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Abstract

In this paper, we propose a novel iterative dynamic cost
volume for multi-view stereo. Compared with other works,
our cost volume is much lighter, thus could be processed
with 2D convolution based GRU. Notably, the every-step
output of the GRU could be further used to generate new
cost volume. In this way, an iterative GRU-based opti-
mizer is constructed. Furthermore, we present a cascade
and hierarchical refinement architecture to utilize the multi-
scale information and speed up the convergence. Specif-
ically, a lightweight 3D CNN is utilized to generate the
coarsest initial depth map which is essential to launch the
GRU and guarantee a fast convergence. Then the depth
map is refined by multi-stage GRUs which work on the
pyramid feature maps. Extensive experiments on the DTU
and Tanks & Temples benchmarks demonstrate that our
method could achieve state-of-the-art results in terms of ac-
curacy, speed and memory usage. Code will be released at
https://github.com/bdwsq1996/Effi-MVS.

1. Introduction
Multi-view stereo (MVS) aims to reconstruct a dense 3D

model based on a series of posed images and corresponding
camera parameters. Predicting depth maps and then fusing
the depth map into a point cloud model is the most com-
mon pipeline of MVS. As a fundamental problem, MVS
has been studied for decades in the field of computer vi-
sion [5, 8, 10, 12, 16, 23, 24, 27, 28, 34–36]

Recently, we witness a rapid development of deep learn-
ing based MVS approaches [5, 10, 12, 23, 28, 34–36]. Gen-
erally speaking, the most common basic structure for the
MVS task is to use the features of a sequence of images to
construct a 3D cost (correlation) volume, then regularize it
with 3D CNN, and finally regress the depth. There have
been amount of works [3, 4, 17, 31, 32, 35, 36] follow this
pipeline and outperform most traditional methods in term
of the reconstruction accuracy on MVS benchmarks [1,13].
However, due to the high GPU memory and processing
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Figure 1. Comparison between our method and SOTA learning-
based multi-view stereo methods on the DTU dataset [1]. We
report the accuracy in terms of the Overall Error with respect to
running time (Left) and GPU memory consumption (Right). The
image resolution is 1600×1184. The ‘Iters’ represent the numbers
of iterations at each stage.

time requirement of the regularization step, existing meth-
ods [31, 35] can only deal with images with low resolution.

Obviously, in addition to improving the reconstruction
quality, it is also very important to reduce the running
time and GPU memory consumption, which makes the
learning-based MVS works adaptable to memory and com-
putational restricted devices. Recently, a couple of works
[5, 10, 28, 36, 37] have been proposed to improve the ef-
ficiency for MVS. However, it is still very challenging to
improve the accuracy and reduce the consumption at the
same time. In this work, we aim at improving the computa-
tion speed and reducing the memory consumption of high-
resolution MVS, and ensuring great reconstruction quality.

The core idea of our method is to construct a lightweight
and dynamic cost volume which could be processed in an
iterative way. This strategy could bring many benefits.
Firstly, it greatly reduces the peak memory usage in the in-
ference phase due to the use of lightweight cost volume.
Secondly, the iterative and dynamic processing could guar-
antee a large search space which is important to the accu-
racy. At last, our dynamic cost volume is able to converge
in a few iterative steps, thus out method is very efficient.

Honestly, our method is partially inspired by the works
of [5, 10, 25, 26]. In the work of [5, 10, 25], a cascade
adaptive cost volume is presented. In comparison, we fur-
ther narrow the size of cost volume and extend this multi-
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stage strategy to iterative way. Our iterative idea is also in-
spired by the recent optical estimation work [26]. Compare
with [26], we give up the full-size static correlation volume,
cause it is not memory friendly. More importantly, different
from optical flow estimation, we utilize a lightweight 3D
CNN to estimate a coarse depth map as the initialization of
GRU, which we find is important to the fast convergence
of GRUs on MVS. In addition, due to the 3D CNN is very
light, it affects the efficiency slightly.

In conclusion, our contributions can be summarized as:

1) We propose a novel dynamic cost volume, which is very
lightweight and could be processed by 2D convolution
based GRU iteratively. In this way, we avoid the mem-
ory and time consuming problem of large size static cost
volume.

