This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Contrastive Regression for Domain Adaptation on Gaze Estimation

Yaoming Wang'?!, Yangzhou Jiang!?f, Jin Li', Bingbing Ni'!, Wenrui Dai',

Chenglin Li', Hongkai Xiong!, and Teng Li

2,3%

!Shanghai Jiao Tong University 2Huawei Inc 3Anhui University

{wang,yaoming, jiangyangzhou, deserve_lj, nibingbing,

daiwenrui, 1cl11985, xionghongkai}@sjtu.edu.cn,' tenglwy@gmail.com

Abstract

Appearance-based Gaze Estimation leverages deep neu-
ral networks to regress the gaze direction from monocular
images and achieve impressive performance. However, its
success depends on expensive and cumbersome annotation
capture. When lacking precise annotation, the large domain
gap hinders the performance of trained models on new do-
mains. In this paper, we propose a novel gaze adaptation
approach, namely Contrastive Regression Gaze Adaptation
(CRGA), for generalizing gaze estimation on the target do-
main in an unsupervised manner. CRGA leverages the Con-
trastive Domain Generalization (CDG) module to learn the
stable representation from the source domain and leverages
the Contrastive Self-training Adaptation (CSA) module to
learn from the pseudo labels on the target domain. The
core of both CDG and CSA is the Contrastive Regression
(CR) loss, a novel contrastive loss for regression by pulling
features with closer gaze directions closer together while
pushing features with farther gaze directions farther apart.
Experimentally, we choose ETH-XGAZE and Gaze-360 as
the source domain and test the domain generalization and
adaptation performance on MPIIGAZE, RT-GENE, Gaze-
Capture, EyeDiap respectively. The results demonstrate
that our CRGA achieves remarkable performance improve-
ment compared with the baseline models and also outper-
forms the state-of-the-art domain adaptation approaches on
gaze adaptation tasks.

1. Introduction

With the development of deep learning, gaze esti-
mation techniques have been widely applied in human-
computer interaction systems, such as intelligent cock-
pits [11], VR/AR games [2, 21, 38], medical analysis [4],
etc. Recently, appearance-based approaches [23,37] are at-
tracting more and more attention, as they regress gaze di-
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Figure 1. Illustration of the feature distribution learned from do-
main adaptation task Dg — Dp (with close gaze directions share
similar colors) indicates that the original contrastive classification
loss function exhibits no effect on regression problem, while our
derived contrastive regression loss pulls features with close gaze
labels together and pushes features with remote gaze labels apart.

rection from monocular images alone and get rid of ex-
pensive and limited eye model devices. Despite the suc-
cess of appearance-based gaze estimation, expensive and
cumbersome annotation capture constrains its application
in daily life. Large-scale gaze datasets [9, 10, 19,23,35,39]
along with related gaze estimation approaches have been
proposed to alleviate this problem. These approaches yield
promising performance in the within-dataset test (training
and test data are from a same dataset) but are degraded dra-
matically in the cross-dataset test (training and test data are
from different datasets), due to the gap between different
domains, such as the differences of subjects, background
environments, and illuminations.

Recently, collaborative model ensembles [25] and addi-
tional annotations [22] are leveraged to narrow the cross-
dataset gap. They require additional models or annotations
for domain adaptation and lead to extra complexity of the
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learning pipeline. For the same dataset, inter-person gap
(i.e., personal calibration) can be alleviated by learning the
personal error between the visual axis and optical axis with
adversarial training [28, 33] and few shot learning [27, 34].
However, there still lacks a self-supervised approach to ad-
dress the cross-dataset gap without introducing additional
labels or models.

Contrastive learning is dominating recent advances in
self-supervised learning [24] and has been transferred to
various downstream tasks including classification, segmen-
tation and detection [16]. However, existing methods [3,

, 16] for classification tasks on datasets like ImageNet
and CIFAR cannot be directly extended to regression tasks.
Fig. 1 illustrates an example where the standard contrastive
learning for classification tasks fails to learn useful repre-
sentations for gaze regression tasks. In fact, existing unsu-
pervised and supervised constrastive learning for classifica-
tion cannot accommodate to gaze regression tasks.

