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Abstract

Deep image inpainting can inpaint a corrupted image
using a feed-forward inference, but still fails to handle large
missing area or complex semantics. Recently, GAN inver-
sion based inpainting methods propose to leverage seman-
tic information in pretrained generator (e.g., StyleGAN) to
solve the above issues. Different from feed-forward meth-
ods, they seek for a closest latent code to the corrupted
image and feed it to a pretrained generator. However, in-
ferring the latent code is either time-consuming or inaccu-
rate. In this paper, we develop a dual-path inpainting net-
work with inversion path and feed-forward path, in which
inversion path provides auxiliary information to help feed-
forward path. We also design a novel deformable fusion
module to align the feature maps in two paths. Experiments
on FFHQ and LSUN demonstrate that our method is effec-
tive in solving the aforementioned problems while produc-
ing more realistic results than state-of-the-art methods.

1. Introduction
Image inpainting [3] aims to fill the semantically appro-

priate and visually faithful contents in the missing regions
of corrupted images. Numerous applications such as image
editing, missing region repairing in image/video, and object
removing benefit from the advance of image inpainting.

In recent years, deep neural networks have brought
breakthroughs in image inpainting. Most deep inpainting
methods [8,16,18,20,22,24,28–31] are single feed-forward
methods. As shown in Figure 1 (a), they usually train a
convolutional neural network with adversarial training and
inpaint the corrupted image by feed-forward inference. Al-
though great progress has been achieved in inpainting qual-
ity and speed compared with conventional methods, they
still fail to process images with large missing areas or gen-
erate the results with good semantics [12,25]. As an alterna-
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Figure 1. Illustration of four types of inpainting methods. (a)
Feed-forward inpainting method. (b) Optimization-based GAN
inversion inpainting method. [25] (c) Learning-based GAN inver-
sion inpainting method. [12] (d) Ours. The modules marked in
orange are optimized during training.

tive, GAN inversion [23] inpainting methods [12,25], which
are rarely studied, have shown promising results for solv-
ing the above problems. They usually utilize a pretrained
generative model (e.g., StyleGAN [9, 10] and BigGAN [4])
to provide semantic prior. Differing from feed-forward in-
painting methods, they first seek for the closest latent code
in the latent space (input to the pretrained generator) for
the corrupted image and then invert the latent code back
to a complete image using the pretrained generator. There
are two strategies to obtain the latent code: optimization-
based strategy [25] and learning-based strategy [12]. For
optimization-based strategy (see Figure 1(b)), optimization
algorithm is adopted to iteratively update the latent code z
which minimizes the reconstruction loss between generated
image Ig and ground truth Igt. For learning-based strat-
egy (see Figure 1(c)), instead of directly optimizing the la-
tent code z, an encoder network is used to infer the latent
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code z based on the masked image Im. With extra semantic
prior from the pretrained generative model, GAN inversion
inpainting methods are not restricted to limited information
when processing large missing scenarios. Nevertheless, two
drawbacks of GAN inversion methods limit their applica-
tions. Specifically, optimization-based strategy [25] suffers
from long inference time. Learning-based strategy [12] has
mediocre restoration results because a single inference can
hardly find the accurate latent code compared with multiple
inferences in optimization-based strategy.

Considering the advantages and drawbacks of feed-
forward inpainting methods and GAN inversion inpainting
methods, we attempt to apply GAN inversion inpainting to
assist feed-forward inpainting. As shown in Figure 1 (d)
and detailed in Figure 2, we propose a hybrid inpainting
framework which consists of two paths: feed-forward path
and inversion path. In the inversion path, we search in the
latent space to find a latent code whose inverted image has
the closest distance to the observed region in the corrupted
image. To maintain the efficiency of inference, we adopt
learning-based strategy to infer the latent code using an en-
coder. To guarantee the inpainting quality, we do not di-
rectly use the results from the inversion path. Instead, we
transfer useful knowledge from pretrained GAN in the in-
version path to the feed-forward path. In the feed-forward
path, we use auto-encoder network to inpaint the corrupted
image, during which multi-scale features from the inversion
path are integrated into the decoder. Besides, there may ex-
ist misalignment issue (shown in Figure 9) when fusing the
features from two paths, so we propose a novel deformable
fusion module in the generator to align the features from
two paths. In this way, we alleviate the severe issues in in-
version inpainting method and use its rich semantic knowl-
edge to promote feed-forward inpainting method. Experi-
ments on three datasets show that our method is superior to
the state-of-the-art approaches. In summary, the main con-
tributions of our work are summarized as follows,

• We propose a hybrid dual-path inpainting framework
which assists in feed-forward inpainting with GAN in-
version;

• We propose a novel deformable fusion module in the
generator to solve the misalignment issue when fusing
the features from two paths;

• Extensive experiments prove that our method can pro-
duce more semantically reasonable and high-fidelity
results than other state-of-the-art methods.

