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Abstract

Partially-supervised instance segmentation is a task
which requests segmenting objects from novel categories via
learning on limited base categories with annotated masks
thus eliminating demands of heavy annotation burden. The
key to addressing this task is to build an effective class-
agnostic mask segmentation model. Unlike previous meth-
ods that learn such models only on base categories, in this
paper, we propose a new method, named ContrastMask,
which learns a mask segmentation model on both base
and novel categories under a unified pixel-level contrastive
learning framework. In this framework, annotated masks of
base categories and pseudo masks of novel categories serve
as a prior for contrastive learning, where features from the
mask regions (foreground) are pulled together, and are con-
trasted against those from the background, and vice versa.
Through this framework, feature discrimination between
foreground and background is largely improved, facilitating
learning of the class-agnostic mask segmentation model.
Exhaustive experiments on the COCO dataset demonstrate
the superiority of our method, which outperforms previous
state-of-the-arts.

1. Introduction
Instance segmentation is one of the most fundamental

tasks in computer vision, which requests pixel-level predic-
tion on holistic images and identifies each individual ob-
ject. Many works [8, 13, 17, 19, 26, 31, 39, 42] have boosted
instance segmentation performance by relying on a large
amount of available pixel-level annotated data. However,
performing pixel-level annotation (mask annotation) is sig-
nificantly burdensome, which hinders the further develop-
ment of instance segmentation on massive novel categories.

Since box-level annotations are much cheaper and eas-
ier to obtain than mask annotations [12], a common way

†Work done during an internship at Youtu Lab, Tencent.
BCorresponding Author.

sport ball :0.98

tennis racket:0.36

tennis racket:0.57

sport ball :0.95sport ball :0.98

remote:0.59cell phone:1.0

bowl:0.74
bottle:0.64

book:0.54

bottle:0.9
bowl:0.85

remote:0.79
cell phone:0.98mouse:0.89cell phone:0.99

bowl:0.91
bottle:0.79

banana:0.95
banana:0.55

banana:0.36
banana:0.37

banana:0.75

donut:0.37

cake:0.49
cat:0.33

person:0.35

Mask RCNN [17] OPMask [2] ContrastMask

Figure 1. Visualization results of Mask R-CNN [17], OPMask [2]
and the proposed ContrastMask on novel categories.

to address the aforementioned issue is to perform partially-
supervised instance segmentation [15, 18, 22, 45]. This in-
stance segmentation task was first proposed in the paper
“Learning to Segment Every Thing” [18], where object cat-
egories are divided into two splits: base and novel. Both
of them have box-level annotations, while only base cat-
egories have additional mask annotations. Then the goal
of this task is by taking advantage of the data of base cat-
egories with mask annotations to generalize instance seg-
mentation models to novel categories. The main obstacle to
achieve favorable instance segmentation performance under
the partially-supervised setting is how to distinguish fore-
ground and background within each box for an arbitrary
category via learning on the data with limited annotations.

Previous methods [2, 15, 18, 22, 29, 30, 45] addressed
this task via learning a class-agnostic mask segmentation
model to separate foreground and background, by capturing
class-agnostic cues, such as shape bases [22] and appear-
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ance commonalities [15]. However, these methods learn
the class-agnostic mask segmentation model only on base
categories, ignoring a large amount of training data from
novel categories, and consequently lack a bridge to trans-
fer the segmentation capability of the mask segmentation
model on base categories to novel categories.

To build this bridge, in this paper, we propose Con-
trastMask, a new partially-supervised instance segmenta-
tion method, which learns a class-agnostic mask segmen-
tation model on both base and novel categories under a
unified pixel-level contrastive learning framework. In this
framework, we design a new query-sharing pixel-level con-
trastive loss to fully exploit data from all categories. To
this end, annotated masks of base categories or pseudo
masks of novel categories computed by Class Activation
Map (CAM) [2, 44] serve as a region prior, which indicates
not only the foreground and background separation, but
also shared queries, positive keys and negative keys. Con-
cretely, given a training image batch containing both base
categories and novel categories, we establish two shared
queries: a foreground query and a background query, which
are obtained by averaging features within and outside the
mask regions, including both the annotated and the pseudo
masks, respectively. Then, we perform a special sampling
strategy to select proper keys. By introducing the proposed
loss, we expect to pull keys within/outside the mask regions
towards the foreground/background shared query and con-
trast it against keys outside/within the mask regions. Fi-
nally, features learned by our pixel-level contrastive learn-
ing framework are fused into a class-agnostic mask head to
perform mask segmentation.

