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Abstract

We present CLIP-NeRF, a multi-modal 3D object manip-
ulation method for neural radiance fields (NeRF). By lever-
aging the joint language-image embedding space of the
recent Contrastive Language-Image Pre-Training (CLIP)
model, we propose a unified framework that allows manip-
ulating NeRF in a user-friendly way, using either a short
text prompt or an exemplar image. Specifically, to com-
bine the novel view synthesis capability of NeRF and the
controllable manipulation ability of latent representations
from generative models, we introduce a disentangled condi-
tional NeRF architecture that allows individual control over
both shape and appearance. This is achieved by performing
the shape conditioning via applying a learned deformation
field to the positional encoding and deferring color condi-
tioning to the volumetric rendering stage. To bridge this
disentangled latent representation to the CLIP embedding,
we design two code mappers that take a CLIP embedding
as input and update the latent codes to reflect the targeted
editing. The mappers are trained with a CLIP-based match-
ing loss to ensure the manipulation accuracy. Furthermore,
we propose an inverse optimization method that accurately
projects an input image to the latent codes for manipulation
to enable editing on real images. We evaluate our approach
by extensive experiments on a variety of text prompts and
exemplar images and also provide an intuitive interface for
interactive editing.

1. Introduction

With the explosive growth of 3D assets, the demand for
manipulating 3D content to achieve versatile re-creation is
rising rapidly. While most existing 3D editing methods op-
erate on explicit 3D representations [7, 15, 45], the recent
advances of implicit volumetric representations in capturing
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and rendering dedicated 3D structures [9, 14, 16, 23, 27, 34]
have motivated the research to benefit the manipulation
from such representations. Among these works, neural ra-
diance fields (NeRF) [23] utilize a volume rendering tech-
nique to render neural implicit representations for high-
quality novel view synthesis, providing an ideal represen-
tation for 3D content.

Editing NeRF (e.g., deforming the shape or changing the
appearance color), however, is an extremely challenging
task. First, since NeRF is an implicit function optimized
per scene, we cannot directly edit the shape using the in-
tuitively tools for the explicit representations [35, 40–42].
Second, unlike image manipulation where the single-view
information is enough to guide the editing [20, 43, 44], the
multi-view dependency of NeRF makes the manipulation
way more difficult to control without the multi-view infor-
mation. More recent works propose conditional NeRF [36],
which trains NeRF on one category of shapes and enables
manipulation via latent space interpolations utilizing the
pre-trained models. Based on the conditional NeRF, Edit-
NeRF [21] takes the first step to edit the shape and color of
NeRF given user scribbles. However, due to its limited ca-
pacity in shape manipulation, only adding or removing local
parts of the object is allows. In addition to achieving more
compelling and complicated manipulation, we seek to edit
NeRF in more intuitive ways, such as using a text prompt
or a single reference image.

In this paper, we explore how to individually manip-
ulate the shape and the appearance of NeRF based on a
text prompt or a reference image in a unified framework.
Our framework is built on a novel disentangled conditional
NeRF architecture, which is controlled by the latent space
disentangled into a shape code and an appearance code. The
shape code guides the learning of a deformation field to
warp the volume to a new geometry, while the appearance
code allows controlling the emitted color of volumetric ren-
dering. Based on our disentangled NeRF model, we take
advantage of the recently proposed Contrastive Language-
Image Pre-training (CLIP) model [33] to learn two code
mappers, which map CLIP features to the latent space to
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manipulate the shape or appearance code. Specifically,
given a text prompt or an exemplar image as our condition,
we extract the features using the pre-trained CLIP model,
feed the features into the code mappers, and yield local dis-
placements in the latent space to edit the shape and appear-
ance codes to reflect the edit. We design the CLIP-based
loss to enforce the CLIP space consistency between the in-
put constraint and the output renderings, thus supporting
high-resolution NeRF manipulation. Additionally, we pro-
pose an optimization-based method for editing a real image
by inversely optimizing its shape and appearance codes.

To sum up, we make the following contributions:

• We present the first text-and-image-driven manipula-
tion method for NeRF, using a unified framework to
provide users with flexible control over 3D content us-
ing either a text prompt or an exemplar image.

• We design a disentangled conditional NeRF architec-
ture by introducing a shape code to deform the vol-
umetric field and an appearance code to control the
emitted colors.