2. Related Work

In this section, we will briefly introduce image inpainting
methods and the applications of GAN inversion technique.

2.1. Image Inpainting

Recently, deep learning has brought remarkable progress
in image inpainting. The mainstream deep image inpaint-
ing methods are based on single feed-forward inference.
Pathak et al. [18] proposed context-encoder which first ap-
plies deep learning into image inpainting. Yu et al. [28]
proposed a coarse-to-fine inpainting framework with con-
textual attention module. Designed for the irregular regions
completion, partial convolution was proposed in [14] and
gated convolution was proposed in [29]. Zheng et al. [33]
realized diverse image inpainting by a VAE [11] based prob-
abilistic network. Nazeri et al. [16] utilized edge as auxil-
iary information to improve image inpainting. Yi et al. [26]
proposed an ultra-high-resolution image inpainting network
with a contextual residual aggregated technique. Zhao et
al. [32] proposed a conditional and unconditional modu-
lated generative architectures for image inpainting. Al-
though these feed-forward inpainting methods generate in-
credible results, they still fail to generate semantic results
and most of them struggle with large missing scenarios.

GAN inversion inpainting methods [12, 25] with rare at-
tention provide another perspective for solving the prob-
lems in feed-forward inpainting. Instead of directly inpaint-
ing the corrupted image, they search in the latent space
of pretrained GAN to find a latent code to represent the
corrupted image. Then the reconstructed image can be
obtained by inverting the latent code back to the image
through the pretrained GAN. Yeh et al. [25] proposed an
optimization-based GAN inversion inpainting method that
seeks the closest latent code by iterative inference. Even
with high accuracy, it suffers from a long inference time due
to multiple optimizations. To speed up the inference time,
Lahiri et al. [12] proposed an learning-based GAN inversion
inpainting method that adopts a learnable encoder to infer
the latent code. Nevertheless, a single inference may not
find the accurate latent code and generate color discrepancy
results without post-processing. To solve the above prob-
lems, we propose a hybrid dual-path inpainting framework
combining the advantages of GAN inversion inpainting and
feed-forward inpainting.

2.2. GAN Inversion

GAN inversion aims to find the closest latent code based
on a pretrained GAN model to recover the input image. It
enables real image editing from the latent space. It can
be mainly divided into two categories, learning-based and
optimization-based. The learning-based strategy trains an
encoder that can infer the latent code from a given im-
age, and the optimization-based strategy directly optimizes
the latent code by minimizing the pixel-wise reconstruction
loss. Moreover, some works take advantage of both cat-
egories by combining these two ideas. They first use the
encoder to infer a relatively accurate latent code and then
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Figure 2. Hybrid Dual-path Inpainting Network. In inversion path, we find the close latent code of the corrupted image Im and extract
the corresponding semantic intermediate features from the pretrained GAN. In feed-forward path, we inpaint the corrupted image Im to a
complete image Iout with extra semantic prior from inversion path.

optimize it using the optimization-based strategy.
Apart from image inpainting [12,25], GAN inversion has

also been applied to a wide range of computer vision tasks,
like image editing [17, 21, 35], super-resolution [5, 15], col-
orization [13], style transfer [1, 2], etc. There are three
reasons for integrating GAN inversion into image inpaint-
ing: 1) Since pretrained GAN model contains rich semantic
prior [9,10,23], it can provide helpful knowledge especially
required in the cases with the large missing areas; 2) If the
images in the training set are highly diverse or with com-
plex scenes, the feed-forward inpainting method may have
difficulty in capturing the features of all images; 3) GAN
inversion experts in exploiting the internal information of
the image, which makes up the shortage of feed-forward
inpainting. GAN inversion inpainting method is effective
in producing semantic results and capable of powering our
method to exploit more information from the corrupted im-
age itself. By taking advantage of GAN inversion inpaint-
ing and feed-forward inpainting, our method can generate
results with high fidelity and reasonable semantics.

