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Abstract

In recent years, with the advances of generative mod-
els, many powerful face manipulation systems have been
developed based on Deep Neural Networks (DNNs), called
DeepFakes. If DeepFakes are not controlled timely and
properly, they would become a real threat to both celebri-
ties and ordinary people. Precautions such as adding per-
turbations to the source inputs will make DeepFake results
look distorted from the perspective of human eyes. How-
ever, previous method doesn’t explore whether the disrupted
images can still spoof DeepFake detectors. This is critical
for many applications where DeepFake detectors are used
to discriminate between DeepFake data and real data due
to the huge cost of examining a large amount of data man-
ually. We argue that the detectors do not share a similar
perspective as human eyes, which might still be spoofed by
the disrupted data. Besides, the existing disruption meth-
ods rely on iteration-based perturbation generation algo-
rithms, which is time-consuming. In this paper, we propose
a novel DeepFake disruption algorithm called “DeepFake
Disrupter”. By training a perturbation generator, we can
add the human-imperceptible perturbations to source im-
ages that need to be protected without any backpropaga-
tion update. The DeepFake results of these protected source
inputs would not only look unrealistic by the human eye
but also can be distinguished by DeepFake detectors eas-
ily. For example, experimental results show that by adding
our trained perturbations, fake images generated by Star-
GAN [5] can result in a 10 ∼ 20% increase in F1-score
evaluated by various DeepFake detectors.

1. Introduction
Face Manipulation has raised significant concerns within

our digital society. It is a kind of technique that allows
people to modify the face’s identity, expression, and at-

*Equal Contribution

Figure 1. (a) shows that advanced DeepFake manipulation mod-
els can easily spoof human naked eye and DeepFake detector.
(b) shows that after DeepFake Disruption, fake outputs become
apparently distorted from the perspective of human eye, but can
still spoof the DeepFake detector. (c) shows that our proposed
method DeepFake disrupter can invalidate the DeepFake manipu-
lation process from both human end and machine end.

tributes in a given image or video. With the development
and implementation of Deep Neural Networks (DNN), the
recent manipulation methods could produce verisimilar re-
sults that might fool human eyes. These DNN based meth-
ods, called DeepFakes [3, 4, 11, 24, 25, 28], have attracted
much attention from the public and researchers because the
high-quality DeepFake results could lead to social and se-
curity problems. For example, the public might think the
victims did somethings that they never did due to the pres-
ence of their identities in the DeepFake videos, thus ruining
their reputations. The forgery data could also fool the secu-
rity protocol by verifying the payment authorization system
through fake personal information so that putting the vic-
tims’ wealth at great risk.

As a response to the increasing concern of DeepFake,
many defense methods are proposed. The first way is using
detection models to distinguish Real and DeepFake data.
Multiple detection algorithms are introduced, including us-
ing traditional DNN models for detection [7,18,21], analyz-
ing the inconsistent within the DeepFake data [12, 30], and
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extracting the synthesis signal as the evidence for discrim-
ination [27]. On the other hand, recent research provides
a new direction for defense, preventing attackers from syn-
thesizing DeepFake images. These methods, called Deep-
Fake Disruption, attempt to add small perturbations to the
original images such that the corresponding DeepFake re-
sults might be heavily distorted in visualization. Disrupt-
ing DeepFakes [22] is a related work on image translation
disruption framework to make image manipulation models
generates fake images with human-perceptible distortions.

Although the recent DeepFake Disruption methods could
prevent the DeepFake models from generating realistic re-
sults, these kinds of methods still have some problems. In
the real-world multi-media systems, it is extremely expen-
sive to employ human observers to defend the DeepFake
by manually examining every input image in the large vol-
ume of vision data, even though the defects in the image
produced by DeepFake are obvious. Instead, to automate
the defense of DeepFake, it is prevalent and preferable to
develop DeepFake detectors. However, although the ex-
isting disruption methods could make the DeepFake’s out-
put become distorted from the human eye, our experiment
demonstrates that these visually unnatural samples can still
spoof the DeepFake detectors since the human eye and neu-
ral network share a different decision logic. What’s more,
these recent disruption methods rely on iteration-based ad-
versarial attack algorithms, e.g. Iterative Fast Gradient
Sign Method(I-FGSM) [10] and Projected Gradient De-
scent (PGD) [14], to find out the perturbation for each data,
which is normally time-consuming.

