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Abstract

Long-tail object detection suffers from poor performance
on tail categories. We reveal that the real culprit lies in the
extremely imbalanced distribution of the classifier’s weight
norm. For conventional softmax cross-entropy loss, such
imbalanced weight norm distribution yields ill conditioned
decision boundary for categories which have small weight
norms. To get rid of this situation, we choose to maxi-
mize the cosine similarity between the learned feature and
the weight vector of target category rather than the inner-
product of them. The decision boundary between any two
categories is the angular bisector of their weight vectors.
Whereas, the absolutely equal decision boundary is sub-
optimal because it reduces the model’s sensitivity to vari-
ous categories. Intuitively, categories with rich data diver-
sity should occupy a larger area in the classification space
while categories with limited data diversity should occupy
a slightly small space. Hence, we devise a Category-Aware
Angular Margin Loss (C2AM Loss) to introduce an adap-
tive angular margin between any two categories. Specif-
ically, the margin between two categories is proportional
to the ratio of their classifiers’ weight norms. As a result,
the decision boundary is slightly pushed towards the cat-
egory which has a smaller weight norm. We conduct com-
prehensive experiments on LVIS dataset. C2AM Loss brings
4.9~5.2 AP improvements on different detectors and back-
bones compared with baseline.

1. Introduction

Object detection is one of the most essential tasks in
computer vision [11, 16, 31, 32]. Modern object detec-
tors [1, 3,6, 12,21,22,24,31, 40, 44, 45] have achieved
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Figure 1. (a) is the classifier’s weight norm distribution of a naive
Mask R-CNN model trained with LVIS v1.0 training split [13]. X-
axis is the sorted category index based on the category frequency.
Y-axis shows the weight norm; (b) shows the precisions AP™ of
the first 100 categories. (c) shows the precisions of the last 100
categories.

promising results on challenging PASCAL VOC [9] and
COCO [23] datasets. Both of these two benchmarks are cu-
rated to keep the relative balance between categories. How-
ever, in real-world scenarios, data always obeys the Zip-
fian [29] distribution where a large number of tail categories
have few samples. Although current detectors perform well
on balanced datasets, they all suffer from severe perfor-
mance degradation on tail classes when facing extremely
imbalanced datasets. Thus, long-tail object detection re-
mains a major challenge for researchers.

A model that minimizes empirical risk on long-tail train-
ing datasets is seriously biased towards head categories
since they contribute most of the training data. To overcome
this issue, previous literatures typically adopt two types of
measures, namely, data re-sampling [8, 14,27, 33] and loss
re-weighting [34, 35, 38,39]. Data re-sampling pins hope
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on adjusting the extremely imbalanced data distribution to
a less imbalanced one by over-sampling the tail categories
and under-sampling the head. Whereas, it only increases the
occurrence frequency of tail categories. The data diversity
remains unchanged, which will lead to over-fitting on tail
classes. Besides, under-sampling the head classes has a risk
of missing discriminative information. Loss re-weighting
methods work by enhancing the loss of tail categories and
weakening that of head categories. Both of these methods
implicitly reshape the decision boundary and bring bene-
fits to tail categories. Nevertheless, they adjust the decision
boundary in an indirect way which may weaken their ef-
fectiveness. What’s more, how they influence the decision
boundary is not intuitive and geometrically interpretable.

Under the long-tail setting, we observe that the weight
norm of the classifier also exhibits an extremely imbalanced
distribution as shown in Fig. 1(a). This phenomenon has
also been validated by previous literatures [20,34,35]. And
we also notice the precision is highly related to the clas-
sifier’s weight norm. As shown in Fig. 1(c), the weight
norms of the last 100 categories are close to zero. And their
precisions are almost zero. For categories that have large
weight norms, their precisions vary in a reasonable range,
as in Fig. 1(b). We demonstrate that the extremely imbal-
anced weight norm distribution will deteriorate the decision
boundary, leading to a near zero precision for categories
which have small weight norms. For inner-product based
softmax, the output logit (before softmax) of category 7 is
given by ||W;||2 - ||z||2 - cos(6;), where W, x, 6, are the
classifier weight, the feature and the angle between them,
respectively. When ||W;]|2 is overwhelmingly large, the
model has a high probability to predict a large score on cat-
egory i. As aresult, the categories with small weight norms
are completely suppressed, which is fatal to their accuracy.
We will detailedly analyse how the extremely imbalanced
weight norm distribution causes the ill conditioned decision
boundary in the following section.