3. Method

In this section, we will first present the overall network
architecture. Then, we will discuss the misalignment issue
when fusing the feature maps from two paths. Finally, we

will describe the loss functions used in our network.
We denote the ground-truth complete image as Igt. M

denotes the mask of corrupted image, which is a binary ma-
trix with 0 indicating the missing region and 1 indicating
the observed region. Im = Igt ⊙M represents the masked
corrupted image.

3.1. Hybrid Two-path Inpainting Network

The semantic issue in image inpainting results is im-
portant while most existing methods cannot address this
issue very well. Recent studies have shown that GANs
are able to effectively encode rich semantic information in
the intermediate features and latent space [9, 10, 23]. By
GAN inversion, we can obtain close semantic intermedi-
ate features to a corrupted image, which are used to com-
pensate for the missing content in corrupted images. With
this consideration, we propose a hybrid dual-path inpainting
network which uses GAN inversion inpainting to enhance
feed-forward inpainting. The overview of our network is
shown in Figure 2, which contains two paths: inversion path
and feed-forward path.

3.1.1 Inversion Path

In the inversion path, we aim to find the closest latent code
of the corrupted image Im and extract the corresponding se-
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mantic intermediate features Fs from the pretrained GAN.
Then, the extracted semantic intermediate features Fs are
incorporated into feed-forward path to provide extra seman-
tic prior. The pretrained GAN model used in this work
is StyleGAN [9, 10] due to its excellent generative perfor-
mance.

Although optimization-based strategy used in [25] is
able to find an accurate latent code, it suffers from intol-
erable inference time. To maintain the inference efficiency,
we opt for learning-based strategy that uses an encoder Es

to infer the closest latent code z of corrupted image Im:

z = Es(Im). (1)

Then the latent code z is sent into each layer of pre-
trained StyleGAN Gs:

Fs, Is = Gs(z), (2)

where Fs = {fi}, i ∈ {0, 1, .., Ns} contains the multi-scale
intermediate semantic features with Ns being the number of
scales and Is is the output of StyleGAN.

We do not directly use the output Is from inversion path
as the final inpainted result since the style encoder Es may
not find the closest latent code by a single inference. Thus,
the results from inversion path may have location misalign-
ment or color discrepancy issues without post-processing.

3.1.2 Feed-Forward Path

In feed-forward path, we utilize an auto-encoder architec-
ture as our inpainting network, which contains an encoder E
and a generator G. For the detailed architecture of encoder
and generator, please refer to the generative path in [33].

The corrupted image Im is fed into the encoder E to get
the encoded feature fm:

fm = E(Im). (3)

Then, the encoded feature fm and semantic intermediate
features Fs = {fi}, i ∈ {0, 1, .., Ns} from inversion path
are both delivered to generator G to produce the inpainted
result Ig .

Ig = G(fm,Fs). (4)

Specifically, we use inversion path to help feed-forward
path by integrating the intermediate features from two
paths. The most straightforward integration strategy is con-
catenating the feature maps with the same resolution from
two paths. However, there may exist location misalignment
issue if we directly fuse the features from two paths. One
reason is that the inpainted result in the inversion path may
be inaccurate with a single inference of latent code. An-
other reason is that one corrupted image has multiple pos-
sible inpainted results and the inpainted results from two

Figure 3. A comparison between simple fusion strategy and our
deformable fusion module. In (c)(d), we draw the red points at
the same location in two paths. In (c), simple fusion strategy (di-
rect concatenation) will misalign the eyelid feature with eye fea-
ture and the blue point should be the ideal point to be aligned.
In (d), our deformable fusion module can attend eyelid informa-
tion correctly. We visualize the deformed sampling points with
the corresponding modulations (marked with grey values) in the
deformable convolution kernel centering at the red point.

paths could be different. In view of this, we propose a novel
deformable feature fusion module in the generator to align
the features from two paths. More details are illustrated in
Section 3.2.