Compared with previous methods, ContrastMask enjoys
several benefits: 1) It fully exploits training data, making
those from novel categories also contribute to the optimiza-
tion process of the segmentation model; 2) More impor-
tantly, it builds a bridge to transfer the segmentation capa-
bility on base categories to novel categories by the unified
pixel-level contrastive learning framework, especially the
shared queries for both base and novel categories, which
consistently improves feature discrimination between fore-
ground and background for both base and novel categories.
A visualization result of comparison with other methods is
shown in Fig. 1.

Without bells and whistles, ContrastMask surpasses all
previous state-of-the-art partially-supervised instances seg-
mentation methods on the COCO dataset [25], by large mar-
gins. Notably, with the ResNeXt-101-FPN [24, 40] as the
backbone, our method achieves 39.8 mAP for mask seg-
mentation on novel categories.

2. Related Work
Instance Segmentation. Instance segmentation is a task

that combines both object detection and semantic segmen-

tation, i.e., each pixel is assigned to a specific category and
an individual instance simultaneously. Mask R-CNN [17]
produced a mask for each detected bounding box by extend-
ing Faster R-CNN with a mask head. PANet [26] improved
segmentation performance by building bottom-up path aug-
mentations and lateral connections across features of mul-
tiple levels. HTC [8] presented interleaved execution and
mask information flow and achieved considerable perfor-
mance. DSC [13] formed a bi-directional relationship be-
tween detection and segmentation tasks, and achieved state-
of-the-art performance. BMask [11] established a paral-
lel head to predict the boundary of objects, which can be
fused into the mask head to refine segmentation results. BC-
Net [20] adopted bilayer GCN and self-attention to regress
the object contour and instance masks, respectively. In addi-
tion to these two-stage methods, one-stage methods, such as
CondInst [31], BlendMask [7], SOLO [35], SOLOv2 [36],
YOLACT [5], and FCIS [23], obtained comparable perfor-
mance with favorable inference speed.

Pixel-level contrastive learning. Very recently, several
works [1,6,28,37,38,41,43] have been proposed to perform
pixel-level contrastive learning to remedy the misalignment
between the classification task and the dense prediction
task. However, these methods and ours differ in both ob-
jective and design philosophy: Their objective is to learn
general dense representations for per-pixel multi-class cate-
gorization, so they perform pixel-level instance discrimina-
tion by sampling keys from two different augmented views;
While ours is to improve the foreground and background
discrimination, so we perform pixel-level instance discrim-
ination by sampling keys from foreground and background
areas within one image.

Partially-supervised instance segmentation. As the
pioneer method of partially-supervised instance segmenta-
tion, MaskX R-CNN [18] designed a parameterized trans-
formation function between the bounding box head and the
mask head in Mask R-CNN [17], which enables segmenting
novel categories based on the assumption that the bounding
box head encodes the embeddings of all categories. Shape-
Mask [22] learned shape priors from limited data with mask
annotations, and expected these shape priors can general-
ize to novel objects. ShapeProp [45] exploited box su-
pervision to learn salient regions and propagated these re-
gions to the whole box proposals via an efficient message
passing module which can generate a more accurate shape
prior. CPMask [15] achieved promising performance by
parsing shape commonality and appearance commonality
among different categories. It claimed that sharing these
commonalities can promote the generalization ability for
mask prediction in a class-agnostic manner. OPMask [2]
employed object mask prior (OMP) to provide general con-
cepts of foreground for mask head learning, and thus the
network can concentrate on the primary objects in a region.
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Figure 2. The whole architecture of ContrastMask, which is built
on the Mask R-CNN [17], with an extra contrastive learning head.
“Sn” denotes that size of the feature map is n×n. X and Y are an
intput RoI feature map and its enhanced feature map, respectively.

Very recently, Deep-MAC [4] explored the impact of mask
head architectures to segmentation performance on novel
categories. It adopted much heavier architectures, such as
Hourglass-52 [27], for mask heads, and achieved outstand-
ing performance. However, a lightweight mask head is al-
ways more popular in practice.

All these methods optimize their mask segmentation
models only on base categories, ignoring a large amount of
data from novel categories, and thus lack a bridge to trans-
fer the segmentation capability on base categories to novel
categories. We address this issue by introducing a unified
contrastive learning framework for dense mask prediction,
in which both base and novel categories contribute to mask
segmentation model learning.