• Our feedforward code mappers enable the fast infer-
ence for editing different objects in the same cat-
egory compared to the optimization-based editing
method [21].

• We propose an inversion method to infer the shape and
appearance codes from a real image, allowing editing
the shape and appearance of the existing data.

2. Related Work
NeRF and NeRF Editing. The past few years have wit-
nessed tremendous progress in the implicit representation
of 3D models with neural networks [9, 14, 16, 23, 27, 34].
Among them, NeRF [23] is a representative one, which
encodes a continuous volume representation of shape and
view-dependent appearance in the weights of an MLP net-
work. NeRF has been gaining more and more popularity
because of its strong capability in capturing high-resolution
geometry and rendering photo-realistically novel views.
The success of NeRF has also inspired many follow-up
works that extend the NeRF to dynamic scenes [8, 29, 32,
39], relighting [3,38], generative models [4,13,24,36], etc.
Furthermore, DietNeRF [12] designs a CLIP semantic con-
sistency loss to improve few-shot NeRF and presents im-
pressive results, and GRAF [36] first adopts shape and ap-
pearance codes to conditionally synthesize NeRF, which in-
spires our adversarial training.

Despite the above success, a 3D model with NeRF rep-
resentation is very unintuitive and difficult to edit since it is
represented by millions of network parameters. To address
this problem, the pioneering work EditNeRF [21] defines a

conditional NeRF, where the 3D object encoded by NeRF
is conditioned on a shape code and an appearance code. By
optimizing the adjustment to these two latent codes, user
edits on shape and appearance color can be achieved. How-
ever, this method has limited capacity in shape manipula-
tion as it only supports adding or removing local parts of
the object. Also, the editing process of EditNeRF [21] is
slow because of its iterative optimization nature. Compared
to EditNeRF [21], our method is different in three aspects.
First, our method gives more freedom in shape manipula-
tion and supports global deformation. Second, by learning
two feed-forward networks mapping user edits to the latent
codes, our method allows fast inference for the interactive
editing. Moreover, different from the user scribbles used in
EditNeRF [21], we introduce two intuitive ways to NeRF
editing: using either a short text prompt or an exemplar im-
age, which are more friendly to novice users.
CLIP-Driven Image Generation and Manipulation. An
important building block of our work is CLIP [33] which
connects texts and images by bringing them closer in a
shared latent space, under a contrastive learning manner.
Powered by the CLIP model, some text-driven image gen-
eration and manipulation methods are proposed. Perez [31]
combines CLIP and StyleGAN [17, 18] to synthesize im-
ages by optimizing the latent code of a pre-trained Style-
GAN according to a textual condition defined in the CLIP
space. Instead of generating images from scratch, Style-
CLIP [30] introduces a text-based interface for StyleGAN to
allow manipulations of real images with text prompts. Be-
sides applying CLIP to GAN models, DiffusionCLIP [19]
combines a diffusion model [37] with CLIP to conduct a
text-driven image manipulation. It achieves a compara-
ble performance to that of GAN-based image manipulation
methods, with the advantage of great mode coverage and
training stability. However, all these methods only explore
the text-guidance ability of CLIP, whereas our method uni-
fies both text-and-image driven manipulations in a single
model by fully exploiting the power of CLIP. Further, these
methods are limited to image manipulation and fail to en-
courage multi-view consistency due to the lack of 3D infor-
mation. In contrast, our model combines NeRF with CLIP,
thus allowing editing 3D models in a view consistent way.

3. Method
In this section, we start with the general formulation of

conditional NeRF (§ 3.1) as a 3D generative model condi-
tioned by shape and appearance codes. We then present our
disentangled conditional NeRF model (§ 3.2), which is able
to individually control the shape and appearance manipula-
tion. Next, we introduce our framework on leveraging the
multi-modal power of CLIP for driving NeRF manipulation
(§ 3.3) using both text prompts or image exemplars, and the
training strategy (§ 3.4). Finally, we propose an inversion
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Figure 1. The framework of the proposed method. Our model first learns a disentangled conditional NeRF which takes positional
encoding, view direction, shape code, and appearance code as input and outputs rendered image, while the shape code aims to deform the
volume filed via a deformation network. This disentangled conditional NeRF is trained in an adversarial manner. Then given a reference
image or a text prompt, the CLIP image or text encoder extracts the corresponding feature embedding for the shape and appearance mappers
to lean a local step in the latent space for shape and appearance manipulation, respectively. These two mappers are trained using a CLIP
similarity loss with our pre-trained disentangled conditional NeRF.

method (§ 3.5) to allow editing a real image by a novel la-
tent optimization approach on shape and appearance codes.