The final inpainted result Iout can be obtained by:

Iout = Im + (1−M)⊙ Ig. (5)

3.2. Deformable Feature Fusion Module

Due to the inaccurate inference in the inversion path or
the uncertainty of inpainted results, the results from the
inversion path may be spatially misaligned with the feed-
forward path results. This issue also exists in semantic in-
termediate features which are fed into generator G in the
feed-forward path and would degrade the final inpainting
results. This misalignment issue can not be well addressed
by simply concatenating features from the inversion path
and the feed-forward path.

Inspired by deformable convolution [6, 36], we propose
a deformable fusion module to solve this issue. Similar
to [6, 36], we visualize the outputs at the largest resolution
(256×256) from two paths. In Figure 3, we compare simple
fusion strategy with our proposed deformable fusion mod-
ule. We select a point on the eyelid in the feed-forward path
as the target point (red point). We also draw the target point
(red point) at the same location in the inversion path. In Fig-
ure 3 (c), simple fusion strategy (Figure 4 (a)) directly con-
catenates the eyelid feature (red point) in the feed-forward
path with misaligned eye feature (red point) in the inversion
path. The blue point shows the ideal location to be con-
catenated. As shown in Figure 3 (d), our deformable fusion
module (Figure 4 (b)) can attend correct eyelid information
in the inversion path to match the eyelid in the feed-forward
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Figure 4. Two fusion strategies. (a) Simple fusion strategy. (b) Our deformable fusion module. In (a), simply concatenate features from
two path will cause misalignment. In (b), our deformable fusion module can align the inversion path feature and solve the misalignment.

path. In deformable fusion module, we predict the offsets of
the target point in the inversion path, which can attend more
similar information to the target point in the feed-forward
path. In this way, the local features in the inversion path can
be better aligned with those in the feed-forward path.

Specially, in low-resolution, the misalignment issue is
not obvious because structures or semantic contents in low-
resolution features are vague. The misaligned contents in
the high-resolution feature map of two path are usually at
the same location in the low-resolution feature map. Thus,
considering the model complexity and inference efficiency,
we simply concatenate the features f i

s in the inversion path
and the features f i

g in the feed-forward path at low resolu-
tion:

f i+1
g = Li(Concat(f i

s,f
i
g)), (6)

where i = 0, 1, 2 is the layer of the generator G correspond-
ing to low-resolution feature 8×8, 16×16, 32×32. Li is the
i-th convolution block in generator. A detailed illustration
is shown in Figure 4(a).

In high-resolution feature map, we replace simple fusion
with deformable fusion, which is based on the modulated
deformable convolution in DCNv2 [36]. As shown in Fig-
ure 4(b), we first concatenate the feature maps f i

s and f i
g

from two paths, based on which the location offsets and
modulation weights for each point in f i

s are predicted. For
each point, the location offsets indicate the sampling points
in f i

s which align with the point in f i
g and the modulation

weights imply the importance of different sampling points.
The location offsets and modulation weights for all points
form the location offset map mi

o and modulation weight
map mi

w respectively. Then, mi
o, mi

w, and f i
s are fed

into modulated deformable convolution DFConv to get
the aligned feature map f̂s

i
. For the details of modulated

deformable convolution, please refer to [36]. Finally, the
aligned feature map f̂s

i
is concatenated with f i

g to predict

the feature map for the next resolution:

mi
o,m

i
w = P i(Concat(f i

s,f
i
g)),

f̂s
i
= DFConv(mi

o,m
i
w,f

i
s),

f i+1
g = Li(Concat(f̂s

,
f i
g)),

(7)

where i = 3, 4, 5 is the layer of the generator G correspond-
ing to high-resolution feature 64×64, 128×128, 256×256.
P i is the convolution layer to predict location offset map
mi

o and modulation weight map mi
w.

3.3. Loss Function

In the inversion path, we follow [12] to use photo-realism
loss Lsp and reconstruction loss Lsr to train style encoder
Es:

Lsp = log(1−Ds(Gs(z))), (8)

where Ds is the pretrained discriminator used in inversion
path.