* Unsupervised contrastive learning treats different
views of an image as the positives and the views of
other images as the negatives. It tends to extract global
semantic information that benefits classification tasks,
e.g., information for face recognition. However, global
semantic information might mislead regression tasks,
especially appearance-based gaze direction regression,
and compromises the accuracy of gaze estimation.

* Supervised contrastive learning [20] deems images
with the same label as the positives and degenerates
to unsupervised contrastive learning given continuous
gaze annotations (labels are different from each other
in a batch). Moreover, in classification tasks, different
labels indicate different categories and does not reveal
meaningful information. In contrast, the relationship
between labels reveal the relationship between the fea-
tures for regression tasks.

In this paper, we propose a novel gaze adaptation ap-
proach, namely Contrastive Regression Gaze Adaptation,
for generalizing gaze estimation on the target domain in an
unsupervised manner. We first derive a novel contrastive
regression loss for regression tasks by assuming the simi-
larity between labels is proportional to the ratio of the re-
lated features. Subsequently, we develop two modules, i.e.,
Contrastive Domain Generalization (CDG) and Contrastive
Self-training Adaptation (CSA), based on the contrastive re-
gression loss for Contrastive Regression Gaze Adaptation.
CDG introduces the contrastive regression loss into the do-
main generalization task to learn stable representation from
the source domain, whereas CSA incorporates the pseudo
label generated from the source domain model and the CDG
loss to further improve the adaptation performance in the
target domain. The contributions of this paper are summa-
rized as below.

* We develop a novel gaze adaptation method, namely
Contrastive Regression Gaze Adaptation (CRGA), for
self-supervised cross-domain gaze estimation without
introducing additional models or labels.

* We propose a novel Contrastive Regression framework
based on the derived Contrastive Regression (CR) loss
to learn robust domain-invariant representation for re-
gression tasks.

To our best knowledge, we are the first to introduce
contrastive learning into regression tasks to improve the
domain generalization and adaptation performance dra-
matically. Experimental results demonstrate that CRGA
achieves remarkable performance improvements compared
with the baseline models and outperforms the state-of-the-
art domain adaptation approaches on gaze adaptation tasks.
Specifically, CRGA achieves performance improvements
over the baseline of 40.4%, 34.7%, 55.8%, 34.3%, from
source domain ETH-XGAZE to MPIIGaze, RT-GENE,
GazeCapture, and EyeDiap respectively. Besides, CRGA
achieves improvements over the baseline of 31.7%, 30.5%,
32.9% and 23.8% from source domain Gaze360 to MPII,
RT-GENE, GazeCapture, and EyeDiap respectively.

2. Related Works
2.1. Domain Adaptive Gaze Estimation

While deep neural networks learn image-to-gaze map-
ping effectively, performance degrades severely on the new
domain. Many efforts are dedicated to alleviating this prob-
lem. From the perspective of data, large-scale and di-
verse gaze datasets are collected to meet the real-world
setting, such as GazeCapture [23], ETH-XGaze [35] and
Gaze360 [19] etc. To align the input data distribution cross
domain, standard data preprocessing methods are proposed
to map the input data to a normalized space [30,36]. Specifi-
cally, work [36] uses a virtual camera to warp the face patch
according to 3d head pose. Besides, multiple GAN methods
are leveraged to align the input data distribution between
different domain [28, 32].

From the perspective of learning, some methods attempt
to learn a more general representation for gaze or align the
feature distribution between two domains. Work [27] learns
a rotation-aware latent representation of gaze with meta-
learning. Adversarial training is commonly used for align-
ing the feature distribution [19,33] and purify gaze feature
[7]. For instance, Kellnhofer et al. [19] finetune a mixture
of the labeled Gaze360 images and unlabeled images along
with a discriminator to identify the domain. Besides, Liu
et al.. [25] propose to use an ensemble of networks to learn
collaboratively with the guidance of outliers.
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2.2. Contrastive Learning