2) We present a cascade and hierarchical refinement archi-
tecture to utilize the multi-scale information and speed
up the convergence. Specifically, with a lightweight 3D
CNN, we give a reliable initialization for GRUs, which
is critical to fast convergence and final performance.

3) Our method achieves state-of-the-art performance in
terms of accuracy, inference speed and GPU memory
consumption (cf . Fig. 1). As for the accuracy, our
method achieves the best results on DTU [1] and ad-
vanced sequence of Tanks & Temples dataset [13]. More
importantly, with the less memory consumption, our
method is 2 times faster than the runner-up.

2. Related Work
2.1. Traditional MVS Methods

Traditional MVS methods can be roughly divided into
four categories: voxel-based methods [24, 27], surface-
based methods [7, 14], patch-based methods [8, 16], and
depth map-based methods [9, 21, 30]. Among those meth-
ods, the depth map-based methods have better flexibility
and scalability. Gipuma et al. [9] proposed a checkerboard-
based propagation scheme that is more suitable for parallel
computing, and extended the PatchMatch [2] stereo method
to multiple views stereo. COLMAP [21] enhances the ro-
bustness of the algorithm by jointly estimating pixel-wise
view selection, depth map and surface normal. ACMM
[30] proposed a multi-scale MVS framework with adaptive
checkerboard propagation and multi-hypothesis joint view
selection. Although these methods can obtain robust 3D re-
construction results, they suffer from the problems of high
computational requirement and poor reconstruction quality.

2.2. Learning based MVS Methods

Recently, there have been amount of deep learning based
works proposed for multi-view stereo [5, 10, 12, 28, 34–36].

SurfaceNet [12] is one of the earlier representative works,
which builds a voxel volume to aggregate multi-view in-
formation and uses 3D CNN to regularize it. Based on
differentiable homography [6], Yao et al. [35] proposed a
widely used deep learning based MVS pipeline. Specif-
ically, MVSNet [35] first extracted feature maps for each
view image, then built a cost volume that aggregates the ge-
ometric information based on a set of depth hypotheses. In
addition, the cost volume was regularized by 3D CNN and
the final depth is predicted by regression strategy. How-
ever, due to the high memory usage and computation re-
quirement for constructing and regularizing cost volumes,
MVSNet can only deal with images with low-resolution.
To reduce memory consumption, R-MVSNet [36] utilized
recurrent neural network in place of 3D CNN regulariza-
tion by processing the cost volume along the depth dimen-
sion, which reduces the memory requirements but increases
the running time. D2HC-RMVSNet [33] proposed an effi-
cient and effective dense hybrid recurrent multi-view stereo
net with dynamic consistency checking. AttMVS [18] pro-
posed a novel attention enhanced matching confidence vol-
ume and attention-guided regularization module to improve
the matching robustness. Vis-MVSNet [38] explicitly in-
ferred and integrated the pixel-wise occlusion information
in the MVS network via the matching uncertainty estima-
tion. AA-RMVSnet [29] proposed an adaptive aggregation
module and utilized a hybrid network with recurrent struc-
ture for cost volume regularization.

Recently, the efficiency of MVS attracts more and more
attention. Fast-MVSNet [37] proposed a novel sparse-to-
dense coarse-to-fine framework for fast and accurate depth
estimation in MVS. Typically, many works utilized a coarse
to fine strategy to reduce the memory consumption and im-
prove the accuracy and speed [5,10,34]. CVP-MVSNet [34]
and CasMVSNet [10] built a cascade cost volume based on
the pyramid feature map. UCS-Net [5] proposed a strat-
egy of using uncertainty estimation to optimize depth hy-
potheses. It is worth noting that, very recently, Patchmatch-
Net [28] introduced the traditional PatchMatch algorithm
into the deep learning framework and thus greatly reduced
the running time and memory consumption. Comparing
with PatchmatchNet, our method could achieve much better
reconstruction quality with less running time and memory
consumption.