Lsr = ∥Igt − Is∥1. (9)

The overall loss function Linv in the inversion path can
be summarized as

Linv = Lsp + λsrLsr, (10)

where the hyper-parameter λsr is empirically set as 20.
In the feed-forward path, we use the reconstruction loss

Lr for the final output Ig with the ground-truth image Igt:

Lr = ∥Igt − Ig∥1. (11)

To encourage the final result Ig to be realistic, we add an
adversarial loss [7] with a discriminator D. The adversarial
loss for D is defined as:

LD
adv = −EIgt [logD(Igt)]− EIg log[1−D(Ig)], (12)
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Figure 5. The visual comparison results on FFHQ [9]. Best viewed
by zooming in.

while the adversarial for the generator is defined as

LG
adv = −EIg [logD(Ig)]. (13)

Then, the overall loss function Lff in the feed-forward
path can be summarized as

Lff = λrLr + Ladv, (14)

where the hyper-parameter λr is empirically set as 20. Ladv

stands for LG
adv (resp., LD

adv) when optimizing the generator
(resp., discriminator).

4. Experiment

4.1. Datasets and Implementation Details

We implement our model using Pytorch 1.5.0 and the
details of our model architecture are illustrated in the sup-
plementary. We train the model on a single NVIDIA TI-
TAN RTX GPU (24GB) with a batch size of 8, optimized
by Adam optimizer with learning rate 0.0001, β1 = 0.001,
and β2 = 0.99. Note that the pretrained StyleGAN model
used in our network is StyleGAN2 [10]. Two datasets
FFHQ [9] and LSUN [27] are utilized to validate our model
since StyleGAN2 provides pretrained models for these two
datasets. FFHQ dataset contains 70,000 face images and
LSUN consists of 10 scene categories and 20 object cat-
egories. For LSUN dataset, we only show the results on
the “church” and “cat” category due to limited computa-
tional resources. We follow StyleGAN2 [10] to pre-process
the LSUN images, after which 100,000 church images and
200,000 cat images are used in training. For fair compar-
ison with previous inpainting methods, all the images are
resized to 256 × 256 with regular holes or irregular holes in
random positions.

Mask Yeh et al. [25] Lahiri et al. [12] GC [29] PICNet [33] CoModGAN [32] Ours

ℓ 1
(%

)↓

0-10% 0.94 1.27 0.73 0.74 0.64 0.62
10-20% 1.59 1.83 1.23 1.23 1.11 1.06
20-30% 2.53 2.38 1.97 1.95 1.75 1.41
30-40% 3.64 4.05 2.83 2.79 2.61 2.16
40-50% 5.06 5.94 3.90 3.84 3.69 3.21
50-60% 7.73 9.21 5.73 5.76 5.62 4.59
Ave% 3.58 4.18 2.73 2.71 2.54 2.17

SS
IM

↑

0-10% 0.969 0.911 0.974 0.973 0.978 0.979
10-20% 0.932 0.876 0.941 0.939 0.948 0.951
20-30% 0.881 0.827 0.895 0.893 0.905 0.914
30-40% 0.827 0.774 0.845 0.843 0.857 0.879
40-50% 0.767 0.711 0.789 0.785 0.802 0.827
50-60% 0.688 0.621 0.713 0.702 0.727 0.743
Ave% 0.844 0.787 0.859 0.856 0.870 0.882

PS
N

R
↑

0-10% 33.576 31.994 35.600 35.726 36.211 36.342
10-20% 28.937 27.311 30.807 31.053 31.209 31.607
20-30% 25.714 24.729 27.467 27.813 27.703 28.365
30-40% 23.281 22.512 25.113 25.474 25.214 26.251
40-50% 23.282 20.201 23.093 23.462 23.069 24.155
50-60% 21.087 17.039 20.625 20.804 20.490 21.751
Ave% 25.152 23.964 27.117 27.388 27.366 28.078

FI
D

↓

0-10% 1.83 1.97 1.50 1.57 1.31 1.20
10-20% 3.33 3.85 2.40 2.71 2.14 2.00
20-30% 5.42 6.70 3.93 4.55 3.86 2.99
30-40% 7.92 10.01 6.25 6.90 5.56 4.13
40-50% 11.04 14.42 9.69 10.64 6.25 5.67
50-60% 13.89 21.73 15.91 16.71 9.08 8.13
Ave% 7.24 9.77 6.61 7.18 4.75 4.02

Table 1. Quantitative results of different methods on FFHQ [9].