We argue that we also need to consider the loss of the
DeepFake detector, such that the generated DeepFake re-
sults of protected data are not only being recognized by the
human eye but also can be detected by the detectors, and
at the same time, the original data injected with perturba-
tions can still be recognized as the real one. We should
also use a perturbation generator to generate perturbation,
which provides an end-to-end protection algorithm that can
save time. Figure 1 shows the development of DeepFake
disruption methods.

In this work, we propose a novel framework, called
DeepFake Disrupter, to defend against DeepFake with the
help of the DeepFake detector. The DeepFake Disrupter is
a perturbation generator that takes as input real images and
outputs a human-imperceptible perturbation so as to make
the data generated by the DeepFake models be identified
as fake by DeepFake detector and human eyes; meanwhile,
the original real inputs injected with perturbations can still
be identified as real by DeepFake detector. We show that
just making DeepFake outputs distorted from the human
eye’s view is insufficient because the DeepFake detector
may still be fooled by classifying the fake videos as real.
Experimental results on CelebA [13] and VoxCeleb1 [16]

datasets demonstrate that the proposed DeepFake disrupter
can effectively protect original real images/videos from be-
ing used as a source for making DeepFake data.

2. Related Work
Adversarial attack and Adversarial Training After real-
izing the vulnerability of normal neural networks, a plethora
of works have been done in the area of adversarial attacks.
The first work is Fast Gradient Sign Method(FGSM) pro-
posed by [6], in which they suggest a one-step gradient as-
cent method to generate the adversarial examples. Based
on FGSM, [14] propose Projected Gradient Descent(PGD)
attacks. Instead only updating once, PGD just iteratively
update the adversarial examples to make it stronger than
FGSM. While the above methods collectively use the iter-
ative gradient update method for perturbation generation,
there are also some works producing perturbations via gen-
erative models [19]. However, all the above works focus on
adversarial attack and training on normal classification tasks
and researches about adversarial attacks on generative mod-
els attract less attention. Works like [22] and [23] use the
idea of adversarial attack to disrupt the ability of DeepFakes
generators, which are more close to our proposed method.

DeepFake Data Generation The DeepFake techniques can
be separated into two major categories, identity manipu-
lation and attribute manipulation. For identity manipula-
tion, RSGAN [17] extracts the embedding information of
the face and hair for generating results. FSGAN [9] imple-
ment multi-scale architecture to handle different pixel situ-
ations while using an occlusion-wise algorithm to preserve
the occlusion region of the target face. Facial expression
and attribute manipulation form another category of Deep-
Fake. Rather than changing the identity information, these
techniques try to change some facial attributes (such as hair
and skin color), or expressions (such as smiling or blinking).
StarGAN [5] is a famous work for attribute manipulation,
which encodes the facial attributes into latent space. Fur-
thermore, the researcher extent the image expression ma-
nipulation into video level called facial animation. Given a
driving video and a source face image, the animation meth-
ods would generate a new video that the source image is
performing the same expression and action as the face in
the driving video [8, 24, 26].

DeepFake Detection and Defense As a response to the in-
creasing quality of DeepFake, many methods are proposed
to detect DeepFake attacks. A common way is to develop
DNN detection modules. Rossler [21] and Selim* imple-
ment DNN to achieve promising detection accuracy. Oth-
ers try to detect the inconsistency within the generated data,
such as detecting the identity swapping boundary, the in-

*https : / / github . com / selimsef / dfdc _ deepfake _
challenge
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consistent angles between the face and head, and the differ-
ence between face and background [15]. In addition, some
researchers argue it contains synthesis signals [7, 27, 29]
for the GAN-based DeepFake generation method. Utiliz-
ing these signals could detect the forgery data easily.

3. Methodology
In this section, we will first provide the preliminaries on

Adversarial Attacks to DeepFake and then describe our pro-
posed pipeline and optimization algorithm.

3.1. Adversarial Attacks to DeepFake

As a new way for DeepFake defence, disrupting Deep-
Fake models is to add human-imperceptible perturbations
on the source images [23]. The disruption on the output
fake images can be taken as an adversarial attack to the
DeepFake model and will make the DeepFake models less
effective in generating realistic images. That is, the output
by DeepFake will be highly unrealistic from the perspec-
tive of human naked eyes. Formally, we denote x as the
source image, and x̂ represents the adversarial input, i.e.,
x̂ = x + η, where η is the human-imperceptible perturba-
tion with a common norm constraint ∥η∥2 ≤ ϵ. Suppose
there is a DeepFake generator G(·). By taking the source
image x, and the perturbed image x̂ as the input, the Deep-
Fake generator will produce G(x) and G(x̂), respectively.
A successful DeepFake disruption η on x will make the hu-
man observers easily notice that the generated G(x̂) is an
image after manipulations. By considering r as an attack-
ing target, the objective function can be written as

