraining on three video downstream tasks.

Effect of masking strategies. We evaluate the BEVT-V
with different masking strategies for the video stream, i.e.
the temporal length to be masked and the ratio of mask-
ing. The experiments are conducted with Video Swin Tiny
for time consideration. In addition to tube masking strate-
gies, we compare with: (1) Random-3D: which samples
random patches and masks them following a uniform dis-
tribution. (2) Frame-Diff : which uses the same strategy to
choose masked frames as tube masking, but applies block-
wise masking independently for each frame. 2D masks
may be different for different masked frames. (3) Ran-

Strategy Length Ratio SSv2 K400

Tube 0.5T-T 40% 61.5 70.9
Tube 0.5T-T 50% 63.3 71.6
Tube 0.5T-T 60% 63.6 71.4
Tube 0.5T-T 70% 63.5 71.4

Tube 0.25T-0.75T 50% 62.8 69.5
Tube 0.75T-1.0T 50% 63.1 71.6
Tube T 50% 62.6 71.2

Random-3D - 50% 59.1 67.4
Frame-Diff 0.5T-T 50% 62.9 70.6
Random-Frame 0.5T-T 50% 62.6 70.9
Table 9. Ablation study on the mask strategy. Video Swin-Tiny is
used for this study.

dom-Frame: which samples random frames and masks
them with the same 2D mask generated by blockwise mask-
ing. The temporal positions of masked frames may not be
consecutive. The results are summarized in Table 9. We
have several observations: (1) Masking tubes offers the bet-
ter results compared to other masking methods like Ran-
dom-3D and Random-Frame. (2) Setting too small tube
temporal length (e.g., [0.25T, 0.75T]) or too large tempo-
ral length (e.g., T) will both incur inferior results on SSV2.
We guess it is because the former setting will make the
masked video modeling too easy while the later will de-
grade to masked image model to some extent.(3) Applying
different block masks for different frames (“Frame-Diff”) is
also not good, which possibly shares the similar reason as
the small temporal length, i.e., making masked video mod-
eling too easy because information can be easily borrowed
from adjacent/short-term frames.

5. Conclusion and Discussion

Benefited from the BERT pretraining strategy, trans-
formers have dominated various NLP tasks. Recent suc-
cess of transformers in computer vision motivates the use
of BERT pretraining for feature learning. We study how to
explore BERT pretraining for video transformers. We in-
troduced BEVT that learns both discriminative spatial and
temporal representations using a carefully designed decou-
pling strategy, which is not only efficient but also effective.
BEVT achieved SOTA performance on three video recog-
nition datasets. Although our decoupled design is efficient,
BEVT is still computationally intensive and exploring train-
ing with constrained resources is left as future work.
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