4.2. Quantitative Comparisons

To quantitatively evaluate the inpainted results, we com-
pare our model with two GAN inversion inpainting meth-
ods: Yeh et al. [25], Lahiri et al. [12], and three feed-
forward inpainting methods PICNet [33], GC [29], Co-
ModGAN [32]. Note that the pretrained GAN model used
in Yeh et al. [25] is DCGAN [19] and used in Lahiri et
al. [12] is BigGAN [4]. It is unfair to directly compare
with these methods since StyleGAN2 outperforms DCGAN
and BigGAN. For fairness, we reimplement Yeh et al. [25],
Lahiri et al. [12] based on StyleGAN2. Since CoModGAN
is trained with an image size of 512 or 1024, we resize
the CoModGAN results to 256 for comparison. And Co-
ModGAN is trained on FFHQ and Places2 [34], we omit
the comparison with CoModGAN on LSUN dataset. PIC-
Net is a diverse inpainting method, we set the sample num-
ber for each image to 20. The method used to test its met-
rics is the same as [33]. In FFHQ, the first 75,000 images
are used as the training set and the last 5,000 images are
used as the test set. For FFHQ test set, we use irregular
masks provided by [14], in which the masks are split into
several groups according to the relative masked area ratio:
0∼10%, 10%∼20%, 20%∼30%, 30%∼40%, 40%∼50%,
50%∼60%. We adopt the following four evaluation met-
rics: relative l1, Structural Similarity (SSIM), Peak Signal-
to-Noise Ratio (PSNR), and Frechet Inception Distance
(FID). The evaluation results on FFHQ are shown in Ta-
ble 1. Note that since the code of Lahiri et al. [12] is not
released, there may exist difference between the reimple-
mented results shown in Table 1 with original paper. PIC-
Net is a diverse inpainting method, the way to test its met-
rics is the same as the original paper. It can be seen that
our method outperforms all existing methods, especially in
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Figure 6. The visual comparison results on LSUN church [27].
Best viewed by zooming in.

large missing area settings. Because PICNet picks each in-
painted result based on the best metrics among 20 diverse
results, it also achieves competitive quantitative results. Be-
sides, extra comparisons conducted on the LSUN church are
placed in the supplementary due to limited space.

4.3. Qualitative Comparisons

To qualitatively evaluate the inpainted results, we com-
pare our model with other methods for both regular and ir-
regular masks. In Figure 5, Figure 6, Figure 7, we provide
visualization comparisons on FFHQ, LSUN church, LSUN
cat, respectively. Due to space limitations, please zoom in
to check the details and more comparisons are provided in
the supplementary. In Figure 5, to prove the effectiveness of
our methods under large missing scenarios, the test images
are masked with 50%∼60% masks. It can be seen that the
results produced by Yeh et al., Lahiri et al., PICNet, and GC
contain distorted contents, artifacts or color discrepancies.
The performance of CoModGAN is similar to ours, but it
often generates inharmonious content with unmasked areas.
(e.g., row 1 and 5 in Figure 5 (f)). In Figure 6 and Figure
7, we can see that feed-forward inpainting methods (PIC-
Net, GC) are good at inpainting irregular masks. However,
GAN inversion inpainting methods (Yeh et al., Lahiri et al.)
produce more semantic results than feed-forward inpaint-
ing methods in regular mask setting. Because the image
in LSUN cat and LSUN church dataset are highly diverse,
despite containing the same type of objects, it is hard for
feed-forward inpainting method to learn accurate features
for each image. On the contrary, GAN inversion inpainting
methods expert in exploiting information internally from
each image and can generate more semantic results with
the help of pre-trained model. Taking advantage of both
methods, our method is good at dealing with different mask

Figure 7. The visual comparison results on LSUN cat [27]. Best
viewed by zooming in.

Settings ℓ1 (%)↓ SSIM↑ PSNR↑ FID↓

w/o FF-Path 5.72 0.773 23.366 10.22
w/o Inv-Path 2.85 0.814 26.998 7.85

w/o DF 2.29 0.870 27.818 4.73
Ours 2.17 0.882 28.078 4.02

Table 2. Ablation studies for each module: (a) w/o inversion
path (“w/o Inv-Path”); (b) w/o feed-forward path (“w/o FF-Path”);
(c) w/o deformable fusion module (“w/o DF”); (d) Our method
(“Ours”).

settings, producing more realistic and reasonable results.

5. Ablation Study
In this section, we conduct ablation studies for our pro-

posed hybrid dual-path inpainting network.