3.1. Conditional NeRF

Built upon the original per-scene NeRF, conditional
NeRF servers as a generative model for a particular ob-
ject category, conditioned on the latent vectors that dedicat-
edly control shape and appearance. Specifically, conditional
NeRF is represented as a continuous volumetric function
Fθ that maps a 5D coordinate (a spatial position x(x, y, z)
and a view direction v(φ, θ)), together with a shape code
zs and an appearance code za, to a volumetric density σ
and a view-dependent radiance c(r, g, b), parametrized by a
multi-layer perceptron (MLP). A trivial formulation F ′

θ(·)
of conditional NeRF can be:

F ′
θ(x,v, zs, za) :

(
Γ (x)⊕ zs,Γ (v)⊕ za

)
→ (c, σ), (1)

where ⊕ is the concatenation operator.
Here Γ (p) =

{
γ(p) | p ∈ p

}
is the sinusoidal positional

encoding that separately projects each coordinate p of vec-
tor p to a high dimensional space. Each output dimension
of the encoding function γ(·) : R → R

2m is defined as:

γ(p)k =

{
sin(2kπp), if k is even,
cos(2kπp), if k is odd,

(2)

where k ∈ {0, . . . , 2m−1} and m is a hyper-parameter that
controls the total number of frequency bands.

3.2. Disentangled Conditional NeRF

The aforementioned conditional NeRF does introduce
conditional generation capability to the NeRF architecture.
However, this trivial formulation F ′

θ (Eq. 1) suffers from
mutual intervention between shape and appearance condi-
tions, e.g., manipulating the shape code could also cause
color changes. In observation of this issue, we propose our
disentangled conditional NeRF architecture to achieve indi-
vidual control over both shape and appearance by properly
disentangling the conditioning mechanism.

Conditional Shape Deformation. Rather than directly
concatenating the latent shape code to the encoded posi-
tion feature, we propose to formulate the shape conditioning
through explicit volumetric deformation to the input posi-
tion. This conditional shape deformation not only improves
the robustness of the manipulation and preserves the orig-
inal shape details as much as possible by regularizing the
output shape to be a smooth deformation of the base shape,
but more importantly also completely isolates the shape
condition from affecting the appearance.

To this end, we design a shape deformation network T :
(x, zs) → Δx, which projects a position x and the input
zs to displacement vectors Δx ∈ R

3×2m corresponding
to each band of the positional encoding Γ (x). Thus, the
deformed positional encoding Γ ∗(p, zs) = {γ∗(p,Δp) |
p ∈ p,Δp ∈ T (p, zs)} is defined as:

γ∗(p,Δp)k = γ(p)k + tanh(Δpk), (3)

where the scalar p and the vector Δp ∈ R
2m belong to the

same axis from p and Δp. The hyperbolic tangent function
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Figure 2. Multi-View Consistency Evaluation of CLIP. We ran-
domly select two cars and measure their pairwise CLIP cosine
distances of 1) different cars in a same view and 2) a same car
in different random views (we sampled 144 views from the upper
hemisphere, as a combination of 12 φ and 12 θ poses). Though the
camera poses vary dramatically, different views for a same object
have higher similarity (small distance). But different objects have
lower similarity (large distance) even in an identical view.

tanh(·) is used to constrain the displacements in the range
of [−1, 1], which helps avoid poor local minimums caused
by large motions and increase the training robustness.

Deferred Appearance Conditioning. In NeRF, the den-
sity is predicted first as a function of position and the radi-
ance is then predicted from both position and view direc-
tion. Similar to Graf [36] and EditNeRF [21], we also defer
the appearance conditioning to concatenate the appearance
code with the view direction as the input to the radiance pre-
diction network, which allows manipulating the appearance
without touching the shape information, i.e., density.

Overall, as illustrated in Fig. 1, our disentangled condi-
tional NeRF Fθ(·) is defined as:

Fθ(x,v, zs, za) :
(
Γ ∗(x, zs),Γ (v)⊕ za

)
→ (c, σ). (4)

And for the simplicity of notation, we use Fθ(v, zs, za) ={
Fθ(x,v, zs, za) | x ∈ R

}
to denote the rendering of the

whole image with viewport R.