3. Method
As illustrated in Fig. 2, our method consists of a multi-

scale feature extractor and GRU-based optimizers. More
specifically, the GRU-based optimizer includes a dynamic
cost volume constructor and a GRU module. Different from
many previous works, our dynamic cost volume could ag-
gregate not only the geometric information but also the con-
text and depth information. More importantly, it could be
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Figure 2. Flowchart of our proposed method. Our method consists of a multi-scale feature extractor and GRU-based optimizers. Specif-
ically, the GRU-based optimizer includes a dynamic cost volume constructor and GRU module. A multi-stage GRUs based cascade
architecture is utilized to aggregate multi-scale information and speed up the convergence. Especially, we utilize a lightweight 3D CNN to
estimate the initial depth and launch the GRUs.

processed by the GRUs in an iterative way. Specifically, in
each updating step, we first construct a proposed dynamic
cost volume, and then update the depth map through a GRU.
In addition, we present a cascade and hierarchical refine-
ment architecture to utilize the multi-scale information and
speed up the convergence. Specifically, a lightweight 3D
CNN is utilized to generate the coarsest depth map which
could be used as a reliable initialization for the next GRUs.
Then the depth map is refined by multi-stage GRUs which
work on the pyramid feature maps. It is worth noting that, at
each stage k, given the initial depth map Dk

0 , the proposed
GRU-based optimizer could iteratively update it for several
times and output the final depth map. Next, we give more
details of our method.

3.1. Multi-scale Feature Extractor

The input images of size W × H consist of a reference
image I0 and N−1 source images {Ii}N−1

i=1 . Similar to [15],
we raise a Feature Pyramid Network (FPN) to extract multi-
scale features from the N input images. Specifically, the
pyramid of feature maps have 3 scale stages k = 0, 1, 2.
We denote the feature of image Ii at stage k by Fk

i , which is
stored at the resolution of H

23−k × W
23−k . Likewise, we pro-

cess the reference image with an additional FPN network
to extract the multi-scale context features and initial hidden
states for our GRU-based optimizer.

3.2. Dynamic Cost Volume

Cost volume plays critical role in the MVS problem. As
presented in Fig. 3, different from the static cost volume in
many previous works, we aggregate the geometric feature,
depth feature and context feature to construct our dynamic
cost volume. The geometric feature, depth feature and con-
text feature are extracted from the local cost volume, depth
feature and reference image respectively. More importantly,

benefit from the iterative strategy, we can update the depth
hypotheses in a narrow inverse depth range to construct the
local cost volume in each iteration, which makes our dy-
namic cost volume is much more lighter compared with the
static cost volume.

3.2.1 Local Cost Volume

Similar to previous MVS works [19, 28, 29, 31], given D
depth hypotheses {dj |j = 1, ..., D} of the reference view,
we construct a local cost volume to represent the correla-
tion between reference and source features. Specifically, for
each pixel p in the reference view, we utilize the differen-
tiable homography to compute the corresponding pixel p′

i,j

by warping the source feature Fi into the j-th depth hypoth-
esis dj :

p′
i,j = Ki · (R0,i · (K−1

0 · p · dj) + t0,i) (1)

Here Ki denotes the intrinsic matrix of view i. R0,i and t0,i
denote the relative rotation and translation parameters be-
tween the reference view and source view i. Given p′

i,j and
the source feature map Fi, we reconstruct the warped source
feature map F′

i via the differentiable bilinear interpolation.
Following MVSNet [35], the cost maps are the variance of
N − 1 warped source feature maps {F′

i}N−1
i=1 .

However, considering that the GRU-based optimizer
could iteratively update the depth map, we only sample a
few depth hypotheses in a narrow inverse depth range in
each iteration. Specifically, for each pixel p at stage k and
iteration t, we uniformly sample Dk depth hypotheses in the
inverse depth range Rk:

Rk = [
1

Dk
t−1(p)

− 22−kIm,
1

Dk
t−1(p)

+ 22−kIm] (2)

Here Im represents the minimum depth hypothesis plane in-
terval, which is introduced in Section 4.2 in detail. Dk

t−1 is
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Figure 3. The construction procedure of our dynamic cost volume.
We extract the local geometric features from the local cost volume.
And fuse it with depth features and context features to form the
final dynamic cost volume.

the updated depth map in iteration t−1. In order to process
the local cost volume with 2D CNN and fuse it with context
and depth information, we cancel the depth dimension and
concatenate the cost maps along channel dimension. Thus,
different from MVSNet [35], the shape of our local cost
volume is CL ∈ RW×H×(C×D), where C and D denote
the channel and depth dimension respectively.