max
η

LD(G(x+ η), r), s.t. ||η||2 ≤ ϵ, (1)

where LD is a distance function normally using the L0, L2

or L∞ norms. If r is set to be the original DeepFake output,
which is r = G(x), we will get the ideal disruption that can
maximize the distortion of the output. Eq. (1) can be further
generalized to consider the conditional image generation,
i.e., G(x, c), where c denotes the target class. Moreover, we
can also choose rtarget to be a specific predefined image as
the attacking target.

The optimal perturbation η for the source image x in Eq.
(1) can be effectively optimized with those methods devel-
oped for generating adversarial examples, e.g., Iterative Fast
Gradient Sign Method (IFGSM) [6] or Projected Gradient
Descent (PGD) [14]. Though the optimal η can be effec-
tively solved through the iterations of IFGSM or PGD, it
could be time-consuming to deal with the large-scale image
dataset. For each source image x, we have to run a sep-
arate optimization procedure to discover its corresponding
optimal perturbation η. Most importantly, source images in
the same dataset often have shared low-level or high-level
patterns. The separate optimization of the perturbation for

these images thus cannot well exploit the useful structure
information in the dataset.

In the real-world multi-media systems, it is extremely
expensive to employ human observers to defend the Deep-
Fake by manually examining every input image in the large
volume of vision data, even though the defects in the image
produced by DeepFake are obvious. Instead, to automate
the defense of DeepFake, it is prevalent to develop Deep-
Fake detectors. Both DeepFake detectors and disrupting
DeepFake are to defend DeepFake but from two different
perspectives. The remaining question is whether the human
perceptible images produced by disrupting DeepFake will
indeed benefit the future DeepFake detection, rather than
doing a disservice.

3.2. DeepFake Disrupter

The model pipeline of our proposed method consists of
Perturbation Generator, DeepFake Generator, and Deep-
Fake Detector. Next, we will introduce them one by one
followed by an overall optimization framework.

Instead of independently treating the perturbations on the
source images, we tend to learn a disrupter to generate the
perturbation P (x) for the image x. Hence, given a Deep-
Fake generator G, the generated images for the source im-
age x and perturbed image x+P (x) can be written as G(x)
and G(x + P (x)), respectively. The objective function of
disrupting DeepFake can thus be rewritten as

max
P

Ex[LD(G(x+P (x)), r)], s.t. ||P (x)||2 ≤ ϵ ∀x,
(2)

where we have calculated distance loss function over all im-
ages in the training set. As the inequality constraint in Eq.
(2) cannot be conveniently handled in the end-to-end train-
ing of the networks, we further have a soft constrained ver-
sion of the objective function,

max
P

Ex

[
LD(G(x+P (x)), r)

]
−C1Ex

[
(∥P (x)∥2−ϵ)+

]
,

(3)
where (·)+ denotes the hinge loss, ϵ is a small constant to
constrain ∥P (x)∥2, and C1 is a hyper parameter to balance
the two items. We will have a non-zero loss for the sec-
ond item when ∥P (x)∥2 > ϵ, which encourages that the
generated perturbation will not be too severe on the source
image.

Along with the development of advanced DeepFake ma-
nipulation methods, there also emerge a few effective Deep-
Fake detection techniques. These DeepFake detection tech-
niques are essential to screen the DeepFake data for the
multimedia systems, while the aforementioned disrupting
DeepFake is an preventive measure to protect the data from
the DeepFake. But a safe DeepFake disrupter should take
the downstream DeepFake detector into consideration. As
the proposed work is not focusing on developing a new
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Figure 2. Overview of DeepFake disrupter. A source video or image will firstly feed into the perturbation generator to produce a human-
imperceptible perturbation. The perturbation will be added back to the source inputs. After that, we pass the adversarial inputs into the
DeepFake Generator together with a target condition to get a fake image or fake video. Lastly, the fake outputs and the adversarial inputs
will be fed into the downstream DeepFake discriminator model.

DeepFake detector, we directly adopt a well-trained Deep-
Fake detector D as an auxiliary for the DeepFake disrupter.
The detector actually considers a binary classification task,

D(x) =

{
1, if x is real

0, if x is fake
, (4)

where D denotes the DeepFake detector model, x is the in-
put data to be examined by the detector. If the values of
model output logits is over 0.5, we classify the input to be
real; otherwise, we classify the input as fake.