3.3. CLIP-Driven Manipulation

With our disentangled conditional NeRF (Eq. 4) as a
generator, we now introduce how we integrate the CLIP
model into the pipeline to achieve text-driven manipulation
on both shape and appearance.

To avoid optimizing both shape and appearance codes for
each target sample, which tends to be versatile and time-
consuming, we take a feed-forward approach to directly
update the condition codes from the input text prompt.
Specifically, given an input text prompt of t and the initial
shape/appearance code of z′

s/z′
a, we train a shape mapper

Ms and an appearance mapper Ma to update the codes as:

zs = Ms

(
Êt(t)

)
+ z′

s,

za = Ma

(
Êt(t)

)
+ z′

a,
(5)

where Êt(·) is the pre-trained CLIP text encoder that
projects the text to the CLIP embedded feature space and
both mappers map this CLIP embedding to displacement
vectors that update the original shape and appearance codes.

In addition, given that CLIP includes an image encoder
and a text encoder mapping to a joint embedding space, we
define a cross-modal CLIP distance function DCLIP(·, ·) to
measure the embedding similarity between the input text
and a rendered image patch:

DCLIP(I, t) = 1−
〈
Êi(I), Êt(t)

〉
, (6)

where Êi(·) and Êt(·) are the pre-trained CLIP image and
text encoders, I and t are the input image patch and text,
and 〈·, ·〉 is the cosine similarity operator.

Without loss of generality, here we assume that the ma-
nipulation control comes from a text prompt t. However,
our distance can also be extended to measure similarity be-
tween two images or two text prompts. Thus, our frame-
work naturally supports editing with an image exemplar
by trivially replacing the text prompt with this exemplar in
aforementioned equations.
Discussion. To perform NeRF manipulation with image-
level CLIP model, a natural question is whether the CLIP
feature is stable across different viewpoints and whether
it can distinguish object differences. To evaluate this, we
randomly select two objects (e.g., an SUV and a jeep) and
measure the pairwise CLIP-space cosine distances between
1) different views of a same object, and 2) different objects
in a same view. As shown in Fig. 2, we find the distance
is more sensitive to small object difference than large view
variations. This suggests that a pre-trained CLIP model has
the ability to support view-consistency representations for
3D-aware applications. A similar observation is found by
DietNeRF [12] and applied in 3D reconstruction.

3.4. Training Strategy

Our pipeline is trained in two stages: we first train the
disentangled conditional NeRF including the conditional
NeRF generator and the deformation network; then we fix
the weights of the generator and train the CLIP manipula-
tion parts including both the shape and appearance mappers.

Disentangled Conditional NeRF. Our conditional
NeRF generator Fθ is trained together with the deformation
network using a non-saturating GAN objective [22] with the
discriminator D, where f(x) = − log

(
1 + exp(−x)

)
and

λr is the regularization weight. Assuming that real images I
form the training data distribution of d, we randomly sample
the shape code zs, the appearance code za, and the camera
pose from Zs, Za, and Zv , respectively, where Zs and Za

are the normal distribution, and Zv is the upper hemisphere
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of the camera coordinate system.

LGAN =Ezs∼Zs,za∼Za,v∼Zv

[
f
(
D(Fθ(v, zs, za))

)]
+EI∼d

[
f
(
−D(I) + λr‖∇D(I)‖2

)]
.

(7)

CLIP Manipulation Mappers. We use pre-trained
NeRF generator Fθ, CLIP encoders {Êt, Êi}, and the dis-
criminator D to train the CLIP shape mapper Ms and ap-
pearance mapper Ma. All network weights, except the
mappers, are fixed, denoted as {̂·}. Similar to the first
stage, we randomly sample the shape code zs, the appear-
ance code za, and the camera pose v from their respective
distributions. In addition, we sample the text prompt t from
a pre-defined text library T. By using our CLIP distance
DCLIP (Eq. 6) with weight λc, we train the mappers with the
following losses:

Lshape = f
(
D̂
(
F̂θ

(
v,Ms(Êt(t)) + zs, za

)))
+

λcDCLIP
(
F̂θ

(
v,Ms(Êt(t)) + zs, za

)
, t
)
,

(8)

Lappear = f
(
D̂
(
F̂θ

(
v, zs,Ma(Êt(t)) + za

)))
+

λcDCLIP
(
F̂θ

(
v, zs,Ma(Êt(t)) + za

)
, t
)
.