3. ContrastMask
We first depict the whole flowchart of the proposed Con-

trastMask. Then, we show how the unified pixel-level con-
trastive learning framework is instantiated to enhance fea-
ture discrimination between foreground and background on
both base and novel categories. Finally, we introduce the
loss functions to learn our partially-supervised instance seg-
mentation model.

3.1. Overview
As shown in Fig. 2, our method, ContrastMask, is built

on the classic two-stage Mask R-CNN [17] architecture
with an extra “contrastive learning” head, termed as CL
Head, which performs unified pixel-level contrastive learn-
ing on both base and novel categories. The CL Head takes
an RoI feature map and a CAM generated by the box head
as input. It is supervised by our proposed pixel-level con-
trastive loss ( Sec. 3.3) and outputs an enhanced feature map
for the mask head. Finally, the mask head predicts a class-

agnostic segmentation map by taking a fused feature map
as input. Next, we describe the details of each component
of our method.

3.2. Contrastive Learning Head (CL Head)

The goal of the CL Head is to increase feature dis-
crimination between foreground and background and de-
crease feature dissimilarity within each region (background
or foreground) for both base and novel categories, so that it
can facilitate mask head learning. We achieve this by learn-
ing it with a new pixel-level contrastive loss.

As illustrated in Fig. 3, the architecture of the contrastive
learning head (CL Head) is inspired by SimCLR [10],
which is composed of a lightweight encoder f(·) and a pro-
jector g(·) for contrastive learning. The encoder f(·) con-
tains eight 3 × 3 Conv-ReLU layers and the projector g(·)
is a three-layer MLP, where the last layer is not followed by
a ReLU function.

Given an RoI feature map X ∈ RH×W×C extracted by
RoIAlign [17], where C, H and W represent channel di-
mension, height and width of the RoI, respectively, the CL
Head feeds them into the encoder to get an enhanced feature
map Y = f(X) ∈ RH×W×C which will be incorporated
into the mask head for mask segmentation. Next, Y is first
flattened and then fed into the projector, which maps repre-
sentations to the space where the pixel-level contrastive loss
is applied: Z = g(Y) ∈ RHW×C . Here, after projection,
the feature map Z is reshaped to the same size as Y.

3.3. Query-sharing Pixel-level Contrastive Loss

Now, we introduce our new pixel-level loss, which en-
ables learning the mask segmentation model on both base
and novel categories under a unified contrastive learning
framework. A core design philosophy for this loss func-
tion is base and novel categories share two class-agnostic
queries, one for foreground q+ and the other for back-
ground q−, so that a bridge is formed to transfer the seg-
mentation capability on base categories to novel categories.
For this reason, we name our loss function query-sharing
pixel-level contrastive loss.

The query-sharing pixel-level contrastive loss consists
of two symmetrical formulations for foreground and back-
ground, respectively. Taking foreground as an example,
let K+ and K− denote a set of foreground keys and a set
of background keys, respectively. Then the query-sharing
pixel-level contrastive loss for foreground is defined as:

Lq+

K+,K− = − 1

|K+|
∑

k+∈K+

[
ϕ(q+,k+)/τ (1)

− log
(
exp(ϕ(q+,k+)/τ) +

∑
k−∈K−

exp(ϕ(q+,k−)/τ)
)]
,

where τ is a temperature hyper-parameter and ϕ(·, ·) de-
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Figure 3. The flowchart of our contrastive learning head (CL Head) which consists of an encoder and a projector, supervised by a pixel-
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Figure 4. A schematic diagram to illustrate how to obtain queries
and sample keys. For base categories, we use ground-truth masks
to do partition and extract edges to guide sampling hard keys. For
novel categories, we firstly binarize CAMs by a threshold δ, then
perform partition and randomly sample easy and hard keys based
on partitions. The foreground query q+ and background query q−

are obtained by averaging features from corresponding partitions
of a batch of object proposals.

notes the cosine similarity. Similarly, we can obtain the
query-sharing pixel-level contrastive loss for background
Lq−

K−,K+ . Next, we describe the details of how to obtain the
foreground and background queries q+,q−, as well as the
foreground and background key sets K+,K−. We illustrate
these details in Fig. 4.