The DeepFake detector D can well recognize that the
clean source image x is real. A DeepFake generator G
might generate the image G(x) that deceives the DeepFake
detector D. But with the DeepFake disrupter P , we expect
the generated fake image G(x+P (x)) could be well identi-
fied by D. That is, we aim to minimize the predicted logits
for the fake data G(x+ P (x)),

Lfake = Ex[D(G(x+ P (x)))], (5)

where Lfake is thus denoted as the DeepFake detection loss
for the fake data.

It is instructive to note that the aim of disrupting Deep-
Fake is to protect the data from DeepFake, rather than hurt-
ing the quality of the data. We have already constrained that
the perturbation P (x) will not be too large by penalizing its
norm. Here from the lens of the DeepFake detection, we in-
troduce another quality measure of the perturbed data. If the
perturbed data x + P (x) can still be recognized as real by
the DeepFake detector D, we think its quality can be guar-
anteed to some extend. Formally, we obtain the detection
loss for the perturbed data x+ P (x),

Lreal = Ex[1−D(x+ P (x))]. (6)

By incorporating Eq. (3) and the above loss functions,

we thus achieve the resulting objective function,

L =− Ex

[
LD(G(x+ P (x)), r)

]
+ C1Ex

[
(∥P (x)∥2 − ϵ)+

]
+ C2Ex[D(G(x+ P (x)))] + C3Ex[1−D(x+ P (x))],

(7)

where C1, C2 and C3 are hyper parameters to balance
different loss items. The DeepFake Generator and Deep-
Fake Detector will be pretrianed or selected from pretrained
SOTA models and during training their parameters will be
freezed, which means only the parameter of our proposed
Perturbation Generator will be updated. The setting of
of the hyper parameters and other training details like the
structure of perturbation generators will be discussed in Ap-
pendix. By optimizing Eq. (7), an effective disrupter can be
learned from the training dataset. At the inference stage, we
can feed new images into the disrupter P and conduct effi-
cient feed-forward processes to generate their correspond-
ing optimal perturbation. The generated perturbation can
increase the difficulty of the DeepFake methods in generat-
ing effective fake images to deceive humans’ eyes and the
downstream DeepFake detectors.

Generalization over D. In the real world, the Deep-
Fake Disrupter P and D are in the same camp to defend
the attack by DeepFake Generator G. Both P and D are
thus probably trained and maintained by the same devel-
oper. That is to say, when we are training disrupter P , we
may already know and get access to the detector D that is
to be used online. This thus naturally addresses the concern
on the generalization over D. Nevertheless, we also evalu-
ate the generalization over different Ds’ in our experiments,
e.g., training with an Xception-based D while testing on a
Resnet-based D. Although the overall detection accuracy
drop, an image with the optimized perturbation tend to be
more easily identified than the clean one without protection.

Generalization over G. The generalization over Deep-
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Fake Generator G manifests in two aspects. First, well-
trained perturbation P generalizes well across different
DeepFake Generators G evaluated by the percentage of
successfully disrupted images. e.g. trained using GAN-
imation and tested using StarGAN. This is because most
DeepFake Generators are adversarially vulnerable to per-
turbations. A tiny change to the input could easily distort
the output. Second, many DeepFake Generators are con-
trolled by different conditions to generate specific fake im-
ages. The well-trained perturbation shows a good gener-
alization property across different conditions. e.g. trained
under blackhair condition and tested under brownhair con-
dition in StarGAN. The detection accuracy for these cross-
condition evaluations is higher than the clean image without
protection.

4. Experiment
This section illustrates the experimental results to

demonstrate the effectiveness of DeepFake Disrupter us-
ing our proposed framework. We will firstly describe the
datasets we used in our experiments. Then we will briefly
discuss the baseline and evaluation metrics we used. Lastly,
we will discuss our experimental results in detail.