3.2.2 Features Aggregation

As shown in Fig. 3, in each iteration t, we extract the geo-
metric feature and depth feature from the local cost volume
and the depth map Dk

t−1 with two lightweight extractors,
which consist of two 2D convolution layers. The context
feature comes from the multi-scale context feature extrac-
tor, and it only need to be extracted once at each stage.

To construct our final dynamic cost volume CD, we first
utilize a 2D convolution layer to process the concatenation
of geometric feature and depth feature. Then, the output
is concatenated with the context feature to form the dy-
namic cost volume. All the concatenation operations are
performed in the channel dimension.

3.3. Multi-stage GRUs

Our dynamic cost volume is processed by GRUs in an
iterative way. In addition, in order to utilize the multi-scale
information and speed up the convergence, we construct a
multi-stage GRUs architecture. In this way, the dynamic
cost volume is constructed on pyramid feature maps and
processed by multi-scale GRUs repectively. More specif-
ically, at each stage k, the optimization module will up-
date the depth map for T k times, and output a set of up-
date amount Δdk

t , where t is from 1 to T k. In each it-
eration t, the input depth map Dk

t−1 will be updated by

Initial Depth Map

1st Iteration 2nd Iteration 3rd Iteration

Reference Image Initial Depth Map

1st Iteration 2nd Iteration 3rd Iteration

Reference Image

Figure 4. The reference image, initial depth map and the updated
depth maps in three iterations at the coarsest stage.

Dk
t = Dk

t−1 +Δdk
t , and then used as the input for the next

iteration t + 1. More importantly, the depth map Dk
Tk in

the last iteration at each stage will be upsampled to Dk
Tk+1.

Then, Dk
Tk+1 will be used as the initial depth map Dk+1

0 at
the next stage.

As shown in Fig. 4, the quality of the depth map could be
significantly improved after each iteration. Especially, we
could see from the Fig. 4 that the GRU-based optimization
module could fill in the holes in the texture-less areas and
sharpen the boundary.

3.3.1 Initial Depth Predication

The GRU-based optimization module updates the depth
value based on the local spatial information, which makes
it sensitive to the initial depth value. Due to the common
problems of weak texture regions and similarity regions in
MVS, an unreliable initial depth map will make the GRU-
based optimization more easier to output wrong depth val-
ues. Therefore, we propose an initial depth value prediction
module to predict a reliable initial depth value at the coars-
est stage.

Inspired by other learning-based MVS methods [19, 28,
29,31], we predict a probability volume Pd and correspond-
ing depth map with three modules: cost volume construc-
tion, 3D CNN regularization and regression. The archi-
tecture of the initial depth predication module is shown in
Fig. 5. Following the work of MVSNet [35], we build a tiny
cost volume, which consists of sparse depth hypotheses, but
includes large enough inverse depth range. Then, we utilize
a lightweight 3D CNN to regularize the cost volume and get
the probability volume Pd corresponding to each depth hy-
pothesis d. Finally, we regress the initial depth map Dinit

with softargmin:

Dinit =

dmax∑

d=dmin

d× Pd (3)
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Figure 5. Structure of the initial depth prediction module. We
build a cost volume with the coarsest features map, regularize it
with a lightweight 3D CNN and regress the initial depth map.

3.3.2 GRU

Inspired by [11,26], we design a GRU module to update the
depth map. The details of our GRU module are presented
as follows:

zt = σ(conv([ht−1, Ct−1
D ],Wz)) (4)

rt = σ(conv([ht−1, Ct−1
D ],Wr)) (5)

h̃t = tanh(conv([rt � ht−1, C
t−1
D ],Wh)) (6)

ht = (1− rt)� ht−1 + zt � h̃t (7)
Here σ is the sigmoid activation function, W means the pa-
rameters for corresponding convolution network, and conv
represents a small 2D convolution module, which consist of
a 1× 5 convolution and a 5× 1 convolution.