The cosine classifier has natural advantages for handling
the ill conditioned decision boundary mentioned above. The
decision boundary of two categories is the angular bisec-
tor of the angle between two classifiers’ weight vectors,
as shown in Fig. 2(b). Whereas, totally abandoning the
weight norm information is suboptimal since it reduces the
model’s sensitivity to different categories. Intuitively, cate-
gories with rich data diversity should occupy a larger area
in the angular classification space. And for categories with
limited data diversity, it is beneficial to slightly shrink the
angular classification space for learning a compact and in-
trinsic feature representation. In other words, proper clas-
sifier bias is profitable in long-tail object detection.

In this paper, we propose a Category-Aware Angular
Margin Loss (C2AM Loss) to adaptively adjust the decision
boundary based on the weight norm distribution. Specifi-

cally, it introduces a category-aware margin to any two cat-
egories in the angular space. The angular margin is pro-
portional to the ratio of the classifier’s weight norm. We
can adaptively push the decision boundary towards cate-
gories which have smaller weight norms to learn a more
compact and intrinsic feature representation. Noting that al-
though C2AM Loss manually introduces the classifier bias
to the model, it will not generate ill conditioned decision
boundary like the inner-product based softmax loss. C2ZAM
Loss utilizes a hyper-parameter « to control the strength of
pushing the decision boundary. Besides, a convex function
log(z) is utilized to ensure the margin will not become ex-
cessively large. The above two measures guarantee the clas-
sifier bias is maintained in a proper magnitude.

To validate the effectiveness of C2AM Loss, we conduct
extensive experiments on the challenging long-tail object
detection dataset LVIS (v0.5 and v1.0) [13]. Experimental
results of various detectors (Mask R-CNN [15] and Cas-
cade Mask R-CNN [1]) with different backbones (ResNet-
50 and ResNet-101 [16]) all show the superiority of the pro-
posed C2AM Loss. To be more specific, Mask R-50 with
C2AM Loss outperforms the baseline by 5.2 AP,,. The im-
provements are mainly from rare categories (+11.9 AP™)
and common categories (+6.8 AP)""). We also compare our
methods with other SOTA methods and the results show that
our method is more competitive.

To sum up, this work makes the following three contri-
butions:

1. We point out that the extremely imbalanced weight
norm distribution under the long-tail setting yields ill
conditioned decision boundary, which severely deteri-
orates the performance.

2. We present a Category-Aware Angular Margin Loss
(C2AM Loss) that can adaptively adjust the decision
boundary for learning a more compact and intrinsic
feature representation.

3. We conduct comprehensive experiments on long-
tail object detection dataset LVIS (v0.5 and v1.0).
C2AM Loss brings obvious performance improvement
(4.9%~5.2% AP™) when compared with baseline and
achieves new state-of-the-art on both LVIS v0.5 and
v1.0.

2. Related Work

Object Detection. Recent years have witnessed rapid de-
velopment in object detection area. Current popular ob-
ject detectors can be divided into two types, one-stage
and two-stage approaches. CNN based two-stage detec-
tors [6,12,15,21,31] first generate coarse bounding box can-
didates by a lightweight Region Proposal Network (RPN).
Then, the region features of these proposals are extracted
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through Rol Pooling or Rol Align operation. These features
are further utilized for accurate classification and bounding
box regression. One-stage detectors have a much concise
pipeline. Typical one-stage approaches include SSD [24],
YOLO [28], RetinaNet [22] and CornerNet [18] etc. They
directly make predictions on the dense anchors or points
without generating bounding box proposals. Since one-
stage detectors do not extract region features for each pro-
posal, they enjoy higher efficiency and are widely applied in
real-world scenarios. These detectors perform well on bal-
anced datasets. However, directly applying them to long-
tail datasets obtains inferior performance due to the issues
mentioned before. Thus, we intend to improve the detec-
tors’ performance on long-tail datasets.