(9)

3.5. Inverse Manipulation

The manipulation pipeline we have introduced so far
works on an initial sample with known conditions including
the shape and appearance codes. To apply the manipulation
to an input image Ir belonging to the same training cate-
gory, the key is to first optimize all generation conditions to
inversely project the image to the generation manifold, sim-
ilar to the latent image manipulation methods [1, 2, 10, 26].
Following the EM algorithm [5], we design an iterative
method to alternatively optimize the shape code zs, the ap-
pearance code za, and the camera v. To be specific, during
each iteration, we first optimize v while keeping zs and za
fixed using the following loss:

Lv =
∥∥F̂θ(v, ẑs, ẑa)− Ir

∥∥
2
+

λvDCLIP
(
F̂θ(v, ẑs, ẑa), Ir

)
.

(10)

We then update the shape code by minimizing:

Ls =
∥∥F̂θ(v̂, zs + λnzn, ẑa)− Ir

∥∥
2
+

λsDCLIP
(
F̂θ(v̂, zs + λnzn, ẑa), Ir

)
,

(11)

where za and v are fixed, zn is a random standard Gaussian
noise vector sampled in each step to improve the optimiza-
tion robustness, and λn linearly decays from 1 to 0 through
the whole optimization iterations.

The appearance code is updated in a similar manner:

La =
∥∥F̂θ(v̂, ẑs, za + λnzn)− Ir

∥∥
2
+

λaDCLIP
(
F̂θ(v̂, ẑs, za + λnzn), Ir

)
,

(12)
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Figure 3. Compared to EditNeRF.

Chairs Cars

Shape Appearance Shape appearance

EditNeRF 30.0 15.9 33.2 16.8
Ours 0.58 0.51 2.12 1.98

Table 1. Compared to EditNeRF [21] on editing time averaged
on 20 images. We only include the inference/optimization time(s)
and single-view rendered time(s) for chairs (128×128 pixels) and
cars (256×256 pixels).

4. Experiments

Datasets. We evaluate our method on two public
datasets: Photoshapes [28, 36] with 150K chairs rendered
at 128×128 following the rendering protocol of [25] and
Carla with 10K cars rendered at 256×256 using the Driv-
ing simulator [6, 36]. Each object is rendered in a random
view without providing any camera pose parameters.

Implementation details. Our conditional NeRF is an
8-layer MLP with each layer containing 256 hidden units,
and the input dimension is 64. Following the default ar-
chitecture for NeRF [23], we also use ReLU activations.
The deformation network is a 4-layer MLP with ReLU ac-
tivations and 256 hidden units per layer. It takes a 128-
dimensional shape code zs as input, zs ∈ R

128. We also
represent the appearance code za using 128 dimensions,
za ∈ R

128. Both shape and appearance mappers are 2-layer
MLPs with ReLU activations. The channel sizes of each
mapper are 128, 256, and 128, respectively. The implemen-
tation of the discriminator follows PatchGAN [11]. We use
the Adam optimizer and an initial learning rate of 10−4 to
train the network. The learning rate is decayed by 0.5 every
50K steps. In the inversion, we also use the Adam optimizer
with the learning rate starting from 10−3 and decreasing by
0.75 every 100 steps. Besides, λr = 0.5, λv = 0.1, and
λs = λa = 0.2. All the models are trained on an NVIDIA
V100 GPU platform.
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Source SUV

Source Sofa chair

Oursw/o disentanglement w/o disentanglement Ours

Figure 4. Ablation Study for Disentanglement. We show text-
and-exemplar driven shape editing results of our method and the
baseline method without using our disentangled technique. When
editing the shape, the latter can change the appearance, while ours
keeps the appearance unchanged.

4.1. Compared to EditNeRF

We compare with pioneering work in NeRF editing, Ed-
itNeRF [21] on the editing of shape and appearance color
of both datasets in Fig. 3. For the Photoshapes dataset, Ed-
itNeRF is trained using 600 instances with 40 views per in-
stance while ours uses only one view. For the Carla dataset,
EditNeRF uses 10K cars with a single view per instance,
same as ours. Besides, camera pose parameters are required
during training of EditNeRF but unknown for us.