Foreground and background partition. Given a pro-
jected feature map Z ∈ RH×W×C , let M ∈ {0, 1}H×W

and A ∈ [0, 1]H×W be the ground-truth mask and the class-
activation map (CAM) aligned with Z, repectively. Let I
denote the H ×W spatial location lattice of feature map Z,
then given a location i ∈ I, we can obtain a feature vector zi

at location i from feature map Z, and similarly the mask la-
bel mi and the CAM value ai at the location i from ground-
truth mask M and CAM A, respectively. The whole spatial
location lattice can be partitioned into two disjoint lattices:
foreground location lattice I+ and background location lat-
tice I−. For base categories, we can achieve this partition
by using the ground-truth mask: I+ = {i ∈ I|mi = 1} and
I− = {i ∈ I|mi = 0}; While for novel categories, as the
ground-truth mask is not available, we alternatively use the
CAM A to guide the foreground and background partition:
I+ = {i ∈ I|ai ≥ 1−δ} and I− = {i ∈ I|ai ≤ δ}, where
δ = 0.1 is a small threshold and is fixed in our method.

Query and key set generation. Let I+
(n) and I−

(n) be
the foreground and background partitions of nth RoI pro-
posal in a batch consisting of N RoI proposals {Z(n)}Nn=1,
from both base and novel categories, respectively. The fore-
ground and background queries q+,q− are obtained by av-
eraging features within foreground and background parti-
tions across all proposals. Taking the foreground query q+

as an example, we obtain it by:

q+ =
1

N

N∑
n=1

1

|I+
(n)|

∑
i∈I+

(n)

z
(n)
i . (2)

The foreground and background key sets for a RoI pro-
posal Z (here we omit the index n for notation simplic-
ity) are obtained by K+ = {zi|i ∈ §(I+, σ)} and K− =
{zi|i ∈ §(I−, σ)}, respectively, where §(·, σ) is a random
sampling operator which samples a subset from a set ran-
domly with a proportion ratio σ.

Hard and easy key mining. Previous studies reveal that
mining hard and easy keys is helpful to learn discriminative
features by contrastive learning [33, 34].

For base categories, we specify keys near an object
boundary as hard keys and those far away from the bound-
ary as easy keys. The ground-truth boundary can be ob-
tained from the ground-truth mask easily. Let bi be the
nearest boundary location to location i on an RoI proposal
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Figure 5. The input of the class-agnostic mask head consists of
enhanced featuer map Y, RoI feature map X and CAM A. ⊕
represents an element-wise addition operation.

Z. Then, we have the sets of hard keys and easy keys:

KH = {zi | i ∈ §(I, σ), ||i− bi||22 ≤ 2}
KE = {zi | i ∈ §(I, σ), ||i− bi||22 > 2}.

(3)

For novel categories, since the ground-truth boundary is
unavailable, we simply mine the hard and easy key sets by
random sampling, i.e., KH = {zi | i ∈ §(I, σ)} and KE =
{zi | i ∈ §(I, σ)}.

Instantiation of the proposed contrastive loss. Now,
given an RoI proposal Z, no matter from base or novel cat-
egories, we have described how to obtain foreground and
background key sets from it as well as how to mine hard
and easy key sets from it. Then consequently, we can obtain
four types of key sets (Fig. 4) from it: 1) foreground-easy
key set K+

E , 2) foreground-hard key set K+
H , 3) background-

easy key set K−
E , and 4) background-hard key set K−

H . Re-
ferring to Eq. (1), our query-sharing pixel-level contrastive
loss is defined as:

Lcon = Lq+

K+
E ,K−

E

+ Lq+

K+
H ,K−

H

+ Lq−

K−
E ,K+

E

+ Lq−

K−
H ,K+

H

, (4)

which contains four terms for the four key sets, respectively,
and foreground query q+ and background query q− are
shared with keys from both base and novel categories.

3.4. Class-agnostic mask head

As shown in Fig. 5, the architecture and the correspond-
ing loss function of the mask head is the same as those in
Mask R-CNN [17] except for three modifications: 1) Fol-
lowing [2, 15, 45], we change the output channels of the
last convolutional layer from 80 to 1, resulting in a class-
agnostic mask head. 2) We concatenate the output feature
map of the CL Head with the input feature map of the mask
head, which makes the input features of the mask head more
distinctive and facilitates its learning. 3) We utilize the
CAM [2] to tell the mask head which region should focus
on. This can be easily implemented by adding the CAM to
the input feature maps.

3.5. Loss Function

The overall loss function for our ContrastMask contains
three terms: a box detection loss Lbox, a mask segmentation

loss Lmask, and a contrastive learning loss Lcon. The for-
mulations of Lbox and Lmask are the same as those defined
in Mask R-CNN [17]:

L = Lbox + Lmask + λLcon, (5)

where λ is a weight parameter.