Recently, contrastive learning shows superior perfor-
mance in self-supervised and semi-supervised learning,
and even surpasses supervised methods when transferring
the representation to cross-domain and downstream tasks
[3,16,18]. The idea of contrastive learning is to learn repre-
sentation by contrasting multi-views of samples as positive
pairs against other negative samples [5, [5]. It could also
be interpreted as maximizing mutual information between
latent representations [, 17,26], and noise contrastive esti-
mation [14] could be leveraged. He et al. [16] extend nega-
tive samples in mini-batch to large momentum update mem-
ory bank. Chen et al. [5,6] then find a non-linear projection
head matters and large batch also helps. [29] proposes to use
the contrastive loss to capture the equivariance with respect
to geometric transformations in 3D head pose estimation.
Grill et al. [12] even manage to remove negative samples
totally. Contrastive learning could also be expanded to the
supervised scenes. Khosla et al. [20] propose to build pos-
itive pairs with data augmentation together with annotation
label. Note that the aforementioned methods are designed
for a general classification dataset, which could hardly ap-
ply to gaze regression scene.

3. Methodology
3.1. Preliminary: Domain Adaptation
Given the source domain data as Ds = {(z5,¢5)}"=,,

where (25, g°) denotes the n-th pair of observation and the
corresponding gaze direction, Ng is the number of pairs.
Similarly, the target domain data is denoted as Dy =
{(«T, g7}, where (x],g7) represents the n-th pair
and N7 is the number of pairs. For domain adaptation, our
goal is to learn a predictive function f : © — ¢ on the
source domain S to achieve a minimum error on the target
domain 7T as:

minE (7, [L(f(7),g7) (M

3.2. Contrastive Regression

Recently, contrastive learning exhibits strong power in
learning stable representation for domain adaptation on
classification tasks. However, no well-elaborated con-
trastive method is proposed for domain adaptation on re-
gression tasks. Thus, we propose a novel contrastive re-
gression framework to learn robust and invariant represen-
tation for regression tasks. For regression model, different
from classification tasks, the relationship between labels re-
veal the relationship between the features. Then we can
make a assumption that the ratio between predict distribu-
tion p(y;|z) and p(yx|x) is proportional to the similarity be-
tween label distribution p(g;) and p(g;).

Proposition 1. We derive the new contrastive loss function
for regression task as

> SIp(gi); (k)] - fr(yr, )

—log 2)
Zj fi (y]ﬁ .’I})
where f;(y;,x) is the density ratio.
Proof. Please refer to the supplementary material. O

For simplicity, we abbreviate the similarity function
Sip(g:); p(gr)] as S;  in the rest paper. This loss still en-
counters some problems in practice. Specifically, despite
that the loss function encourages >, S; i - fx(yx, z) to get
larger to approximate ) f;(y;, ), negative values may
appear in the beginning and results in NAN in the loss com-
putation. Then, we introduce the variant of Eq. 2 as:

v 22k O Sik) - fr Yk, )
o > filyj, )

3)

where o(-) is the relu function, used to zero out negative
values. Besides, this loss function would not be bounded if
S;,% tends to infinity. Thus, we further introduce the nor-
malization and rewritten Eq. 3 as:

0 25 0(Sik) - fr(yr, )
> 1Sigl - fily;, @)

-1 “)

where [S; ;| is the absolute value of our similarity S.
As f;(y;, x) always takes the exponential distribution and
greater than zero, the loss function has the lower bound as
L > —log1 = 0. We name the loss function in Eq. 4 as the
Contrastive Regression (CR) loss.

Proposition 2. The two forms of loss function in Eq. 2 and
Eq. 4 have the same effect, i.e., they pull features with closer
gaze directions closer together while pushing features with
farther gaze directions farther apart.