4.1. Datasets

We mainly use two datasets in our experiments: CelebA
[13] and VoxCeleb1 [16]. The Large-scale CelebFaces At-
tributes Dataset (CelebA) has more than 200k celebrity im-
ages. In addition, this dataset covers large pose variations
and background clutter with 10,177 identities, 202,599 face
images, and 5 landmark locations, 40 binary attributes an-
notations per image. The VoxCeleb1 dataset contains more
than 100,000 videos extracted from Youtube, which are ut-
terances of more than 1,000 celebrities. For the preprocess-
ing of these videos, we follow the guideline and implemen-
tation details of [24] to crop the video frames according to
annotated bounding boxes because the cropping process can
provide better alignment for DeepFake generator to produce
good quality fake videos. After that, we recorded five differ-
ent motion videos as the driving videos that serve as an in-
put of the DeepFake Generator, namely mouth, blink, yaw,
nod, smile. Then, we follow the official implementation
of [24], for each video, we extract the best frame and to-
gether with a random driving video as the input pairs for
the selected DeepFake Generator.

4.2. Baseline and Evaluation Metrics

We use Disrupting DeepFakes proposed by [22] as our
baseline. This work disrupts the DeepFake generation by
making the DeepFake Generator produce distorted images
using the loss function same with Eq. 1, which is trying
to make the DeepFake results visually unnatural. It is dif-
ferent from our method which is disrupting DeepFake gen-

eration by significantly reducing its passing rate on Deep-
Fake detectors. We will empirically demonstrate that just
making the DeepFake generator produce fake images with
human-perceptible distortions doesn’t necessarily guaran-
tee that the fake videos will be recognized by DeepFake
Detectors. To be specific, we will use Precision, Recall and
F1 score to quantify the disrupting performance for both the
baseline method and our proposed method. For evaluation
on the successful disruptions by human eye, we follow [22]
to set per-pixel errors L2 ≥ 0.05 as our criteria. If the fake
outputs of our method and the original fake outputs have
L2 ≥ 0.05, we consider it a successful disruption visually.

4.3. Results

Disruption Performance for specific target domains In
this section, we use StarGAN to demonstrate that our pro-
posed method can work on any specific target domains i.e.
Black Hair, Blond Hair, Brown Hair, Male, Young. Here,
target domain refers to c in conditional image translation
model G(x, c). The comparison comes from three parts.
The first part is original fake images produced under [5], the
second part is disrupted fake images generated under [22],
the third part is fake images generated under our proposed
framework. Specifically, we choose 100 real images to
generate 100 fake images according to the aforementioned
three-generation processes to conduct the comparison. That
is to say, we calculate the precision, recall, and F1 score
using the 100 real images plus 100 fake images for compar-
ison, in which the higher the precision, recall, and F1 score,
the better the algorithm. Because all detectors are well pre-
trained and thus have high accuracy on predicting real im-
ages, the case of false negative is rare, resulting in high re-
call in all cases. Therefore, in the following experiments,
we mainly focus on analyzing the performance change on
precision and F1-score. Table 1 shows the detailed compar-
isons under different target settings. Notice that we choose
the same set of real images for a fair comparison, therefore,
the recall score will only change based on different detec-
tion models. In most cases, baseline method [22] can only
archive 2− 10% performance gain with regarding to preci-
sion and F1 score, while our method can boost the perfor-
mance to more than 90%.
Disruption Performance for class transferable attacks
The DeepFake architectures used in our framework all have
conditional targets as their inputs. StarGAN has facial at-
tribute encodings; GANimation has action units for differ-
ent expressions and the First-Order Motion model has dif-
ferent kinds of driving videos. It is beneficial to train a
perturbation generator that can work under arbitrary target
conditions. The training strategy is simple, we choose con-
ditional targets randomly during each training iteration, i.e.,
at each iteration, we choose random action unit index from
the range between 0 to 80 when training our Perturbation
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Attributes Type Xception Resnet18 Resnet50

precision recall F1-score precision recall F1-score precision recall F1-score

Blackhair

StarGAN-fake [5] 0.51 0.99 0.68 0.39 0.60 0.47 0.43 0.75 0.55
disrupted-fake [22] 0.53 0.99 0.69 0.50 0.60 0.55 0.46 0.75 0.57

DeepFake disrupter(ours) 0.90 0.99 0.94 1.00 0.60 0.75 0.94 0.75 0.83

Blondhair

StarGAN-fake [5] 0.51 0.99 0.67 0.38 0.60 0.46 0.43 0.75 0.55
disrupted-fake [22] 0.55 0.99 0.71 0.52 0.60 0.56 0.56 0.75 0.64

DeepFake disrupter(ours) 0.98 0.99 0.99 1.00 0.60 0.75 0.99 0.75 0.85

Brownhair

StarGAN-fake [5] 0.51 0.99 0.68 0.38 0.60 0.47 0.43 0.75 0.55
disrupted-fake [22] 0.56 0.99 0.71 0.49 0.60 0.54 0.46 0.75 0.57