4. Experiments
In this section, we first describe the experimental setup

and implementation details. Then, we compare Con-
trastMask with state-of-the-art partially-supervised instance
segmentation methods. Finally, we conduct ablation studies
to show the contribution of each component in our method.

4.1. Experimental Setup

Our experiments are conducted on the challenging
COCO dataset1 [25]. To simulate base and novel cate-
gories, the training set is split into two subsets. Typi-
cally, categories presented in PASCAL VOC dataset [14]
is termed as “voc” and remaining categories are “nonvoc”.
We mainly conduct experiments on these two subsets, and
“nonvoc → voc” indicates that “nonvoc” categories are re-
garded as base and “voc” as novel, and vice versa. We
use images in COCO-train2017 for training and those in
COCO-val2017 for evaluation. Typical metrics for instance
segmentation, i.e., mask AP, including mAP, AP50, AP75,
APS , APM and APL, are used for evaluation. These met-
rics are calculated on the novel categories.

Implementation details. We implement our approach
based on MMDetection2 [9]. We adopt ResNet-50-FPN as
the backbone for most ablation experiments and ResNet-
101-FPN as the backbone for fair comparison with other
methods. Typical training schedules, i.e., 1× and 3×, are
both employed for a fair comparison, and all ablation exper-
iments are conducted by 1× schedule for efficiency. During
training, we employ SGD with momentum for optimization,
and the initial learning rate is 0.02. All experiments are con-
ducted on 8 Tesla V100 GPUs and the batch size is 16, i.e.,
2 images per GPU. Each input image is resized to keep the
rule that the long side of the image is less than 1,333 and
the short side less than 800. The sampling ratio σ is set as
σ = 0.3, and the temperature hyper-parameter τ (Eq. 1) for
easy and hard keys are set as τ = 0.7 and τ ′ = 1−τ = 0.3,
respectively. We linearly warmup the λ of Lcon ( Eq. (5))
from 0.25 to 1.0. Besides, commonly-used augmentations
such as random-flip and multi-scale training are adopted.

4.2. Experimental Results

We compare our method ContrastMask with recent
partially-supervised instance segmentation methods, in-

1It is released under the CC-BY 4.0 license.
2It is released under the Apache 2.0 license.
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nonvoc→voc voc→nonvoc
Method Backbone Sche. Layers. mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

Mask R-CNN (Baseline) [17] ResNet-50 1× 4 23.9 42.9 23.5 11.6 24.3 33.7 19.2 36.4 18.4 11.5 23.3 24.4
MaskX R-CNN [18] ResNet-50 1× 4 28.9 52.2 28.6 12.1 29.0 40.6 23.7 43.1 23.5 12.4 27.6 32.9
Mask GrabCut [21] ResNet-50 1× - 19.5 46.2 14.2 4.7 15.9 32.0 19.5 39.2 17.0 6.5 20.9 34.3
CPMask [15] ResNet-50 1× 4 - - - - - - 28.8 46.1 30.6 12.4 33.1 43.4
ShapeProp [45] ResNet-50 1× 4 34.4 59.6 35.2 13.5 32.9 48.6 30.4 51.2 31.8 14.3 34.2 44.7
ContrastMask (Ours) ResNet-50 1× 4 35.1 60.8 35.7 17.2 34.7 47.7 30.9 50.3 32.9 15.2 34.6 44.3
OPMask [2] ResNet-50 130k 7 36.5 62.5 37.4 17.3 34.8 49.8 31.9 52.2 33.7 16.3 35.2 46.5
ContrastMask (Ours) ResNet-50 3× 4 37.0 63.0 38.6 18.3 36.4 50.2 32.9 52.5 35.4 16.6 37.1 47.3
ContrastMask (Ours) ResNeXt-50 3× 4 37.6 63.8 38.9 18.1 36.6 51.3 33.4 54.2 35.8 17.7 37.4 48.5
Mask GrabCut [21] ResNet-101 1× - 19.6 46.1 14.3 5.1 16.0 32.4 19.7 39.7 17.0 6.4 21.2 35.8
MaskX R-CNN [18] ResNet-101 1× 4 29.5 52.4 29.7 13.4 30.2 41.0 23.8 42.9 23.5 12.7 28.1 33.5
ShapeMask [22] ResNet-101 1× 8 33.3 56.9 34.3 17.1 38.1 45.4 30.2 49.3 31.5 16.1 38.2 28.4
ShapeProp [45] ResNet-101 1× 4 35.5 60.5 36.7 15.6 33.8 50.3 31.9 52.1 33.7 14.2 35.9 46.5
ContrastMask (Ours) ResNet-101 1× 4 36.6 62.2 37.7 17.5 36.5 50.1 32.4 52.1 34.8 15.2 36.7 47.3
ShapeMask (NAS-FPN) [22] ResNet-101 3× 8 35.7 60.3 36.6 18.3 40.5 47.3 33.2 53.1 35.0 18.3 40.2 43.3
CPMask [15] ResNet-101 3× 4 36.8 60.5 38.6 17.6 37.1 51.5 34.0 53.7 36.5 18.5 38.9 47.4
OPMask [2] ResNet-101 130k 7 37.1 62.5 38.4 16.9 36.0 50.5 33.2 53.5 35.2 17.2 37.1 46.9
ContrastMask (Ours) ResNet-101 3× 4 38.4 64.5 39.8 18.4 38.1 52.6 34.3 54.7 36.6 17.5 38.4 50.0
ContrastMask (Ours) ResNeXt-101 3× 4 39.8 66.2 42.3 19.2 39.3 53.6 35.0 56.4 36.9 18.6 38.9 50.5