The inputs of our GRU are the dynamical cost volume
Ct−1

D as well as the latent hidden state ht−1. The dynamical
cost volume Ct−1

D could be refreshed by the previous depth
map Dk

t−1. In addition, at each stage, the initial hidden state
h0 is initialized by the context feature network.

Based on the hidden state ht, we utilize a depth head
module to predict the residual depth Δdt. The depth head
module contains two convolutional layers and uses the tanh
activation function to constrain the range of output values.

After the last iteration T k at each stage k, we use a
mask upsample module [26] to upsample the current depth
map( H

23−k × W
23−k ). More specifically, based on the last hid-

den state hTk

, we utilize two convolutional layers to predict
a H

23−k × W
23−k × (2 × 2 × 9) mask, which represents the

weights of the neighbors for each pixel. Then the depth
map could be upsampled to the resolution of H

22−k × W
22−k

by weighted combination based on the predicted mask.

3.4. Loss Function

In training phase, our method could output a couple of
depth maps from the the initial depth predication module
and multi-stage GRU-based optimization module at differ-
ent iteration steps. We calculate the L1 losses on all output
depth maps with the ground truth depth maps of the corre-
sponding resolution. Thus the final loss is the weighted sum
of all the losses:

Ltotal = Linit +

2∑

k=0

Tk+1∑

i=1

λk
i L

k
i , (8)

where Linit is the loss of the initial depth map obtained by
the initial depth predication module. Tk is the number of
optimization iterations at stage k. {Lk

i |i = 1...Tk + 1} are
the losses of Tk output depth maps and an upsampled depth
map at stage k, and λk

i is the corresponding weight.

4. Experiments
We evaluated our method on DTU [1] and Tanks & Tem-

ples datasets [13]. Extensive experiments are conducted to
validate the accuracy and efficiency of our method.

4.1. Datasets

DTU dataset DTU dataset [1] is a large-scale indoor
MVS dataset, which contains 128 different scans with 49
views under varying lighting conditions. All the scans are
collected under a laboratory environment with same cam-
era trajectory. DTU provides the ground truth depth maps
for 79 training scans and the 3D point clouds for 22 eval-
uation scans. Following the configurations in most MVS
work [19, 28, 29, 31], we apply DTU dataset to train and
evaluate our network.
Tanks & Temples dataset Tanks & Temples dataset [13]
is a large-scale outdoor MVS dataset, which provides a set
of video sequences in realistic environments for different
scans. It is divided into intermediate and advanced sets, in-
cluding a total of 14 scenarios. We also evaluate our method
on intermediate and advanced sets using the model trained
on DTU dataest [1] without fine-tuning.

4.2. Implementation Details

Train During the training on DTU dataset [1], we set the
resolution of input images to 640 × 512 and the number
of input images to N = 5. For the initial depth predica-
tion module, we set the number of depth hypotheses to 48.
For the local cost volume, we set the number of depth hy-
potheses Dk to 4 for all the stage. We define a minimum
hypothesis plane interval Im for inverse depth:

Im = (
1

dmin
− 1

dmax
)/Z (9)

We set Z to 384, and set the interval of the depth hypotheses
at stages 0, 1, 2 to 4Im, 2Im, Im (stages 0 is the coarse stage
with the resolution of W ×H = 80×64). For the optimiza-
tion module at each stage, we set the iteration number T k