DeepFake disrupter(ours) 0.96 0.99 0.98 0.75 0.60 0.67 0.54 0.75 0.63

male

StarGAN-fake [5] 0.51 0.99 0.68 0.39 0.60 0.47 0.43 0.75 0.55
disrupted-fake [22] 0.54 0.99 0.70 0.42 0.60 0.49 0.51 0.75 0.61

DeepFake disrupter(ours) 0.97 0.99 0.98 1.00 0.60 0.75 0.98 0.75 0.85

young

StarGAN-fake [5] 0.51 0.99 0.67 0.38 0.60 0.47 0.43 0.75 0.54
disrupted-fake [22] 0.53 0.99 0.69 0.48 0.60 0.53 0.51 0.75 0.61

DeepFake disrupter(ours) 0.90 0.99 0.95 1.00 0.60 0.75 0.83 0.75 0.79

Table 1. Disruption Performance for StarGAN with 5 different target conditions. Higher figure implies better performance

DeepFake Detector Xception Resnet18 Resnet50

precision recall F1-score precision recall F1-score precision recall F1-score

StarGAN [5] 0.58 0.99 0.72 0.53 0.60 0.56 0.56 0.75 0.64
Disrupring StarGAN [22] 0.64 0.99 0.78 0.59 0.60 0.60 0.59 0.75 0.66

DeepFake disrupter (ours) 0.86 0.99 0.92 0.87 0.60 0.71 0.72 0.75 0.74
GANimation [20] 0.60 0.97 0.74 0.47 0.65 0.55 0.53 0.78 0.63

Disrupting GANimation [22] 0.70 0.97 0.82 0.56 0.65 0.60 0.67 0.78 0.72
DeepFake disrupter (ours) 0.82 0.97 0.89 0.89 0.65 0.75 0.98 0.78 0.87

First-Order-Motion [24] 0.56 0.72 0.63 0.50 0.68 0.58 – – –
DeepFake disrupter (ours) 0.91 0.72 0.80 0.89 0.68 0.78 – – –

Table 2. Disruption Performance under different DeepFake Manipulation Models and DeepFake Detection Models

generator under the GANimation setting. The trained per-
turbation generator would be enabled to produce perturba-
tions that can satisfy our problem constraints. We tested the
performance of the aforementioned three DeepFake manip-
ulation algorithms using the pretrained DeepFake detection
models via precision, recall and, F1 score. For First Order
Motion Model [24], we didn’t use Resnet50 for detection
testing due to VRAM budget limitation. As there is no pre-
vious work for disrupting the outcomes of the First-Order-
Motion model, we directly use its original fake videos as
our baseline. Table 2 shows the detailed comparisons, and
from the table, we can see that our proposed framework not
only works on image transformation algorithms like Star-
GAN [5] and GANimation [20] but also works on face im-
age animation algorithms First-Order-Motion Model [24],
and they all show superior performance compared with sim-
ply maximizing output norm distances in baseline method.

Disruption Performance with SOTA DeepFake Detec-
tion Algorithms We use basic backbones like Xception and
Resnet in the above experiments simply because we aim to
prove the effectiveness of our trained perturbation genera-
tor. However, we also tested our proposed pipeline against
state-of-the-art DeepFake detection algorithms [1, 2, 32].

DeepFake Detector Multi-Attentional [32]

precision recall F1-score

StarGAN [5] 0.53 0.98 0.69
Disrupring StarGAN [22] 0.67 0.98 0.77

DeepFake disrupter (ours) 0.88 0.98 0.93
GANimation [20] 0.62 0.96 0.75

Disrupting GANimation [22] 0.73 0.96 0.84
DeepFake disrupter (ours) 0.85 0.96 0.91

Table 3. Disruption Performance Against Multi-Attentional Deep-
fake Detection models

DeepFake Detector F3-Net [1] RFM [2]

StarGAN[3] 0.74 0.69
Disrupring StarGAN[20] 0.76 0.73

DeepFake disrupter (ours) 0.92 0.90
GANimation[18] 0.73 0.70

Disrupting GANimation[20] 0.76 0.78
DeepFake disrupter (ours) 0.94 0.96

Table 4. Disruption Performance Against F3-Net RFM DeepFake
Detection models; to save space, we only report the critical metric
F1-score in this table

From Table 3 and 4 we can see our proposed pipeline can
achieve similar performance gain in terms of precision and
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F1-score compared with those using Xception and Resnet,
which further proves the efficacy of our proposed pipeline.