Table 1. Quantitative comparisons on the challenging COCO dataset. “nonvoc→voc” denotes that categories in nonvoc have the mask
annotation and methods are required to be tested on voc categories that only have box annotations, and vice versa. “Sche.” denotes the
training schedule, where 1× represents for 12 epochs and 130k is a customized schedule only used in OPMask [2]. We use two conventional
schedules, i.e., 1× and 3×, for fair comparison. “Layers.” indicates the number of Conv blocks adopted in the mask head to perform mask
prediction. Generally, a heavier mask head leads to better performance, which has been demonstrated in [4]. ResNeXt-50 and ResNeXt-
101 indicate “ResNeXt-50-32x4d” [40] and “ResNeXt-101-64x4d” [40], respectively.

cluding MaskX R-CNN [18], Mask GrabCut [21], Shape-
Mask [22], CPMask [15], ShapeProp [45] and OPMask [2].

Quantitative results. The quantitative results for nonvoc
→ voc and voc → nonvoc are shown in Tab. 1. When adopt-
ing ResNet-50 as the backbone and using the 1× schedule,
our method surpasses the state-of-the-art method Shape-
Prop [45] by 0.7/0.5 mAP in nonvoc → voc and voc →
nonvoc settings, respectively. We also outperforms CP-
Mask [15] that uses a stronger detector, i.e., FCOS [32],
by a large margin (2.1 mAP). In addition, we provide com-
parison results under the 3× schedule. Our ContrastMask
(ResNet-50) achieves 37.0 mAP which even outperforms
the CPMask [15] (36.8 mAP) that uses ResNet-101 back-
bone by 0.2 mAP. This indicates that our method fully ex-
ploits all training data and builds a bridge to transfer the
segmentation capability from base to novel.

Our method also offers superior performance using the
ResNet-101 as the backbone, e.g., outperforms the SOTA
ShapeProp [45] by 1.1 mAP in the nonvoc → voc set-
ting. By using the 3× schedule, ContrastMask (ResNet-
101) achieves new SOTA performance of 38.4/34.3 mAP in
the nonvoc → voc and voc → nonvoc settings. It outper-
forms CPMask [15] and ShapeMask [22] by 1.6/2.7 mAP,
respectively, in the nonvoc → voc setting. Note that Shape-
Mask [22] adopts enhanced NAS-FPN [16] as the feature
enhancement module to utilize multi-scale features.

We notice that the results of OPMask [2] are reported by
adopting a heavier mask head, i.e., 7 Conv layers, and a dif-
ferent training schedule, i.e., 130k training iterations. We

kindly refer readers to its arXiv version [3] (v1) for more
comparison (They reported their result under the 3× sched-
ule). Even OPMask adopts a heavier mask head, our Con-
trastMask still outperforms it. In addition, we also provide
stronger results by using ResNeXt [40] backbones under the
3× schedule to show the potential of our method.

Qualitative results. Here, we visualize some example seg-
mentation results of our method under two situations: with
and without CL Head. We employ mask annotations from
the voc subset to train our model. In Fig. 6, we show some
samples from COCO-val2017 dataset, including voc (base)
and nonvoc (novel) categories. Our ContrastMask repre-
sents great capability to segment both of base and novel
objects accurately. Even if objects are small and the back-
ground is clutter, our method still performs well. More vi-
sualization results are shown in the supplementary material.

