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Abstract

Source-free domain adaptation (SFDA) newly emerges
to transfer the relevant knowledge of a well-trained source
model to an unlabeled target domain, which is critical in
various privacy-preserving scenarios. Most existing meth-
ods focus on learning the domain-invariant representations
depending solely on the target data, leading to the obtained
representations are target-specific. In this way, they can-
not fully address the distribution shift problem across do-
mains. In contrast, we provide a fascinating insight: rather
than attempting to learn domain-invariant representations,
it is better to explore the domain-invariant parameters of the
source model. The motivation behind this insight is clear:
the domain-invariant representations are dominated by only
partial parameters of an available deep source model. We
devise the Domain-Invariant Parameter Exploring (DIPE)
approach to capture such domain-invariant parameters in
the source model to generate domain-invariant representa-
tions. A distinguishing method is developed correspond-
ingly for two types of parameters, i.e., domain-invariant and
domain-specific parameters, as well as an effective update
strategy based on the clustering correction technique and a
target hypothesis is proposed. Extensive experiments verify
that DIPE successfully exceeds the current state-of-the-art
models on many domain adaptation datasets.

1. Introduction
Unsupervised domain adaptation (UDA) has been gain-

ing momentum in the past decade, effectively addressing
the distribution shift problem across domains. Thanks to
the free access to labeled source data, previous UDA stud-
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Figure 1. The comparison between existing methods and our
method. Existing methods (top) optimize the model parameters
without distinction, obtaining the target-specific representations
which would not be well adapted to the source classifier, i.e., some
samples are classified wrongly. Our method (bottom) would obtain
domain-invariant representations by exploring domain-invariant
parameters, guaranteeing the generalization of the source model.

ies have achieved remarkable achievements [10, 25, 49].
However, the source data is unavailable in various privacy-
preserving scenarios: data privacy protection laws and data
silos in clinical practice [38]. Moreover, the fully test-time
adaptation [44] assumes that the model could be sensitive to
changing conditions, e.g., domain shift, during testing with-
out the training data. In such practical limitations, source-
free domain adaptation (SFDA) relaxes the source data re-
quirement and leverages the source model’s knowledge for
domain adaptation.

The fundamental challenge of SFDA is that the domain-
invariant presentations are challenging to be explored di-
rectly depending solely on the target data, as previous works
have attempted to do. Both SHOT [23] and PPDA [17]
utilize various techniques, e.g., entropy functions and self-
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Figure 2. Accuracy (%) on Office-31 with or without DIP (‘-DIP’).
The model parameterized by the source model is finetuned on the
pseudo labels predicted by itself.

supervised loss, to finetune the source model. To some ex-
tent, SHOT has made some progress on learning domain-
invariant representations. But it ignores the domain shift,
and the fixed source classifier module could not recognize
the learned representations well (see Fig. 1).

In this paper, we give a novel insight: In SFDA, exploring
domain-invariant parameters stored in the source model is
more feasible than exploring domain-invariant representa-
tions directly. The insight is inspired by the lottery ticket hy-
pothesis [8] which has demonstrated the significance of par-
tial parameters in deep networks for generalization. Simi-
larly, we discover that only partial parameters in the source
model, termed domain-invariant parameters (DIP), are sig-
nificant for the domain-invariant representations. On the
contrary, the other parameters, termed domain-specific pa-
rameters, would tend to fit domain-specific information and
hurt the generalization. As shown in Fig. 2, the model with
exploring domain-invariant parameters produces better re-
sults on four tasks of Office-31 in our proposed method,
Domain-Invariant Parameter Exploring (DIPE).

DIPE aims to explore domain-invariant parameters
stored in the source model to generate domain-invariant
representations and relieve domain shift. Three essen-
tial parts support DIPE to capture domain-invariant pa-
rameters precisely. First, to judge whether a parameter is
domain-invariant or domain-specific, we propose a domain-
balanced identifying criterion that simultaneously observes
the active parameters in source and target models. Sec-
ond, based on an intuition that the learned representations
become closer to the domain-invariant ones as the training
process proceeds, we suggest that the proportion of domain-
invariant parameters should increase with the number of it-
erations. Third, we design an effective update strategy for
these two types of parameters by the self-supervised loss
based on clustering correction from the source and target
hypotheses. Specifically, for domain-invariant parameters,
we perform an active update. For domain-specific ones, we

perform a passive update which will penalize their values to
be near zero and gradually make them lose activity.

We summarize our main contributions as follows:

• To the best of our knowledge, we, for the first time, ex-
plore domain-invariant parameters stored in the given
source model, opening up a new perspective in SFDA.
• We propose a novel DIPE framework for exploring

domain-invariant parameters, and introduce a domain-
balanced identifying criterion to determine domain-
invariant and domain-specific parameters.
• A simple and general technique, clustering correction,

is proposed to promote the learning process.

2. Related Work
2.1. Unsupervised Domain Adaptation

UDA methods have achieved great success in recent
years. These methods can be grouped into four categories:
importance estimation, moment matching, pseudo labeling,
and adversarial learning. (1) The core idea of importance
estimation is to measure the distance of the source sam-
ples from the overlapping distributions between source and
target domains, consequently optimizing the importance
weighted objective function [39]. (2) The moment match-
ing tries to minimize the discrepancy in high dimensional
statistics across domains [15, 26]. (3) The pseudo labeling
utilizes pseudo labels of the target samples to realize stan-
dard supervised learning [34, 37, 48]. (4) The main idea
behind adversarial training is to introduce a domain dis-
criminator to distinguish the samples between two domains
for learning the domain-invariant representations [9,25,36].
However, the success of all these methods depends on the
accessed source data, which is unsafe and often unrealistic
because the source data may be private and decentralized.