at stages 0, 1, 2 to 3, 3, 3. We train our model with AdamW
for 48 epochs under OneCycleLR scheduler with a learning
rate of 0.001. We set a batch size of 4 and train our model
on 1 NVIDIA GeForce RTX 3090 GPU.
Evaluation We evaluate our proposed method on the
DTU evaluation set [1] and both intermediate and advanced
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sets of Tanks & Temples dataset [13]. For the evaluation
on DTU, we set the number of input images N to 5 and
the input images size to 1600 × 1184. For the evaluation on
Tanks & Temples dataset, we use the model trained on DTU
without any fine-tuning. We set the number of views N to
7, the input images size to 1920 × 1056, and the number
of depth hypotheses in the initial depth predication mod-
ule to 96. The camera positions, sparse point cloud, and
depth ranges of Tanks & Temples dataset are recovered by
the open source SfM software OpenMVG [20].
Filtering and Fusion Similar to other learning-base
MVS methods, we filter the output depth map base on the
photo-metric and the geometric consistencies. We made
some improvements to the filtering algorithm [22], and the
specific details are shown in the supplementary material.
Meanwhile, we upsampled the probability volume Pd ob-
tained from the initial depth prediction module as a confi-
dence measurement for each pixel, and discard the pixels
whose probability of estimated depth is lower than 0.3.

4.3. Benchmark Performance

We compare our method with recent published top-
performing learning-based MVS methods in terms of re-
construction quality, running time and GPU memory con-
sumption. As shown in Table. 1, 3, our method achieves
the best performance on DTU dataset [1] and advanced se-
quence of Tanks & Temples dataset [13]. As for the in-
termediate sequence of Tanks & Temples dataset, we also
achieve very competitive results. We further compare our
method with recent published learning-based MVS meth-
ods [5, 10, 28, 34, 37, 38] who dedicated to improving the
efficiency in Table. 2 in the terms of time and memory con-
sumption. We set the same configuration for all methods
using the original size images and set the input view num-
ber to 5 and 7 on DTU and Tanks & Temples datasets, re-
spectively. As presented in Table. 2, our method is much
more efficient in terms of running time and memory con-
sumption. It worth noting that, our fast version (Iters: 1 1
1) is almost 2 times faster than the most closed runner up
of PatchmatchNet [28]. More surprisingly, our fast version
(Iters: 1 1 1) could still achieve very high reconstruction
accuracy which is presented in Table. 1. These experimen-
tal results obviously demonstrate that our method could not
only improve the computing speed and reducing memory
consumption, but also ensuring high-quality reconstruction.

In Fig. 6, We give more quality comparison between our
method and some state-of-the-art methods on DTU dataset.
From Fig. 6, we can see that our method delivers more accu-
rate boundaries and performed much better on the structure
details of the 3D point clouds, compared to CVP-MVSNet
[34] and PatchmatchNet [28]. In addition, some 3D point
cloud reconstruction results on Tank & Temples dataset are
shown in Fig. 7. From Fig. 7, we can see that the recon-

Method Overall(mm)↓ Acc.(mm) ↓ Comp.(mm) ↓
COLMAP [21] 0.532 0.400 0.664
MVSNet [35] 0.462 0.396 0.527

R-MVSNet [36] 0.417 0.385 0.459
CIDER [31] 0.427 0.417 0.437

D2HC-RMVSNet [33] 0.386 0.395 0.378
AttMVS [18] 0.356 0.383 0.329

AA-RMVSNet [29] 0.357 0.376 0.339
Vis-MVSNet [38] 0.365 0.369 0.361
Fast-MVSNet [37] 0.370 0.336 0.403
CVP-MVSNet [34] 0.351 0.296 0.406
CasMVSNet [10] 0.348 0.346 0.351

UCS-Net [5] 0.344 0.338 0.349
PatchmatchNet [28] 0.352 0.427 0.277

Ours(Iters:1 1 1) 0.324 0.314 0.334
Ours(Iters:3 3 3) 0.317 0.321 0.313

Table 1. The distance metric (lower is better) comparisons
on the DTU’s evaluation set [1] and mean F-score (higher
is better) comparisons on the Tanks & Temples benchmark
[13]. The ’Iters’ represent the numbers of iterations at each
stage.