Long-tail Recognition. Re-sampling strategy is a use-
ful technique for imbalanced datasets. Repeat factor sam-
pling [13] and class-aware sampling [33] aim to balance the
data distribution by sampling the tail categories in a higher
frequency. Special loss function is another technical direc-
tion for tackling the long-tail problem. LDAM [2] enforces
class-dependent margins based on label frequencies and en-
courages tail classes to have larger margins. To protect the
tail categories from being over-suppressed, EQL [35] ig-
nores the negative gradients from head samples. The ad-
vanced EQL v2 [34] starts from the perspective of gradient
balance. It introduces a novel gradient-guided re-weighting
mechanism to keep the balance between positive and neg-
ative gradients for each classifier. ACSL [39] proposes to
only suppress those semantically similar categories to pro-
tect the tail categories and to maintain the discriminative
power of the network. In addition to these special func-
tions, measures like decouple training [ 7], category group-
ing [20] also work well under the long-tail setting. All these
methods implicitly reshape the decision boundary to pro-
tect the tail categories. Whereas, such an indirect way may
weaken their effectiveness. Hence, we choose to adjust the
decision boundary explicitly.

Margin-based Loss Functions Margin-based loss func-
tions play an important role in metric learning and are
widely adopted in tasks such as face verification and per-
son Re-ID. To encourage intra-class compactness and inter-
class separability, L-Softmax [26] loss incorporates a preset
constant m multiplying with the angle between the feature
and the ground-truth classifier. ArcFace [7] adds an addi-
tive angular margin to the target angle to obtain highly dis-
criminative features for face recognition. CosFace [37] in-
troduces a cosine margin term to further maximize the deci-
sion margin in the angular space. SphereFace [25] improves
L-Softmax by normalizing the weights, which achieves bet-
ter performance on a series of face recognition benchmarks.
These loss functions introduce various margins to encour-
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Figure 2. (a) shows the decision boundary of the conventional soft-
max loss; (b) illustrates the decision boundary of cosine distance
based softmax loss, Wl, WQ are the normalized weight vectors; (c)
is the decision boundary of our proposed C2AM Loss function.

age discriminative learning. Nevertheless, the margin they
utilized is a constant value that does not consider the char-
acters of the classifiers. This is the main difference between
C2AM Loss and these loss functions.

3. Methodology

In this section, we first reveal that the extremely imbal-
anced weight norm distribution in long-tail recognition will
generate ill conditioned decision boundary with the con-
ventional inner-product based softmax cross-entropy loss
(Sec. 3.1). And we demonstrate cosine similarity based
softmax loss is helpful for getting rid of the ill conditioned
decision boundary. To learn a more compact and intrin-
sic feature representation for tail categories, we propose
a Category-Aware Angular Margin Loss (C2AM) Loss to
push the decision boundary towards tail categories. De-
tails in Sec. 3.2. To better illustrate how C2AM Loss influ-
ences the decision boundary, we perform a toy example on
MNIST [19] dataset and visualize the feature distribution in
Sec. 3.3. Finally, we discuss the differences between C2AM
Loss and other margin-based loss functions in Sec. 3.4.

3.1. Ill Conditioned Decision Boundary of inner-
product based Softmax Cross-Entropy Loss

We start by giving a review of the conventional inner-
product based softmax cross-entropy loss. Given the
learned feature x and ground truth ¢, the loss is calculated
based on Eq. (1), where W is the j-th column of the last
fully connected layer (the weight vector of classifier j). For
simplicity, we omit the bias term in the last fc layer. Actu-
ally, it brings no difference to the model performance. To
make a correct prediction, the model has to output the high-
est posterior probability of the ground-truth class, which
means W,z > Wz for all categories j # i.

eWT:z:

k3

j=1¢"
Considering the most simple binary-classification prob-
lem, the decision boundary is defined by Eq. (2). We refor-
mulate it to Eq. (3), where 0; is the angle between W, and
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(a) Softmax cross-entropy loss under balanced setting.

Figure 3. The feature distribution on MNIST [

(b) Softmax cross-entropy loss under imbalanced setting.

(c) C2AM loss under imbalanced setting.

] val dataset. Balanced MNIST is the original train dataset. We create an imbalanced

MNIST by randomly selecting 100 images for class ‘7°, ‘8”, and ‘9’. (100 for each category, 300 in total). For classes ‘0’-‘6’, we keep all
their training images. Since the feature dimension is 50, we utilize t-SNE to reduce the feature dimension to 2 for visualization.

x. Considering the situation when ||[W1||2 # 0, ||[Wa]|2 #
0,]|zl]l2 # 0 and 0 < 601,00 < 7, the formulation can
be further simplified to Eq. (4). As we mentioned be-
fore, long-tail datasets yield a highly imbalanced distribu-
tion of the classifier’s weight norm. Supposing we have
[|[Will2 > ||W2]|2, the decision boundary will move to-
wards Ws. As a result, The angular classification space of
category 2 will be shrank. As shown in Fig. 2(a), the angle
(62) between decision boundary and W5 is smaller than 6.
And things will be worse when the distribution of weight
norm is extremely imbalanced. When ||W1]|o > ||[Ws]]o,
5 tends to be zero. For samples from category 2, the an-
gle between the feature = and the weight W5 must be small
enough to be correctly classified. Under this circumstance,
the angular classification space of category 2 will be shrank
too much so that the classifier is not able to output high
scores for tail samples. The tail categories are obliterated
by the head.