Proof. Please refer to the supplementary material. O

Similarity function Considering that the gaze direction is
mainly concentrated in front of the face and the gradient
near zero of cosine similarity is too small, we derive a -log
KL function as the similarity:

— 0.07
i 9lelog 5)
9: — g;

Si,; = —log 0.07

The detail of why we derive this function and the property
of this similarity function can be referred to in the supple-
mentary materials.
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Figure 2. The overall framework of our proposed CRGA (best viewed in color). (a)Contrastive Domain Generalization (CDG) module:
Input images are first augmented into two different view, and then be fed into the network for gaze and CR feature, which could be used for
computing Lcpe (b) The Contrastive Self-training Adaptation (CSA) Module: Pseudo labels are generated for unlabeled images in target
domain and used for computing Lcsa similarly. Losa and Lepa as regulation compose the final loss Loraa. (c) Visualization of the
CR normalized feature space. Features with blue arrow would be pulled together, while features with orange arrow would be pushed apart.

3.3. Contrastive Regression Gaze Adaptation

In this section, we will elaborate on the proposed Con-
trastive Regression Gaze Adaptation (CRGA). Fig. 2 illus-
trates the overall framework of CRGA that consists of two
modules. The first module is Contrastive Domain General-
ization (CDG), which leverages CDG loss to learn a stable
representation from the source domain. Subsequently, the
Contrastive Self-training Adaptation (CSA) module lever-
ages the contrastive self-training with pseudo labeling to
improve the adaptation performance on the target domain.

3.3.1 Contrastive domain generalization

Given source domain data, we follow the convention in con-
trastive learning and leverages two separate data augmen-
tation operators A, A to get two views of input image as
I = A(input), I = A(input). The two separate data aug-
mentation operators are sampled from the same family A of
augmentations as A ~ A, A ~ A. The detail of the data
augmentation family A can be referred to in the Sec. 4.2.
Then, I and T are fed to the model f(-) to get the features
V = f(I)and V = f(I). Usually, a parametric gaze pre-
dictive head h(-) is employed to predict the gaze distribu-
tion as y = h(v). Considering a minibatch of N examples
and we get pairs of augmented examples derived from the
minibatch, resulting in 2N data points. Following [5], a pro-
jection head r(-), usually a multi-layer perceptron (mlp), is
employed to map features to the space where contrastive
loss is applied and get z = r(v). We follow [5] and fur-
ther introduce the cosine similarity for the ¢ normalized
z with the temperature parameter 7. Thus, we could turn
fr(ug, z) into exp(sim(z;, z) /7). When k = j, we have

sim(zg, zj) = 1. To further encourage the simplify and the
fast convergence, we follow [5] and introduce the indicator
function 1;; to omit the i;h sample. Finally, the CR loss
defined in Eq. 4 can be converted as:

>k Lizio(Six) - exp(sim(2i, 21) /7)
>0, Lizi Si 5] - exp(sim(z;, 2;) /)

—log (6)

where the indicator functionl;; evaluating to 1 if j # 4,
while evaluating to 0 when j = ¢. The replacement of the
parametric predictive head by the non-parametric predictive
head would lose supervised information from the gaze la-
bels. Thus we leverage additive ¢1 loss to our CR loss. For
clarification, we simplify exp(sim(z;, zi)/7) to e, (2, 2k)-
Then we derive our final loss function L¢pg as:

Lizio(Sik) - er(zi,21) |
2 Lir (S,_) - )+7VZIyi—gi| )
Zj Lii [Si ] - er(zi,25) 2 p

—log

Here g; is the gaze label, v is the hyperparameter and the
related ablation study can be found in Sec. 4.5.

3.3.2 Contrastive self-training adaptation

In this section, we elaborate on Contrastive Self-training
Adaptation (CSA). Firstly, we consider the source-free do-
main adaptation (SFDA), where source data is unavailable
and only the pre-trained source model could be accessed.
Given the target domain data D = {(z7,g7)} 7|, the
target model f7 (-) and the target gaze predictive head 7 (-)
(initialized by the pre-trained source model and head). Then
the target model generates the pseudo gaze direction as

g7 =77 (f7(«7)). We apply the pseudo gaze direction g7
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Algorithm 1 Domain Adaptation (CRGA)

Input: Source Data Ds = {(z5,95)}1.n5, target data Dy =
{331}1: N and pretrained network M on Ds with weights 6,
where M contains feature extractor f, gaze predictive head h
and CR projection head r.

Output: Adapted network M.