4.3. Ablation Study

We conduct ablation studies to verify different designs
of the components in our ContrastMask. Unless otherwise
specified, we do ablations in the nonvoc → voc setting. All
results are reported on novel (voc) categories.

Effectiveness of CL Head. Referring to Fig. 5, the in-
put of the mask head in our ContrastMask is composed of
three signals: feature map X from the backbone, feature
map Y from the CL head and class activation map A from
the CAM module. Here, we do an ablation study to show
the benefit brought by each of the inputs. Since Mask R-
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Figure 6. Qualitative results on COCO dataset when using voc as training data (base). Each group consists of two results, one is obtained by
ContrastMask without CL Head (Ours w/o CL) and the other is obtained by ContrastMask (Ours). The results show that our ContrastMask
performs more precisely segmentation on both base and novel objects benefited from the unified pixel-level contrastive learning framework
conducted on all training data.

Method mAP AP50 AP75 APS APM APL

Baseline 23.9 42.9 23.5 11.6 24.3 33.7
Baseline + CM 32.3 57.6 31.9 15.2 31.6 44.6
Baseline + CM +CL 35.1 60.8 35.7 17.2 34.7 47.7

Table 2. Ablation on the impact of each component. The base-
line is Mask R-CNN we built on. “CM” denotes CAM and “CL”
represents for the CL head.

CNN [17] is our baseline, We first train it in a partially-
supervised manner. The result is shown in Tab. 2. Then
by involving the CAM module (CM) into the mask head,
“Baseline + CM” obtains a much better result, 32.3 mAP,
since CAM brings a latent cue for class-agnostic mask head
to clearly point out which region is the foreground area.
Furthermore, performance is boosted to 35.1 mAP after in-
tegrating the CL Head, termed as “CL”, with the baseline
model plus the CAM module. This evidences that the CL
Head largely improves feature discrimination between fore-
ground and background, and thus facilitates the learning of
the class-agnostic mask segmentation model.

Architecture of CL Head. Since the input to our CLHead
is ROI features from the backbone, unlike other contrastive
learning methods, our encoder is relatively simpler and con-
sists of several convolutional and linear layers. Here we
ablate the architecture of the encoder. Tab. 3 illustrates dif-
ferent settings we explored. The base setting employs 4

Architecture mAP AP50 AP75 APS APM APL

C4F2 34.2 59.8 34.6 16.5 33.7 46.4
C8F3 35.1 60.8 35.7 17.2 34.7 47.7

C12F4 35.0 61.1 35.0 17.3 34.8 47.5

Table 3. Ablation on the architecture of the CL head. “CnFm”
indicates n Conv-ReLU blocks in the encoder and m-layer MLP
in the projector.

Conv-ReLU blocks as the encoder and a two-layer MLP
as the projector. After adding additional 4 Conv-ReLU
blocks to the encoder and a one-layer MLP to the projec-
tor, an increase of 0.9 mAP (from 34.2 mAP to 35.1 mAP) is
achieved, which explains that only 4 Conv-ReLU blocks are
insufficient. When increasing the number of Conv-ReLU
blocks to 12, the performance gain is limited. This indi-
cates that adopting 8 Conv-ReLU blocks is adequate for an
encoder, and more Conv-ReLU blocks bring limited bene-
fits. Thus, we use “C8F3” as the architecture of CL Head,
considering the trade-off between efficiency and accuracy.

Robustness of Sampling Ratio. A proportion ratio σ is ap-
plied to determine the number of sampled keys for each
key set. Tab. 4 shows the performance change by vary-
ing the proportion ratio. When σ is too small or too large,
i.e., σ = 0.1 and σ = 0.6, performance is degraded. The
reason is that a small σ means only a few keys can be sam-
pled and a small number of keys can not realize an accurate
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Sampling ratio σ mAP AP50 AP75 APS APM APL

0.1 34.4 60.2 34.3 16.8 34.4 46.9
0.2 34.7 60.3 35.2 17.1 34.5 46.9
0.3 35.1 60.8 35.7 17.2 34.7 47.7
0.6 34.3 60.0 34.2 16.9 34.2 46.4

Table 4. Discussion on the sample ratio σ.