Wlhe=Wix ()

[[Will2 - [|z]|2 - cos(01) = [[Wal|2 - [|z[|2 - cos(f2) (3)
|[Wall2

cos(01) = cos(0 4

)= fwgpy ) @

Although the above analysis is built on the binary-class
case, it is trivial to generalize the analysis to the multi-class
case. In the long-tail object detection task, the imbalance
factor is usually large. Head categories contain tens of thou-
sands of instances while the instance number of tail cate-
gories is less than 100. The models trained with conven-
tional softmax loss have ill conditioned decision boundary
for tail categories. The classifier is unresponsive to the tail
classes, thus yields a near-zero precision.

3.2. Category-Aware Angular Margin Loss

To get rid of the ill conditioned decision boundary un-
der the long-tail setting, we replace the inner-product op-
eration in the conventional softmax loss with cosine dis-
tance. Softmax loss with cosine distance minimizes the an-
gle between feature vector x and the ground-truth classifier
weight vector W; rather than maximizing the inner-product
of x and W;. It is mathematically formulated as Eq. (5),
where cos(6;) = m Here we introduce a hyper-
parameter s to stabilize the training like CosFace [37] and
ArcFace [7]. From this formulation, we observe that the
decision boundary is only related to the angle 6, which pro-
tects the tail classifier from being over-suppressed by the
head categories with extremely large weight norms. For
binary-class situation, the decision boundary is the angu-
lar bisector of weight vector W7 and W5, as shown in Fig. 2

(b).

es~cos(9i)

- ) 5)

L=—-log(—7+——
g(ijl es-cos(0;)

Although optimizing the cosine similarity relieves the
pressure of imbalanced weight norm distribution, we argue
that the absolutely equal decision boundary between head
and tail categories is also detrimental for the overall perfor-
mance. Completely abandoning the weight norm informa-
tion is irrational since it reduces the sensitivity of the model
to different categories. Intuitively, head categories should
occupy a larger area in the angular classification space be-
cause of the rich diversity of data. On the contrary, since the
scarcity of data, the angular classification space for tail cat-
egories should be slightly shrunk to learn a more compact
and intrinsic feature representation. The decision boundary
should better be flexibly adjusted based on the classifier’s
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where,
a, ||Will
m;; = maz(0, —log( ) 7
’ ™ 7 [Will2

To this end, we reintroduce the weight norm component
to the cosine classifier in a more controllable and gentle
way. Specifically, we add a Category-Aware Angular Mar-
gin to the cosine similarity based softmax Loss (abbrevi-
ated as C2AM Loss). The math formulation is shown as
Eq. (6). For samples from category ¢, C2ZAM Loss adds a
class-aware angular margin m;; to category j(j # ¢), where
m;; is proportional to the ratio of the classifier’s weight
norm as Eq. (7). Noting that we detach the gradients of
W;, W; when calculating the margin m;;. We still take the
binary-classification case as an example to illustrate how
C2AM Loss influences the decision boundary. For sam-
ples from category 1, supposing the angle between W; and
W, is t, the decision boundary of C2AM Loss is given by
cos(01) = cos(fy + my2). Since 01 + 02 = t, the decision
boundary is actually 6; = 5112 When |[Wi |2 = ||[Wa|2,
m;; = 0, there is no additional margin to category 2. The
decision boundary is the angular bisector (1 = %). When
mqo > 0, the decision boundary H% is larger than the
angular bisector, as shown in Fig. 2 (c¢). The decision
boundary is pushed towards the classifier weight vector with
smaller weight norm. The adaptive margin m; is in pro-

portion to the ratio of the weight norm ”g&”i . C2AM Loss
will push the decision boundary harder if the gap between
the weight norms becomes larger.