DTU Tanks & Temples
Method Time Mem. Time Mem.
Vis-MVSNet [38] 0.61 5.6 0.79 6.3
Fast-MVSNet [37] 0.52 7.0 0.68 7.9
CVP-MVSNet [34] 1.51 8.8 1.79 9.4
CasMVSNet [10] 0.55 9.1 0.72 9.7
UCS-Net [5] 0.54 6.6 0.71 7.5
PatchmatchNet [28] 0.25 3.6 0.35 4.0
Ours(Iters: 3 3 3) 0.19 3.1 0.28 3.6
Ours(Iters: 1 1 1) 0.11 3.1 0.19 3.6

Table 2. Comparison of the running time(s) and mem-
ory consumption (GB) on DTU [1] and Tanks & Temples
benchmark [13] between different methods.

struction results of method is of high quality, even for the
challenging advanced sequence. At last, more comprehen-
sive quantity results are presented in Table. 3, our method
has achieved very competitive results in most evaluation in-
dicators.

4.4. Ablation Study

In this section, we provide extensive ablation experi-
ments to analyze the impact of the number of iterations, ini-
tial depth prediction, components of dynamic cost volume
and the number of stages.

4.4.1 Number of Iterations

Following the same experiment configuration introduced in
section 4.2, we conduct ablation experiments with different
numbers of iterations. In this way, we would like to verify
the effect of number of iterations.

The results are presented in Table. 4. From Table. 4, we
could see that the number of iterations is especially impor-
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intermediate advanced
Method Mean Fam. Franc. Horse L.H. M60 Pan. P.G. Train Mean Audi. Ballr. Courtr. Museum Palace Temple

COLMAP [21] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
MVSNet [35] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -

R-MVSNet [36] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 24.91 12.55 29.09 25.06 38.68 19.14 24.96
CIDER [31] 46.76 56.79 32.39 29.89 54.67 53.46 53.51 50.48 42.85 23.12 12.77 24.94 25.01 33.64 19.18 23.15

D2HC-RMVSNet [33] 59.20 74.69 56.04 49.42 60.08 59.81 56.61 60.04 53.92 - - - - - - -
AttMVS [18] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 31.93 15.96 27.71 37.99 52.01 29.07 28.84

AA-RMVSNet [29] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 33.53 20.96 40.15 32.05 46.01 29.28 32.71
Vis-MVSNet [38] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
Fast-MVSNet [37] 47.39 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91 - - - - - - -
CVP-MVSNet [34] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
CasMVSNet [10] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
UCS-MVSNet [5] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -

PatchmatchNet [28] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
Ours(Iters: 1 1 1) 54.50 71.12 47.51 44.38 58.19 56.59 53.45 56.72 48.03 32.73 17.75 41.21 31.93 43.04 28.99 33.49
Ours(Iters: 3 3 3) 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38 34.39 20.22 42.39 33.73 45.08 29.81 35.09

Table 3. Detailed quantitative results (higher is better) of different methods on the intermediate set and advanced set of Tanks
& Temples benchmark [13]

(a)Reference Image (b)CVP-MVSNet (c)PatchmatchNet (d)Ours

Figure 6. Qualitative comparison of scan 9 and scan 75 in DTU
dataset [1]. For each scan, we show the reference image and point
cloud results in the top row and the zoomed local areas in the bot-
tom row. Our method delivers more accurate boundaries and pro-
vides more denser reconstruction results.

tant for the completeness of the point cloud. It is not sur-
prising, because our dynamic cost volume could aggregate
distinctive context information, which could be further uti-
lized by the GRU to fill in the holes. The similar conclusion
could also be proven in the Fig. 4, in which the holes are
filled with the number of iteration increased. Here, we also
would like to argue that our method is rather flexible, i.e.,
we could adjust the number of iterations in the test phase to
balance the reconstruction quality, speed and memory con-
sumption according to actual task requirements.

Iters Acc.(mm) Comp.(mm) Overall(mm) Time(s)
4,4,4 0.323 0.311 0.317 0.23
3,3,3 0.321 0.313 0.317 0.19
2,2,2 0.319 0.321 0.320 0.16
1,1,1 0.314 0.334 0.324 0.11

Table 4. Ablation study of the number of optimization it-
eration on DTU [1]. The ‘Iters’ represent the numbers of
iterations at each stage.