Detection Outcomes for Real Inputs, Perturbed Inputs
and Fake Inputs We compare the detection outcomes of
real inputs, perturbed real inputs, and fake inputs using our
proposed method because one goal of our proposed frame-
work is ensuring the perturbed real inputs to be detected
as real by the DeepFake detectors. To be specific, we add
perturbations generated by the proposed method to 100 test-
ing real images to get 100 perturbed real images for testing
under pretrained Xception and Resnet18 detector. Table 5
shows the success rate, i.e., the proportion of images that
can be detected as real by the detectors. For real inputs x
and perturbed real inputs x + P (x), the higher the success
rate the better, for fake inputs G[x + P (x)] the lower the
success rate the better. From the table, we can see that the
real inputs and perturbed input can all maintain a high suc-
cess rate while the fake inputs successfully achieve a lower
success rate.

Face Manipulation Inputs Type Xception Resnet18

StarGAN
x 0.99 0.98

x+ P (x) 0.98 0.96
G[x+ P (x)] 0.10 0.07

GANimation
x 0.99 0.97

x+ P (x) 0.98 0.96
G[x+ P (x)] 0.03 0.09

First-Order-Motion
x 0.99 0.97

x+ P (x) 0.98 0.96
G[x+ P (x)] 0.13 0.16

Table 5. Detection outcomes for comparison among real inputs,
perturbed inputs and fake inputs.

Generalization This section explores the generalization
ability of the trained perturbation generator from two as-
pects: detector and manipulation generator. We test the
disruption performance by using a detector that is differ-
ent from that in the training. F1 scores are reported in Table
6, where the generator is GANimationm and detectors in
columns are used in training while those in rows are in test-
ing. The manipulations G(x) over clean images can be only
detected by Resnet18 with a 0.55 F1. By incorporating the
downstream Resnet18 detector into the proposed algorithm,
the F1 by Resnet18 can achieve 0.75, and other unknown
detectors like Xception and Resnet50 can also enjoy higher
F1 scores than 0.55. In addition, the model trained with
Xception and evaluated with Resnet18 leads to 0.77, which
is still higher than the detection performance (0.75) over
deepfake data from [22], which demonstrates the general-
ization with respect to the detector.

We proceed to evaluate the generalization w.r.t. different
manipulations. StarGAN is used in training, while GAN-
imation is used in tests, and vice versa. The distortion of

Detectors Xception Resnet18 Resnet50 G(x)

Xception 0.89 0.77 0.68 0.74
Resnet18 0.61 0.75 0.64 0.55
Resnet50 0.74 0.79 0.87 0.63

Table 6. Generalization w.r.t. different detectors
DeepFake outcomes is reported in Table 7. L2 norm is
calculated between manipulation of the clean image and
that of the clean image with our perturbations, i.e., G(x)
and G(x+P(x)). Following [22], %dis shows percentage
of successful disruptions of 500 fake images produced by
G(x+P(x)), ie. when L2 is over 0.05, the image is success-
fully disrupted. Conducting both training and test with Star-
GAN leads to a 100% success. Though the test on a differ-
ent GANimation has a performance drop, the success rate
of 74% is still high enough. When training with GANima-
tion, we find that StarGAN is more vulnerable, as its success
rate achieves 100%. We also report the F1-score evaluation
in this table on Xception. Though the test on a different
GANimation has a performance drop, F1-score is still high
enough. E.g., trained with GANimation, the model tested
with StarGAN has an F1-score 0.86, which is still higher
than the F1-score 0.82 achieved by [22] with GANimation.

Face Manipulation StarGAN GANimation
L2 %dis F1 L2 %dis F1

StarGAN 0.326 100% 0.92 0.183 74% 0.79
GANimation 0.987 100% 0.86 0.073 82% 0.89

Table 7. L2 Norm and Percentage of Disruption trained and tested
with different generators.

StarGAN depends on the manipulation conditions. The
condition set in the training could be different from that in
the testing. We evaluate the generalization results of differ-
ent conditions in Table 8. The results are F1-scores tested
by Xception Detector. Baseline is detection results of G(x)
over clean images. By considering the condition Blackhair,
the detector can achieve a 0.68 F1 over the fake results of
clean images, while the proposed algorithm can protect the
data and the detector’s performance is boosted to the 0.94
F1. Though changing a different condition (Blondhair or
Brownhair) in the test leads to a performance drop, the re-
sulting detection performance is still higher than that with-
out protection (i.e., 0.68). This thus suggests the general-
ization of the manipulation generator.