1: Part 1: Train M on Dgs with CDG loss 7. (CDG)

2: while not converged do

3:  Sample batch data (2%, ¢%) from Ds .

4:  Random augment data: IS = A(z°) and I° = A(z%)

5. Feed zf and 25 to model M, and get gaze prediction g% =
h(f(I5,1%)) and CR feature r(f(I5,1°)).

6:  Compute CDG Loss over gaze prediction and CR feature
according to Eq. 7, and optimize M (0).

7: end while

8: Part 2: Adapt M to D7 with CRGA loss in Eq. 9 and pseudo

labels g, . (CSA)
9: while not converged do
10:  In the beginning of each epoch: generate pseudo labels g,

for target data with network M.

11:  Sample batch data (z”, §7 ) from D7

12:  Random augment data: I7 = A(2” ) and 1 = A(zT)

13:  Feed!” andI’ to model M, and update M () by descend-

ing CRGA loss in Eq. 9 .

14: end while

as the label of the target data and leverage our CR loss com-
bined with the L1 loss proposed in Eq. 7 to learn a stable
representation and more precise prediction for target data.
The related loss function Log 4 iS:

—log 2ok ]lk;éio(gi,k) - er(2i, 2k
Zj ]ljyﬁi

where SM = S[p(gi); p(Gr)], € is the hyperparameter (the
ablation study is presented in Secondly, we further consider
the scene where source data is available. Then the source
data can be used as the regularization term at the beginning
of self-training. With an annealed temperature y (gradually
degrade to O from 1), we derive the final source data avail-
able domain adaptation loss as:

Hj Z lyi — 3l (®)

Sm“ -er(2i, 2)

Lerga = Losa+7 - Lepa )
The ablation study on whether source data can be accessed
is shown in Sec. 4.4.

4. Experiments
4.1. Datasets

We employ six gaze datasets as six different domains:
ETH-XGaze (Dg), Gaze360 (D¢g), MPIIGaze (Dys), RT-
GENE (Dpg), GazeCapture (D¢), and EyeDiap (Dp). We
choose ETH-XGaze and Gaze360 as the source domain and
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Figure 3. Illustration of the gaze direction distributions of six gaze
datasets (best viewed in color). The top 2 rows are the images
samples from six gaze datasets. The bottom two rows are the gaze
direction distribution statistics.

test the generalization and adaptation performance on MPI-
IGaze, RT-GENE, GazeCapture, and EyeDiap respectively.
We follow [8,25] to pre-process the gaze datasets and elim-
inate the influence of different head poses through rotating
the virtual camera and wrapping the images. The details
of the six datasets are in the supplementary materials. The
visualization of different datasets is shown in Fig. 3.

4.2. Experimental Details

Please refer to the supplementary materials.

4.3. Domain Generalization

For domain generalization, the target images are not
available during the training. We train our baseline model
and our CDG model only using the source domain data. Re-
sults are exhibited in Tab. 1. When we take ETH-XGAZE
as the source domain, we train our baseline model following
the pipeline of [35] and reach 4.47° evaluation error consis-
tent with 4.5° reported in [35]. When we take Gaze360
as the source domain, we train our baseline model follow-
ing the pipeline of [19] and reach 10.9° evaluation error
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Method Source CDG CSA Dg — Dy Dg — Dgr Dr — Do D — Dp
Baseline.orig [35]  4.50 - - 7.5 31.2 10.5 11.0
Baseline.our impl 4.47 - - 9.19 18.23 13.43 8.62
CDG 4.56 v X 6.73V26.7% 16.45V9.8% 9.23V31.2% 7.95V7.8%
CSA - X v 5.37V41.6% 14.06 V22.9% 8.25V38.6% 6.77 V21.5%
CRGA - v v 548 V40.4% 11.91V34.7% 594 V55.8%  5.66 V34.3%
Method Source CDG CSA De — Dy De — Dgr De — Do De — Dp
Baseline.orig [35] 11.1 - - 10.3 26.6 12.9 11.3
Baseline.our impl 10.9 - - 8.63 23.36 9.23 8.52
CDG 11.0 v X 7.03V18.5% 2079 V11.0% 828 V10.3% 7.27V14.7%
CSA - X v 730V15.4%  21.32V9.6% 799V13.4% 7.73V9.3%
CRGA - v v 589 V31.7% 1623 V30.5% 619 V32.9%  6.49 V23.8%