4.4.2 Initial Depth Prediction

In this experiment, we designed an additional GRU-based
optimization module with 4 iterations to replace the initial
depth prediction (IDP) module at the coarsest stage. For
this optimization module, we set the number of depth hy-
potheses to 8 and the interval of depth hypotheses to 16Im,
The median of the inverse depth range (dmin + dmax)/2 is
used as the initial input depth map.

Method Acc.(mm) Comp.(mm) Overall(mm)
w/o IDP 0.314 0.374 0.344

Ours 0.321 0.313 0.317

Table 5. Ablation study of the initial depth prediction mod-
ule(IDP) on DTU’s evaluation set [1].

As shown in Table. 5, our method which using the ini-
tial depth prediction module obviously performs better in
term of the reconstruction quality. Our 3DCNN based initial
depth prediction module can obtain a rather reliable depth
map, which can effectively avoid the local optimization
problem of GRU-based optimization unit. Especially, our
method performs much better in the completeness, which
further demonstrates the importance of the proposed initial
depth prediction module.

4.4.3 Components of Dynamic Cost Volume

In this experiment, we evaluate the beneficial effect of the
depth features(DF) and context features(CF) in the con-
struction process of dynamic cost volume on DTU’s eval-
uation set [1]. As shown in Table. 6, the depth features and
context features have a great impact on the completeness
of the reconstruction results, which can reduce complete-
ness error from 0.368 to 0.313. Without depth features and
context features, the dynamic cost volume can only provide
geometric feature information extracted from the local cost
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Figure 7. Point cloud reconstruction of Tanks & Temples dataset. Top Row: the reconstruction results on the intermediate set. Bottom
Row: the reconstruction results on the advanced set.

volume, which leads to the performance of our method is
worse than UCS-Net [5].

Method Acc.(mm) Comp.(mm) Overall(mm)
w/o DF & CF 0.326 0.368 0.347

w/o DF 0.323 0.357 0.340
w/o CF 0.319 0.325 0.322

Ours 0.321 0.313 0.317

Table 6. Ablation study concerning the depth feature(DF)
and context feature(CF) in the construction process of dy-
namic cost volume.

The experimental results also prove that constructing dy-
namic cost volume by aggregating additional depth feature
information and context feature information is the key for
our method to achieve the state-of-the-art performance on
DTU’s evaluation set.

4.4.4 Number of Stages

We further evaluate our method under a total stages number
of 2 and 4, and the resolution of the corresponding finest
stage is H

4 ×W
4 and H×W , respectively. We evaluate all the

models on the DTU [1] and Tanks & Temples [13] in terms
of reconstruction quality, running time and GPU memory
consumption. Significantly, we set different ratios of the
up sampling module to make all models output full resolu-
tion depth maps. As shown in Table. 7, with the increase of
the number of stages, the performance has improved signif-
icantly on DTU and Tanks & Temples benchmark, but at the
same time, the running time and GPU memory consumption
have also increased significantly.

DTU Tanks & Temples
Stages Iters Overall Time Mem. Inter. Ad. Time Mem.

2 4,4 0.339 0.14 2.7 54.5 33.3 0.23 3.4
3 3,3,3 0.317 0.19 3.1 56.9 34.4 0.28 3.6
4 3,3,2,2 0.314 0.31 4.6 58.8 35.2 0.45 5.2

Table 7. Performance of our method with different stages
in terms of the running time(s per view) and memory con-
sumption (GB) on DTU [1] and Tanks & Temples [13]
benchmark. The ’Iters’ represent the numbers of iterations
at each stage from coarse to fine.

5. Conclusion

In this work, we present a novel iterative dynamic cost
volume which could be processed by our proposed multi-
stage GRUs. Our method is very efficient that could
work on very high resolution images. Compared with
other learning-based MVS methods, our method achieve
the state-of-the-art results in terms of accuracy, speed and
memory usage. In addition, our method is very flexible
which could get better balance between the accuracy and ef-
ficiency through adjusting the iteration numbers in the test
phase. In the future, we would like to utilize more powerful
feature extractor to improve the performance further.
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