5.1. Effectiveness of Each Module

We investigate the effectiveness of our proposed mod-
ules by ablating each module: (a) w/o inversion path (“w/o
Inv-Path”); (b) w/o feed-forward path (“w/o FF-Path”); (c)
w/o deformable fusion module (“w/o DF”); (d) Our method
(“Ours”). Note that in setting (c), we use concatenation to
fuse the features from two paths. The results are shown in
Table 2. All the results are tested on FFHQ datasets, and
the test setting is the same as Section 4.2. Here only the
averaged results over six mask groups are shown in Table 1.
In these experiments, we find our inversion path (“w/o FF-
Path”) sometimes generates blurry results because a single
feed-forward inference can not find accurate latent code.
This causes the “w/o FF-Path” setting to generate poor re-
sults in Table 2. By integrating the inversion path into the
feed-forward path, our method outperforms other methods
as shown in Table 1. Our proposed deformable fusion mod-
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Figure 8. Visualization of Two Path Output. The differences are
highlighted in red boxes. Best viewed by zooming in.

ule solves the misalignment issue, which further promotes
the results.

5.2. Visualization of Two Path Output

To further explore the effectiveness of our proposed
dual-path inpainting network, we give a comparison be-
tween inversion path and feed-forward path. The inversion
path network and feed-forward path network are trained
separately. Figure 8 (b), (c), (d) are inversion path outputs,
feed-forward path outputs, and whole network output (dual
path), respectively. In the first row, although the output of
the inversion path is not accurate enough, we still obtain a
realistic result. And the result of the inversion path has in-
fluence on the final results that the man in Figure 8 (d) has
bigger eyes than results in Figure 8 (b). In the second row,
without the inversion path, the feed-forward path can not re-
store the eyeglasses shown in Figure 8 (b). On the contrary,
our method restores the eyeglasses successfully with the aid
of the inversion path.

5.3. Effectiveness of Deformable Fusion Module

We investigate the effectiveness of the proposed de-
formable fusion module. In Figure 9 (b), it can be seen the
eyebrow in column 1 and nose in column 2 are misaligned
using simple fusion strategy. Using deformable fusion mod-
ule, we obtain coherent eyebrow and nose as shown in Fig-
ure 4(b). It proves the effectiveness of our proposed de-
formable feature fusion module.

6. Discussion and Limitation
Our method is able to generate more realistic and seman-

tic results, with the ability to process large missing scenar-
ios. It can also be used as a plug-in module that incorporates
the inversion path network into other inpainting methods
with slight modification. However, like other GAN inver-
sion methods, it needs a pre-trained generative model. It
fails to work on a new dataset without training a genera-
tive model in advance. Moreover, as mentioned in Section
1, although the learning-based GAN inversion used in our
method has a high inference speed, it sometimes can not
find the accurate latent code. The inaccurate latent code

Figure 9. Misalignment issue when fuse features from two paths.
The local magnification is in red box for better view. Best viewed
by zooming in.

Settings ℓ1 (%)↓ SSIM↑ PSNR↑ FID↓ Speed (s/frame)↑

Optimization-based 2.02 0.884 28.191 3.82 45
Hybrid 2.00 0.889 28.135 3.83 45

Learning-based (Ours) 2.17 0.882 28.078 4.02 0.093

Table 3. Comparison of the influence between three GAN inver-
sion strategies.

predicted by learning-based GAN inversion may influence
the final inpainting result. Optimization-based GAN inver-
sion and the hybrid strategy (combination of learning-based
and optimization-based GAN inversion) could infer a more
accurate latent code. We compare these three strategies to
investigate their impact on the accuracy of the latent code.
These three strategies are used to obtain the latent code in
our inversion path, and the comparison is based on FFHQ
dataset. In order to infer accurate latent code, optimization-
based strategy and hybrid strategy all optimize 1,000 times.
In Table 3, we can see that more accurate latent code further
enhances our results. However, considering the slow infer-
ence speed, the promotion is not very significant. Taking
accuracy and efficiency into account, it is wise to choose
the learning-based GAN inversion in our inversion path.

7. Conclusion

In this paper, we propose a dual-path inpainting network
with inversion path and feed-forward path. We use GAN in-
version providing extra semantic information to assist feed-
forward image inpainting. To solve the misalignment is-
sue of fusing two path features, we also design a novel de-
formable fusion module. Experiments on FFHQ and LSUN
demonstrate that our method is effective in producing more
realistic and semantic results than state-of-the-art methods.
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