It is worth noticing that although C2AM Loss pushes the
decision boundary towards classifier with smaller weight
norm, it will not generate ill conditioned decision bound-
ary like the inner-product based softmax loss. First, C2ZAM
Loss is more controllable. It introduces a hyper-parameter
« to control the strength of pushing the decision boundary.
« is typically a small value in our experiments. Second, it

works in a more gentle way. The log(z) function will out-
| Will2

o WLz
the second derivative of log(x) is smaller than 0, the output
will increase slower as the input becomes larger. Overall,
the above two reasons guarantee that C2ZAM Loss will not

generate ill conditioned decision boundary.

put a value smaller than the input

Besides, since

3.3. Visualization of Toy Example

To investigate how the imbalanced data distribution in-
fluences the feature learning and validate the effectiveness

Table 1. Comparison with other margin-based loss functions.

Loss Function Formulation

o5+ (cos(0;)—m)

L =—log s cos
CosFace [37] (es.(cos(Qi)—nw.)_*_zjc’:l:]#i La-cos(85) )
s-cos(0;+m)
L = —log e2 o - -
ArcFace [7] (es-cos(9i+wz)+2§'}:1yg‘#l o5 cosw]))

IERIEICH]
L=- e
SphereFace [25] lOg(E\\:x;iuu)(ei)_*_zf:lvj# Nz ilTcos(9;) )

P(0;) = (—1)*cos(mb;) — 2k, 0; € [Ex VT e Jo,m — 1]

s-cos(0;)

_ e
L = —log( crcos(8) 1320 geeos(@mi;) )
C2AM Loss J=1,374
o o [[Will2
mi; = max(0, 7rlog(HWjH2 )

of C2AM Loss, we conduct a toy example on MNIST and
visualize the feature distribution in Fig. 3. For better visual-
ization, we reduce the feature dimension from 50 to 2 with
t-SNE. We first train the network on the balanced MNIST
train and visualize the feature distribution of the val dataset.
As shown in Fig. 3(a), although there are some false posi-
tives, we can still observe the clear decision boundaries be-
tween different classes. To illustrate how the imbalanced
data distribution influences the feature distribution, we cre-
ate an imbalanced MNIST train dataset by manually reduc-
ing the image number of ‘7, ‘8’, and ‘9’ to 100. As illus-
trated in Fig. 3(b), the decision boundary between tail cate-
gory and head category becomes blurry. The feature points
near the decision boundary are not discriminative, leading
to many false positives. Comparing Fig. 3(b) and Fig. 3(c),
we observe a clearer decision boundary in Fig. 3(c) and
the features of tail categories are more discriminative in 2-
dimension feature space. The above observations prove that
C2AM Loss is able to encourage the model to learn a more
discriminative and intrinsic feature representation.

3.4. Discussion

Although C2AM Loss shares a similar formulation with
other margin-based loss functions, they are designed with
totally different motivations. CosFace [37], ArcFace [7]
and SphereFace [25] introduce a preset margin m to maxi-
mize inter-class variance and minimize intra-class variance.
However, C2AM Loss designs an adaptive margin to adjust
the decision boundary between head and tail categories. To
better distinguish our method from others, we list their math
formulations in Table 1. For CosFace and ArcFace, the
margin is introduced in an additive manner. CosFace adds
a negative preset margin to the cosine similarity cos(6;).
While ArcFace directly adds the constant margin m to the
angular #;. In addition to the additive manner, the con-
stant margin can also be multiplied to the angular 6;, as the
SphereFace does. Formally speaking, our proposed C2AM
Loss looks more like ArcFace which all add an additional
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Table 2. Performance comparison of Cross-Entropy Loss and C2AM Loss on LVIS v1.0 val.

Framework Backbone Loss ‘ ApP™ ‘ AP ‘ ApT AR APE
Cross-Entropy | 20.5 | 21.4 1.1 18.6 31
ResNet-30 | "CoAMLoss | 257 | 265 | 13 254 315
Mask R-CNN Crose 218 | 228 | 14 203 325
ross-Entropy . . - : :
ResNet-101 C2AM Loss 27 281 | 14.1 26.7 33
Cross-Entropy | 22.7 | 25.3 2.8 21.6 327
ResNetS0 | " coAMLoss | 27.6 | 311 | 142 277 335
Cascade Mask R-CNN C E 24.3 27 33 23.7 34.1
ross-Entropy . . : ‘
ResNet101 | " coaMLoss | 292 | 326 | 168 2901 347
margin to the angular. However, the essential difference lies R-CNN [15] detector. ResNet50 [16] with FPN [

in that the margin in C2AM Loss is adaptive, which is re-
flected in the following two aspects:

First, the margin in C2AM Loss is category-aware. For
CosFace, ArcFace, and SphereFace, the margins between
any two categories are the same value m. However, the
margin in C2AM Loss is related to the classifier’s weight
norm, which yields various margins between different cat-
egories. Second, the margin in C2AM Loss will change as
the training goes on. During training, the network’s param-
eters will be updated. The dynamically changing classifier
yields an adaptive angular margin m, which is beneficial for
precisely adjusting the decision boundary.

4. Experiments
4.1. Dataset and Evaluation Metric

To validate the effectiveness of our proposed C2AM
Loss, we conduct comprehensive experiments on the
long-tail Large Vocabulary Instance Segmentation (LVIS)
dataset [13]. LVIS provides precise bounding box and mask
annotations for various categories with long-tail distribu-
tion. We mainly perform experiments on the v1.0 version
which consists of 1203 categories. The whole dataset is
split to train set (100k images with 1.3M instances) and
val set (19.8k images). We train our models on train
set and report the accuracy on val set. LVIS divides all
categories into 3 groups based on the their frequency in the
train set: rare (<10 images), common (11—100 images)
and frequent (>100 images). For evaluation, we report the
mean average precision (AP™ for mask prediction, AP?
for box prediction). Besides, the average precision on rare
(AP™), common (AP]™) and frequent (AP}T-"') categories
are also reported to well characterize the long-tail class per-
formance. In addition to LVIS v1.0, we also release the
results on LVIS v0.5 for comparison.

4.2. Implementation Details

We implement our methods with the popular MMDetec-
tion [4] toolbox and mainly conduct experiments on Mask

tecture has been adopted as the backbone. Besides, we also
perform experiments with a larger backbone network, such
as ResNet101, to validate the effectiveness of the C2AM
Loss. When training, we choose end-to-end training with
2x training schedule. The models are trained using SGD
optimizer with 0.9 momentum and 0.0001 weight decay and
batch size of 16 on 8 GPUs. The initial learning rate is set to
0.02 with 500 iterations’ warm up. The learning rate decays
to0 0.002, 0.0002 at the end of epoch 16 and 22, respectively.
The training stops at epoch 24. Following the convention,
we apply random horizontal image flipping and multi-scale
jittering with smaller image sizes (640, 672, 704, 736, 768,
800) in all experiments. When testing, the image size is set
to (1333, 800) without any test time augmentation. Non-
Maximum Suppression is performed with IoU threshold 0.5
to remove duplicates. After NMS, the top 300 bounding
boxes with score threshold 0.0001 for per image are se-
lected for evaluation. When combining C2AM Loss with
Mask R-CNN, we simply replace the cross-entropy loss on
top of the bounding box classification branch with C2AM
Loss.

4.3. Main Results

To validate the effectiveness of C2AM Loss, we con-
duct experiments with Mask R-CNN and Cascade Mask R-
CNN [1] with various backbones, ResNet-50 and ResNet-
101. We train the baseline model with cross-entropy loss
for 24 epochs. The experimental results are summarized
in Table 2. The baseline model (Mask R-50) has a rather
imbalanced accuracy distribution. Frequent categories have
satisfactory precision (31%) while the accuracy of rare cat-
egories is almost zero (1.1%). The extremely imbalanced
weight norm distribution severely deteriorates the decision
boundary of tail categories. Hence, the model is not able to
correctly classify the samples of tail classes. With C2ZAM
Loss, the precision of tail categories AP™ is greatly im-
proved by a large margin (+11.9%). Besides, we can
also observe obvious performance improvement for AP"
(+6.8%), which is consistent with our analysis. What’s
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Table 3. Results of C2AM Loss with different hyper-parameter s
on LVIS v1.0 val. The model is Mask R-CNN with ResNet-50
backbone.

s | AP™ | AP® | AP® AP APP

10 | 142 14.9 0 7.6 27.7
20 | 254 | 26.1 12.5 25 31.6
30 | 25.7 | 265 13 254 31.5
40 | 248 | 255 132 239 30.8
50 | 23.6 | 244 11.5 22.7 30

more, C2AM Loss improves the tail categories without sac-
rificing the head. Actually, AP;" has little improvement
from 31% to 31.5%. The overall precision AP™ is lifted by
a significant margin (+5.2%).