Temperature τ mAP AP50 AP75 APS APM APL

0.1 34.4 60.4 35.0 16.7 34.1 46.9
0.7 35.1 60.8 35.7 17.2 34.7 47.7
0.9 34.0 60.2 33.7 16.8 33.4 46.4

Table 5. Discussion on the temperature hyper-parameter. we
apply τ and τ ′ = 1− τ for easy and hard keys, respectively.

representation of foreground and background. A large σ en-
counters a dilemma that the rate of error keys will increase
because the foreground and background partition for novel
categories are produced by a predicted and coarse CAM.
In general, a minor discrepancy arises among different σ,
which demonstrates the robustness of our method to this
hyper-parameter. We attribute this characteristic to the fact
that only two classes, i.e., foreground and background, are
considered in our method, which requires a small number
of keys to optimize the model.

Temperature hyper-parameter. We apply τ to easy keys
and τ ′ = 1−τ to hard keys when computing our contrastive
loss. From Tab. 5, we notice that a very small τ is unsuitable
for easy or hard keys, which leads to performance degrada-
tion. This can be explained from a perspective [33] that only
a few negative keys near the query are focused when using
a small τ , i.e., τ = 0.1. However, we expect more negative
keys can be pushed away. Thus, we set τ = 0.7 for easy
keys and τ ′ = 1− τ = 0.3 for hard keys.

Supervisions for our contrastive learning. In this study,
we guide our query-sharing pixel-level contrastive learning
by three different types of supervisions, i.e., only base, only
novel and all. As shown in Tab. 6, both only using base cat-
egories and only using novel categories to contribute in loss
calculation lead to obvious performance drops, 1.6 mAP
and 1.7 mAP respectively, compared with adopting all cate-
gories. This demonstrates that involving training data from
all categories is important to learn a segmentation model
with good generalization capability between base and novel
categories.

Necessity of query-sharing. We ablate this experiment to
validate the influence of the query-sharing strategy. In
Tab. 7, “✗” means that we obtain different query q for dif-
ferent proposal, and thus the pixel-level contrastive loss is
calculated for each proposal individually. It achieves worse
performance compared with “✓”, which indicates that the
query-sharing strategy is essential for the proposed unified

Supervision mAP AP50 AP75 APS APM APL

base 33.5 58.4 33.9 15.9 33.3 45.3
novel 33.4 58.0 34.2 15.8 33.1 45.8

all 35.1 60.8 35.7 17.2 34.7 47.7

Table 6. Ablation on different supervision for our contrastive
learning head. “base”, “novel” and “all” denote that only base
categories, only “novel” categories and all categories are consid-
ered when calculating our contrastive loss, respectively.

Query-Sharing mAP AP50 AP75 APS APM APL

✗ 32.7 56.9 33.1 15.7 32.0 44.7
✓ 35.1 60.8 35.7 17.2 34.7 47.7

Table 7. Ablation on the necessity of query-sharing.

pixel-level contrastive learning framework.

5. Discussions
Since pseudo masks converted from CAMs are not ac-

curate, the foreground and background partitions for novel
categories are not guaranteed to be correct, which inevitably
damages segmentation performance. If ground-truth masks
for novel categories are available for sampling keys, an im-
provement about 1.4 mAP can be further achieved on the
voc → nonvoc setting. There are two ways to approach this
upper bound: 1) Utilizing stronger techniques to produce
more precise pseudo masks. 2) Providing scribble or point
annotations for novel categories, which are also cheaper
than mask annotations. Besides, we also provide more dis-
cussions in the supplementary material, e.g., possible appli-
cation scenarios, relation to a teacher-student model, etc.

6. Conclusion
We developed an effective method for partially-

supervised instance segmentation, named as ContrastMask,
which introduces a unified pixel-level contrastive learning
framework to learn a segmentation model on both base and
novel categories. ContrastMask utilized a query-sharing
pixel-level contrastive loss to make data from novel cate-
gories also contribute to the optimization process, and thus
largely improved the feature discrimination between fore-
ground and background areas for all categories. These en-
hanced features further facilitated the learning of the class-
agnostic segmentation model, resulting in a better mask seg-
mentor. Extensive results on the COCO dataset showed
that ContrastMask consistently outperformed other meth-
ods by a large margin, achieving states-of-the-art under the
partially-supervised setting.
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[1] Iñigo Alonso, Alberto Sabater, David Ferstl, Luis Monte-

sano, and Ana C. Murillo. Semi-supervised semantic seg-
mentation with pixel-level contrastive learning from a class-
wise memory bank. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
8219–8228, October 2021. 2

[2] David Biertimpel, Sindi Shkodrani, Anil S. Baslamisli, and
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