We first compare the capability and performance be-
tween EditNeRF and our method. For the color edit-
ing (Fig. 3-(a)), EditNeRF requires the user to select a tar-
get color and draw coarse scribbles on a local region. With
the foreground and background masks created by the coarse
scribbles, EditNeRF performs the appearance editing by op-
timizing the appearance code and a conditional NeRF to
achieve the target color. We observe that unnatural color
effects appear on the edited results of EditNeRF (e.g. dis-
continuity on car doors), and the generated color is not com-
pletely faithful to the target color. In contrast, we allow
the user to change the color more simply by providing a
text prompt and our method produces more natural edit-
ing results (Fig. 3-(b)). For the shaping editing (Fig. 3-
(c)), EditNeRF can only support local shape editing, such
as shape part removal. Given the user’s editing scribbles
which for example indicate to remove a leg of a chair (in
the red rectangles), EditNeRF optimizes a few layers in
the network to fit the shape in the input view but it can-
not ensure successful propagation to unseen views (in the
blue rectangle) and keep the structure of other parts intact
(in the green rectangle). Compared to it, our method sup-
ports a large degree of shape deformation and generalizes
well to unseen views (Fig. 3-(d)). Besides, EditNeRF, as

Real image w/o CLIP EditNeRF Ours

Figure 5. Ablation study on our inversion method and compar-
ison with EditNeRF.

an optimized-based method, takes a large amount of time
for the optimization, while our feedforward code mappers
achieve much faster inference of the target shape and ap-
pearance (Table 1).

To quantitatively evaluate how good the image quality
is preserved after editing, we calculate the FID scores of
2K testing images before and after editing. Due to training
with 40 views per instance, EditNeRF shows better recon-
struction before editing on the chair dataset, but its editing
notably degrades the image quality while our method en-
sures comparable quality before and after manipulation. On
the car dataset, the performance of EditNeRF significantly
drops because of only one view per instance used in train-
ing. Trained under the same setting, our model improves
reconstruction quality by a large margin and well preserves
the quality during editing. Since EditNeRF requires user
scribbles for shape editing and is difficult to generate a large
set of results with random conditions, we exclude it in the
comparison on shape editing while our method performs
equally well regardless of editing shape or color.

We also compare with EditNeRF in the inversion results
(Fig. 5). EditNeRF infers the shape and appearance codes
by fine-tuning the condition NeRF using the standard NeRF
photometric loss. Our optimized-based inversion method
outperforms by benefiting from CLIP’s ability to provide
multi-view consistency representations (more discussions
in Section 3.3 and ablation in 4.2).

4.2. Ablation Study

We evaluate our model w/ and w/o the disentangled de-
sign (Section 3.2). In Fig. 4, the model trained without the
conditional shape deformation network (i.e. w/o disen.) fre-
quently introduces color changes when performing shape
editing. In contrast, our disentangled conditional NeRF
achieves individual shape control because the conditional
shape deformation network is able to isolate the shape con-
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Figure 6. Text-Driven Editing Results.

Chairs Cars

Before After Diff. Before After Diff.

(a)
EditNeRF 36.8 40.2 3.4 102.8 118.7 15.9
w/o disen. 52.5 54.3 1.8 69.2 69.9 0.7
Ours 47.8 49.0 1.2 66.7 67.2 0.5

(b) w/o disen. 52.5 53.2 0.7 69.2 71.1 1.9
Ours 47.8 48.4 0.6 66.7 67.8 1.1

Table 2. Fréchet inception distance (FID) for evaluating the im-
age quality of reconstructed views before and after editing on:
(a) color and (b) shape (lower value means better). We use 2K
images with various views drawn randomly from the latent space
to calculate the FIDs for reconstructed images, and then perform
various edits on these images to recalculate FIDs of edited results.
As EditNeRF requires user scribbles for shape editing, we exclude
it from the comparison on shape manipulation. w/o disen. is a
variant of our model without the shape deformation network used
for disentangling control of shape and appearance.

dition from the appearance control and deform the base vol-
ume field to generate new objects without affecting the ap-
pearance. Also, since the deformation network implicitly
enforces regularization of the generated shape, the resulting
quality is further improved as shown in Table 4.2.