Table 1. Domain adaptation results compared with baselines. Angular gaze error (°) is used as evaluation metric.

consistent with 11.1° reported in [

]. We leverage CDG

loss to train our CDG module in the source dataset and Our
CDG module achieves remarkable performance improve-
ment compared with the baseline models. Specifically,
CDG achieves performance improvements over the baseline
of 26.7%, 9.8%, 31.2%, 7.8%, from source domain ETH-
XGAZE to MPIIGaze, RT-GENE, GazeCapture, and Eye-
Diap respectively. Besides, CDG also achieves improve-
ments over the baseline of 18.5%, 11.0%, 10.3%, 14.7%
from source domain Gaze360 to MPII, RT-GENE, Gaze-
Capture, and EyeDiap respectively.

4.4. Domain Adaptation

We experiment with two scenarios for domain adapta-
tion as we elaborated in Sec. 3.3.2: Source-free domain
adaptation (SFDA) and vanilla domain adaptation. In the
source-free domain adaptation scene, where source domain
data is not available, we begin from a pre-trained gaze es-
timation model and adapt it to the target domain with Con-
trastive Self-training Adaptation (CSA). In the vanilla do-
main adaptation scene, source domain data is available, so
we perform CSA on the target domain with the model pre-
trained on the source domain with CDG, and we denote
the whole two-stage cross-domain adaptation framework as
Contrastive Regression Gaze Adaptation (CRGA).

For CRGA, we first use the L2, with the annealed
temperature -y as the constrain as we described in Sec. 3.3.2.
Then, we update the pseudo-label with our adaptive model
and use the new pseudo label to perform several iterations
of self-training with the v = 0 (one epoch each iteration)
and finally achieve our domain adaptation results. The ab-
lation study on the number of iteration is shown in Sec. 4.5.
Results in Tab.1 demonstrate the effectiveness of our CSA
and CRGA. Specifically, comparing with baseline, CSA re-
duces gaze estimation error by 41.6%, 22.9%, 38.6% and
21.5% when adapt from ETH-GAZE to MPIIGaze, RT-

Method Source — Dy — Dr — D — Dp
Baseline? Dr 9.19 1823 1343 8.62
GazeAdv' [33] D 6.75 - - 8.10
PureGaze' [7] Dk 7.08 - - 7.48
PnP-GAT [25] Dg 553 - - 5.87
PnP-GA* [25] Dg  6.00 - - 6.17
CRGA' Dr 548 1191 594 5.66
Baseline? Do 863 2336 1255 8.52
GazeAdv' [33] Dg  8.19 - - 12.27
Gaze360t [19]  Dg 99 219 - -

PureGaze! [7] Do 9.28 - - 9.32
PnP-GAT [25] De  6.18 - - 7.92
PnP-GA* [25] Dg  5.74 - - 7.04
CRGA? De 589 1623 6.19 6.49

Table 2. Cross-dataset gaze estimation performance compared
with the state-of-art approaches. ' indicates that the model em-
ploys ResNet-18 as the backbone while ¥ indicates that the model
employs ResNet-50 as the backbone. Angular gaze error (°) is
used as the evaluation metric.

GENE, GazeCapture and EyeDiap. And CRGA further re-
duce the error by 40.4%, 34.7%, 55.8%, 34.3%. When we
take Gaze360 as the source domain, CSA improves perfor-
mance over the baseline of 15.4%,9.6%, 13.4%, and 9.3%
respectively and CRGA further improve the performance of
31.7%, 30.5%, 32.9% and 23.8% compared to the baseline.