When switching to a large model, C2AM Loss still
brings consistent performance improvements. For Mask R-
CNN with ResNet-101 backbone, the overall accuracy for
mask prediction AP, reaches 27% and AP, increases by
5.3%, from 22.8% to 28.1%. The precision increases of
AP™ (12.7%) and AP (6.4%) are still significant. It is
worth noticing that C2AM Loss does not hurt the perfor-
mance of head categories, which is a desired property for
long-tail solutions. In principle, the effectiveness of C2ZAM
Loss is not restricted to a certain type of detector. To verify
that, we conduct experiments with the more powerful Cas-
cade Mask R-CNN detector. By simply replacing the origi-
nal softmax cross-entropy loss on all 3 heads with our pro-
posed C2AM Loss, the performance can be greatly boosted
by a large margin, especially for tail categories. The details
are in Table 2. And the results demonstrate that C2ZAM Loss
is versatile for different object detectors.

4.4. Ablation Study

Ablation Study on Hyper-parameters. C2ZAM Loss intro-
duces two hyper-parameters s and «. s is a scale factor for
efficiently optimizing the cosine similarity based softmax
loss. It is a standard configuration for the cosine classifier
and has been widely used in various verification tasks such
as face recognition and person re-identification. Norm-
Face [360] demonstrated that cosine similarity with softmax
loss is hard to optimize since the range of cosine value is
limited, [-1,1]. The low range problem may prevent the

%;097 from getting close to 1 even
when the samples aré well-separated. Introducing s to scale
the cosine value to a proper magnitude is necessary for sta-
ble optimization. We carefully tune this hyper-parameter
and record the results in Table 3. We found the best setting
is 30, which is consistent with the recommended setting of
CosFace [37], ArcFace [7] et al.

Another hyper-parameter of C2AM Loss is . It controls
the strength of how hard we push the decision boundary. If

« is set too small, the strength is too weak to influence the

probability P; =

Table 4. Results of C2AM Loss with different hyper-parameter o
on LVIS v1.0 val. The model is Mask R-CNN with ResNet-50
backbone.

a | AP™ | AP® | AP® AP APP

00 | 24.1 24.8 9.6 232 31.5
0.1 | 248 | 255 11.6 242 314
03| 253 | 26.1 12.8 24.7 31.6
05| 25.7 | 265 13 254 31.5
07| 254 | 264 13 249 31.5

Table 5. Results of Mask-R-50 with different margin type on LVIS
v1.0 val.

Margin Type | AP™ | AP | AP[* AP™ AP}

None 24.1 24.8 9.6 232 315
Adaptive 25.7 | 26.5 13 254 31.5
Fixed 243 | 252 | 115 234 30.9

final decision boundary. When « is set to 0, C2AM loss
degenerates to the cosine classifier combining with softmax
cross-entropy loss. We conduct experiments with different
« and list the results in Table 4. We observe that C2AM
Loss outperforms the cosine classifier with an obvious pre-
cision rise (+1.6% AP™, +1.7% AP"). We experimentally
find that « = 0.5 works best. So we adopt this default set-
ting to conduct all experiments related to C2ZAM Loss.
Adaptive Margin or Fixed Margin? Since C2AM Loss
sets adaptive margin between categories, a natural ques-
tion will be: what will happen if we set a fixed margin just
like CosFace and ArcFace? In order to illustrate the neces-
sity of the adaptive margin, we design control experiments
about the type of margin, namely, adaptive margin and fixed
margin. For fixed margin, we replace the adaptive margin
term Zlog( HVV{ZJH) with a constant value m. After elabo-
rately tuning the value of m, we find the fixed margin works
worse than adaptive margin, Table 5. It obtains worse per-
formance on both AP/*, AP and AP}”, which indicates
that the fixed margin can not effectively adjust the decision
boundary. Since the fixed margin ignores the characters of
different categories, it is not suitable for all classes. Thus,
the category-aware margin is necessary under the long-tail
setting.

4.5. Comparison with State-of-the-Arts

In this section, we compare our method with other state-
of-the-art methods, as shown in Table 6. Since LVIS v1.0
is a newly released dataset, we also report the results on
LVIS v0.5 for comparison with more previous methods.
Our models are trained with repeat factor sampler for 24
epochs. There is no test time augmentation during testing.
For LVIS v0.5, we present the results of Mask R-CNN with
ResNet50-FPN backbone. C2AM Loss performs better than
other methods, outperforming the state-of-the-art method
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Table 6. Comparison with state-of-the-art methods on LVIS v0.5 and LVIS v1.0 dataset. Bold numbers denote the best results.