Conditions Blackhair Blondhair Brownhair G(x)

Blackhair 0.94 0.79 0.81 0.68
Blondhair 0.73 0.99 0.70 0.67
Brownhair 0.69 0.74 0.98 0.68

Table 8. Generalization to different conditions in StarGAN re-
ported by F1-score

DeepFake Visualization In this section, we will show that
the DeepFake outputs have a high probability of being dis-
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Figure 3. Comparison between the result of our framework and
baseline methods.

torted from the perspective of the human eye. Figure 3
shows the visualization comparison of our method with the
baseline method on StarGAN and GANimation. We can
see that the patterns of disrupted outcome vary across dif-
ferent attacking methods and DeepFake manipulation mod-
els, but they all show noticeable distortions compared with
the fake images without disruption. Figure 4 shows visu-
alizations on video frames under [24]. We can see that the
disrupted fake video frames in the last row all have signif-
icant noises or distortions. Apart from qualitatively visual-
izing the DeepFake outcomes, we also evaluate the propor-
tions of disrupted outcomes quantitatively. We follow [31]
to set L2 ≥ 0.05 as the criteria for successful disruption
as there are noticeable distortions when L2 ≥ 0.05. Table
9 shows the per-pixel L2 for generated perturbations η and
the difference between disrupted fake images and original
fake images as well as the percentage of successful disrup-
tions under different attack methods. Although our reported
L2 results are lower than those of I-FGSM and PGD, they
are still higher than 0.05. From visualizations in Figures 3
and 4, our outputs do have noticeable distortions.

Algorithm Type StarGAN GANimation First-Order-Motion

I-FGSM L2 1.324 0.120 0.240
%dis 100% 89% 92%

PGD L2 1.532 0.064 0.280
%dis 100% 79% 100%

disrupter (Ours) L2 0.326 0.073 0.320
%dis 100% 82% 91%

Table 9. Comparison of L2 pixel-wise errors and the percentage of
disrupted images(%dis.) for baseline disruption methods and our
method.

Inference Efficiency We also compare the inference effi-
ciency between the baseline method [22] and our proposed
Disrupter. Specifically, we choose 100 testing images to run
the inference using the PGD method and Our Disrupter and
calculate the average time of generating perturbation for a
single input image measured by seconds. Table 10 shows
that our method runs 8-10 times faster compared with the
traditional iteration-based attack method PGD.

Attack Method PGD Disrupter (ours)
StarGAN 0.551 0.062

GANimation 0.628 0.057

Table 10. Inference Efficiency measured by seconds per image

Figure 4. Examples of visualizations on First Order Motion Model
with and without perturbations.

5. Conclusion
We propose an effective pipeline called DeepFake Dis-

rupter based on generative networks to train perturbation
generators that can help protect the source images or videos
from being manipulated by various DeepFake manipulation
algorithms. By adding adversarial perturbations, the Deep-
Fake models would output fake images or videos to be suc-
cessfully detected as fake by the DeepFake detector. Mean-
while, the adversarial images would still be detected as real
by the DeepFake detector. The objective is achieved by ad-
versarial loss and hinge loss, the former one controls the
detection accuracy, while the latter controls the magnitude
of the perturbations. Experiments show that (a) the baseline
method [22] can only ensure the effectiveness of disruption
by the naked eye, but failed to guarantee that the disrupted
outputs can be effectively detected as fake by DeepFake de-
tectors. (b). The proposed method can significantly im-
prove the detection outcomes measured by precision, recall,
and F1 score compared with the baseline method, and this
performance is class transferable when training with ran-
dom class attributes. (c) The proposed method also provides
an extra benefit, which is maintaining the unnatural-looking
property of the fake outcomes. That is to say, our proposed
pipeline can destroy the ability of DeepFake manipulation
models both visually by the human eye and logically by
DeepFake detectors.
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[24] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model for
image animation. arXiv preprint arXiv:2003.00196, 2020.
1, 2, 5, 6, 8

[25] Supasorn Suwajanakorn, Steven M Seitz, and Ira
Kemelmacher-Shlizerman. Synthesizing obama: learn-
ing lip sync from audio. ACM Transactions on Graphics
(ToG), 36(4):1–13, 2017. 1

[26] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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