To demonstrate the superiority of our method CRGA, we
also compare with other state-of-the-art methods on unsu-
pervised gaze domain estimation, and the results are pre-
sented in Tab. 2. Our CRGA outperforms all the state-of-
the-art methods on seven domain adaptation tasks, except
for D — Dy, slightly inferior compared to PnP-GA [25],
which employs an ensemble of networks and requires addi-
tional computational resources and memory consumption.
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4.5. Extension Experiments

We conduct several extension experiments to further test
the effectiveness of our proposed approach, including abla-
tion studies on hyperparameters, backbones, different loss
functions, and iterations for self-training. For simplicity,
not all the experiments are performed on eight tasks from
two source domains to four target domains, and the details
are shown in each extension experiment respectively.

4.5.1 Ablation study on hyperparameters.

We evaluate how the CDG performance varies with the
change of hyperparameter . v controls the ratio of CR

CDG DE—>D1\/[ DE—>DD D(;—>DM Dg—>DD

v=0.1 7.72 7.86 7.46 7.50
vy=1 6.73 7.95 7.03 7.27
v=10 7.92 7.50 7.37 8.07
CRGA Dg — Dy Dg —Dp D — Dy Da — Dp
e=0.1 5.84 6.16 6.48 7.00
e=1 5.48 5.66 5.89 6.49
e=10 6.15 6.00 6.31 6.72

Table 3. Ablation study on different hyperparameters v for CDG
and e for CRGA. Angular gaze error (°) is used as the evaluation
metric. Here, a lower error rate stands for better performance.

loss and /1 loss in derived CDG loss. To provide a simple
and intuitive presentation, we choose Dj; and Dg as the
target domain following [25]. We test three ratio hyperpa-
rameters which are commonly used in statistical analysis,
0.1, 1, and 10. The results are shown in rows 1-3 of Tab. 3,
where we find that the best system performance occurs at
the hyperparameter v = 1. Moreover, we keep the best hy-
perparameter v = 1 and test different choices for e. We
choose ¢ = 0.1,1,10. The results are shown in row 4-6
of Tab. 3. We find the best performance also appears when
€ = 1. We set v = 1 and € = 1 for remaining experiments.

4.5.2 Ablation study on loss functions

To further prove the effectiveness of our proposed CR loss,
we perform experiments on the domain generalization task
from source D¢ to target Dy, Dr, Do, Dp. We employ

Method source — Dy — Dr — Dg — Dp
/1 Dga 8.63 233 923 852
CR+/1 D¢ 7.03 20.79 8.28 7.27

SupCon+/1 [20] Dg 737 2371 994  8.65

Table 4. Ablation study on different loss functions. CR+-/¢1 equals
our CDG loss as we aforementioned. Angular gaze error (°) is
used as the evaluation metric.

three different loss functions for comparison. Firstly, we use

the vanilla ¢1 loss as the objective function and this is ac-
tually our baseline model. Then, we employ the supervised
contrastive loss (SupCon) [20], which is used for classifi-
cation contrastive learning tasks, combined with the /1 loss
using our derived optimal hyperparameter v = 1. Finally,
we use our CDG loss as the objective function, which is
composed of CR loss and ¢1 with the optimal hyperparam-
eter v = 1. The results in Tab. 4 demonstrated our CR loss
is suitable for regression tasks and outperforms the SupCon
loss usually adopted in classification tasks. By the way, the
SupCon loss even performs worse than our baseline models
on three tasks of four because that the contrastive loss de-
rived from classification tasks encourages the model to pay
attention to the global semantic information, which con-
fuses the model in gaze regression tasks instead.

4.5.3 Ablation study on iterations of self-training

5 9 Baseline
5 CSA
s 8] —— CRGA
271
s
<]

0 2 4 6 8 10

Number of Iterations

Figure 4. D — D using ResNet50

As we elaborated in Sec 4.4, we perform several itera-
tions of one-epoch self-training and constantly update the
pseudo labels after each iteration. To find the optimal num-
ber of the one-epoch self-training iterations (z.e., ), we
evaluate the CRGA performance under different numbers
of self-training iterations. We perform experiments on the
domain adaptation task D — Dj; using ResNet-50 as the
backbone Furthermore, controlled trials have been added to
demonstrate whether the self-training without CRGA loss
could bring vital performance improvement. In detail, we
conduct 3 pipelines for comparison, one in which we per-
form our CRGA for different iterations I, another in which
we perform our CSA for different iterations I, the third
one in which we perform self-training with different iter-
ations I on the baseline model without our derived CSA
loss. The results are illustrated in Fig. 4, Both CSA and
CRGA gradually improve performance as self-training it-
erations increase and level off. When compared with the
baseline model without CSA loss, which oscillates at the
original performance, our CSA loss proves to be effective.