We conduct another ablation study in Fig. 5 to eval-
uate our inversion optimization method. The baseline
method (w/o CLIP) only computes the standard NeRF pho-
tometric loss between the output and a single image. Its re-
sult quality is limited due to the difficulty in inferring a com-
plete 3D NeRF model from a single view. As discussed in
Section 3.3, CLIP has the capability to produce robust pose-
invariant features. Therefore, our inversion method intro-
duces a CLIP constraint during optimization and achieves
better inversion results thanks to the CLIP prior.

4.3. CLIP-Driven Manipulation

Our method supports editing of object shape or appear-
ance using text. When manipulating the shape, we keep the

appearance code unchanged and the same applies to appear-
ance editing. Fig. 6 demonstrates diverse editing results.
Note that when the car with a light color is deformed to a
sports car, its color may become darker. But it is not a fail-
ure case, as the colors of all sports cars in the Carla dataset
are inherently intenser. Besides, we find that our method
naturally preserves the shading when changing the appear-
ance color. When editing the chair shape, if the user’s input
text is highly relevant to the source shape−for example, the
source chair is a wood chair, and the user also wants a ’wood
chair’−the result will be slightly different from the source.
During the color editing, our method guarantees that the
shape is completely preserved. Our method also supports
exemplar-based manipulation by providing a real target im-
age instead of a text prompt. We present various exemplar-
guided shape and appearance editing results in Fig. 7. Our
method achieves semantic-precise and individual control of
shape and appearance referring to the exemplar image.

4.4. Real Image Manipulation

To evaluate the generalization ability of our model in
processing a single real image that does not exist in our
training set, we experiment with the real image by inverting
it to a shape code and an appearance code and then apply-
ing them to edit. We show the inverted and edited results
in Fig. 8. We observe that inverting the chair is much more
challenging than inverting a car due to the chair’s delicate
structures, such as the wheels of the office chair. However,
even the office chair is not perfectly reconstructed, the edit-
ing ability of our method is not affected. Our method still
ensures accurate editing in shape and appearance.

4.5. User Study

We conduct a user study to evaluate the perceptual qual-
ity and accuracy of the editing results. We include 20 ques-
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Figure 7. Exemplar-Driven Editing Results.

Real image Inverted image SUV Yellow car

Appearance editingShape editing

Sofa chair Orange chairReal image Inverted image

Figure 8. Editing Results on Real Images.

Chairs Cars

Text Exemplar Avg. Text Exemplar Avg.

0.821 0.877 0.849 0.814 0.859 0.837

Table 3. User Study Results. We report correct matching rate
by counting whether an editing result is matched to the right
text/exemplar guidance by users.

tions in the study, each question with 5 results of cars or
chairs generated by 5 randomly selected text prompts or 5
randomly selected exemplars. We randomly shuffle the re-
sults and give users unlimited time to match each result with
the correct text or image. We collect answers from 23 par-
ticipates and report the matching accuracy rate in Table 3.
Our method, in more than 80% cases, succeeds in editing
objects exactly corresponding to the description given by
the text or the exemplar.

Source Source
A car with red front 
wheels and green 

rear wheels
Formula racing car

(a) (b)

An office chair with 
two arms and a 

hollow back

(a)

An office chair with 
two arms and a 

hollow back

(a)

A red and blue chair

(b)

Figure 9. Limitations. Our method cannot handle fine-grained
edits (a) and out-of-domain edits (b).

5. Conclusion
We present the first text-and-image driven manipulation

method for NeRF by designing a unified framework to pro-
vide users with flexible control over 3D content using either
a text prompt or an exemplar image. We design a disen-
tangled conditional NeRF architecture that allows disentan-
gling shape and appearance while editing an object, and two
feedforward code mappers enable fast inference for editing
different objects. Further, we proposed an inversion method
to infer the shape and appearance codes from a real image,
allowing editing the existing data.

Limitations. We evaluate our approach by extensive ex-
periments on various text prompts and exemplar images and
provide an intuitive editing interface for interactive editing.
However, our method cannot handle fine-grained and out-
of-domain shape and appearance edits as shown in Fig. 9,
due to the limited expressive ability of the latent space and
the pre-trained CLIP. This may be alleviated by adding more
various training data.
Acknowledgement This work was supported by the Hong
Kong Innovation and Technology Commission (ITC) un-
der the Innovation and Technology Fund (Project No.
MHP/109/19).
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