Dataset Framework Backbone Methods ‘ AP™ ‘ AP? ‘ AP AP AP
CBL [5] 233 | 239 | 114 238 273

LWS [17] 238 | 24.1 | 144 244 268

LDAM [2] 241 | 245 | 146 253 263

EQL [35] 252 | 24.1 | 146 244 268

Forest R-CNN [41] | 25.6 | 259 | 183 264 276

RFS [13] 259 | 26.1 | 178 262 288

LVISv05 | Mask R-CNN | R-50-FPN BAGS [20] 263 | 258 | 180 269 287
BALMS [30] 270 | 276 | 196 289 275

EQLV2 [34] 27.1 | 270 | 186 276 299

DisAlign [43] 279 | 276 | 162 293 308

LOCE [10] 284 | 282 | 220 290 302

C2AM Loss (Ours) | 29.7 | 298 | 193 313 318

RFS [13] 237 | 247 | 135 228 293

FASA [47] 244 | 242 | 154 235 294

EQLV2 [34] 255 | 26.1 | 177 243 302

Mask R-CNN | R-S0-FPN | o wloss [38] | 264 | 274 | 196 261 298

LOCE [10] 266 | 274 | 185 262 307

C2AM Loss (Ours) | 27.2 | 279 | 166 272 319

LVISvL.0 RFS [13] 255 | 266 | 166 245 306
FASA [47] 263 | 270 | 19.1 254 306

EQLV2 [34] 272 | 279 | 206 259 314

Mask R-CNN | R-101-FPN LOCE [10] 28.0 | 290 | 195 278 320

Seesaw Loss [38] 28.1 28.9 20.0 28.0 31.9

C2AM Loss (Ours) | 28.6 | 294 | 181 285 332

LOCE by 1.3% AP™, 1.6% AP’ We notice that C2AM
Loss achieves the highest precision on AP;™ and AP}". We
attribute it to the ability of C2AM Loss to adaptively ad-
just the decision boundary between the head and tail cate-
gories. For LVIS v1.0, we present the results of Mask R-
CNN with ResNet50 and ResNet101 backbone. For Mask-
R-50, C2AM Loss still obtains the best performance with
27.2% AP, and 27.9% A P, suppressing other methods, in-
cluding EQLv2, LOCE and Seesaw Loss. Similarly, the
advantages of C2ZAM Loss on head categories are obvious,
1.2% AP} higher than LOCE. In terms of larger backbone
ResNet101, C2AM Loss can also achieve the best perfor-
mance 28.6% AP™, suppressing the current sota method
Seesaw Loss by 0.5% AP™ and AP". Although C2AM
Loss doesn’t achieve the best result of AP, it obtains the
best result on both AP™ and AP}", leading to the high-
est overall performance AP™ and AP’. We conjecture the
reason lies in that other methods pursue the highest perfor-
mance on tail categories at a cost of sacrificing the head.
While our method focuses on both the head and the tail, thus
can achieve the best overall performance AP™ and AP°.

5. Limitations

C2AM Loss shares a similar math formulation with other
margin-based loss functions, CosFace [37], ArcFace [7] and
SphereFace [25] et al. However, in this paper, we mainly

focus on the long-tail object detection and conduct exper-
iments on LVIS dataset only. How does the C2AM Loss
behave on other tasks, like face recognition and person re-
identification, still remains unknown. This is our main lim-
itation which needs more effort to explore.

6. Conclusion

In this paper, we reveal that the extremely imbalanced
distribution of the classifier’s weight norm yields an ill con-
ditioned decision boundary for classifiers with small weight
norms, thus leading to poor performance of these cate-
gories. To chase a better decision boundary for long-tail ob-
ject detection, we present a category-aware angular margin
loss (C2AM Loss) to adaptively adjust the decision bound-
ary based on the classifier’s weight norm. We conduct ex-
tensive experiments on the challenging LVIS dataset. The
results show that C2ZAM Loss achieves consistent gains on
various detectors and backbones. Moreover, C2AM Loss
sets new state-of-the-art on both LVIS v0.5 and v1.0.
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