4.5.4 Extension experiments on 100 samples.

We further perform the 100 images experiments on 4 do-
main adaptation tasks, following PnP-GA, as illustrated in
Tab. 5. The experimental settings keep the same with exper-
iments on full source images. Specifically, apart from the
baseline model, CDG uses only 100 source images, CSA
uses only 100 target images, CRGA uses 100 source + 100
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Method Dg — Dy D — Dp Da — Dy Da — Dp

PnP-GA 6.00 6.17 5.74 7.04
CDG 7.05 7.88 7.62 7.47
CSA 5.87 5.95 6.12 6.81
CRGA 5.68 5.72 6.09 6.68

Table 5. Experiments on 100 images using ResNet50.

target images like PnP-GA. All of our methods only em-
ploy a single ResNet50 model, while PnP-GA employs an
ensemble of 10+ models. Besides, our CSA outperforms
PnP-GA in 3 tasks without source images.

4.5.5 Extension experiments on feature visualization

Figure 5. Illustration of the feature distribution, different colors
indicate different true gaze directions. (best viewed in color).

To reveal the effectiveness of learning a good represen-
tation in an intuitive way, we visualize the distribution of
features V' on the domain adaptation task Dg — Dp with
t-SNE [31]. Features generated from four different models
are presented in Fig. 5, where feature points with close gaze
directions share similar colors. For the baseline model, fea-
tures have no obvious relationship with the gaze directions.
While for CDG, the model is pre-trained on D¢, then it can
pull together features with the same gaze directions with
some strength. CSA directly learns features on Dp without
the constrain from the source domain. Despite the better
representation compared with CDG, a green area abruptly
appears in the blue and purple area in the bottom left corner
of the figure. Compared with the other three models, CRGA
shows the best performance, i.e., from left to right, showing
a gradation of color from purple to green. This means the
feature with close gaze directions are pulling together while

those with remote gaze directions are pushing apart.

4.5.6 Extension experiments on head pose estimation.

To prove that our CR loss works well on other regression
tasks, we choose head pose regression domain adaptation
on Dy — Dg as the extensive experiment. Illustrated in
Tab. 6, in the first line we conduct experiments using 100
samples like Tab. 5. The last line illustrates experiments
using all the images like we did in our original paper.

Methods Baseline ST* CDG CSA CRGA
Dr — Dgr 21.34  26.15 18.43 17.27 16.50

Methods CDG-Sup! CDG CSA-Sup’ CSA CRGA
Dg —Dr 2576 1954 2445 1741 16.12

Table 6. Experiments on head pose domain adaptation on D —
Dr. * ST indicates self training without contrastive loss. T -Sup
indicates using supervised contrastive classification loss.

More experiments on different backbones, the compar-
ison between contrastive regression loss and contrastive
classification loss on head pose estimation, ablation study
on the prior A in Eq. 5 and other extensive experiments are
elaborated in the supplementary material to further prove
the effectiveness of our proposed approach.

5. Conclusion

In this paper, we propose a novel gaze adaptation ap-
proach, namely CRGA, for generalizing gaze estimation
on the target domain in an unsupervised manner. CRGA
leverages the CDG module to learn the stable representa-
tion from the source domain and leverages the CSA module
to learn from the pseudo labels on the target domain. The
core of both CDG and CSA is the CR loss, a novel con-
trastive loss for regression by pulling features with closer
gaze directions closer together while pushing features with
farther gaze directions farther apart. Our approach demon-
strates dramatic performance improvement on eight gaze
domain adaptation tasks over the baseline, and also outper-
forms the state-of-the-art domain adaptation approaches on
gaze adaptation tasks.
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