2.2. Source-Free Domain Adaptation

As data privacy protection has been drawing attention,
SFDA is considered in the literature gradually. A few SFDA
works can be divided into model-finetuning-based works
and data-generation-based works. (1) Model-finetuning-
based works attempt to explore domain-invariant represen-
tations by finetuning the source model. [23] attempts to
learn representations that would align the source distribu-
tion by information maximization and self-supervision loss.
[17] finetunes the source model by reliable pseudo labels of
target samples based on entropy functions. However, they
rely only on the target data and do not sufficiently consider
the given model’s source information, resulting in limited
performance. (2) The core idea of data-generation-based
methods is to generate source or target data to achieve stan-
dard domain adaptation. [22] proposes the 3C-GAN frame-
work to generate target data with annotations. Although 3C-
GAN achieves a certain performance gain, it needs enor-
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Figure 3. The framework of domain-invariant parameter exploring (DIPE). We visualize the parameters of the feature extractor, where
the blue links indicate domain-specific parameters, which we need to deactivate gradually, and the red ones indicate domain-invariant
parameters, which we need to emphasize. Here the Lself is calculated on the pseudo labels from clustering correction.

mous computing resources and cannot be applied to com-
plex target tasks. Recently, more challenging settings con-
cerning online SFDA [44] and federated SFDA [31] are also
discussed.

2.3. Lottery Ticket Hypothesis

The lottery ticket hypothesis [8] proves that overparam-
eterized DNNs contain winning tickets (parameters) that
are significant for generalization. It indicates that partial
parameters stored in the network contribute little to gen-
eralization and appear redundant. Although the lottery
ticket hypothesis motivates our idea, this study is funda-
mentally different from it. Instead of searching a sparse
sub-network with competitive generalization performance
compared with the original network, we hope to explore the
domain-invariant parameters and reduce the side effect of
domain-specific information. These domain-invariant pa-
rameters would further generate domain-invariant represen-
tations, which is challenging to obtain in SFDA.

3. Domain-Invariant Parameter Exploring
In this section, we first show necessary notations of

SFDA. Then, we propose the domain-balanced identifying
criterion, introduce the domain-balanced identifying crite-
rion to determine the proportion of domain-invariant param-
eters, and present the effective update strategy for two types
of parameters by a newly-designed clustering correction in
a self-supervised way. The framework of domain-invariant
parameter exploring (DIPE) is illustrated in Fig. 3.

3.1. Learning Setup

The main difference between UDA and SFDA is that
SFDA cannot utilize source data strictly during the train-
ing process in privacy-preserving scenarios, i.e., the source

data Ds cannot be obtained directly. Instead, a well-trained
source model fs : Xs → Ys trained on Ds and nt unla-
beled data {xit}

nt
i=1 from target domain Dt are given, where

xit ∈ Xt. In the multi-classification task, Y ∈ {1, ...,K},
and K represents the number of the classes. Here, Ds ∼ p,
Dt ∼ q, and the distributions p and q are similar but differ-
ent. The goal of SFDA is to predict the labels {yit}

nt
i=1 in

the target domain without the source data.

3.2. Source Model Generation

In realistic scenarios, the source model provided by a
third party might not be acquired in the laboratory, so we
simulate the third party to train the source model fs : Xs→
Ys with the labeled source data. In addition, to encourage
the source data to lie in tight clusters, we utilize the label
smoothing technique following [23]. Accordingly, the ob-
jective function is

Lls
s (fs;Xs,Ys) = −E(xs,ys)∈(Xs,Ys)

∑
qls
k logδk(fs(xs)) ,

(1)
where δk(a) = exp(ak)∑

i exp(ai)
denotes the k-th element in the

softmax output of aK-dimensional vector a, and qls
k = (1−

ε)qk +
ε
K . qk is the one-of-K encoding of ys, and ε is the

smoothing parameter.
As shown in Fig. 3, the target model parameterized by

the above source model consists of three modules: the fea-
ture extractor gt: Xt → R

d, the source hypothesis (fixed
classifier) hs, and the target hypothesis (trainable classifier)
ht, i.e., ft(x) = ht(gt(x)). Here d is the dimension of the
input feature. We propose the domain-invariant parameter
exploring (DIPE) to explore domain-invariant parameters in
the feature extractor (gt) and generate domain-invariant rep-
resentations that could be well adapted to the source hypoth-
esis (hs). DIPE can mitigate the negative effects of target-
oriented information excessively, which is overlooked by
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the previous methods. Further, the trainable target hypoth-
esis (ht) is introduced to cooperate with the source hypoth-
esis, avoiding source-oriented information. Next we will
describe how to explore the domain-invariant parameters.

3.3. Domain-Balanced Identifying Criterion

The principle of identifying domain-invariant parameters
is to find those critical parameters that play a decisive role in
exploring domain-invariant representations. In the forward
propagation, there are partial parameters that are relatively
large and have the same positive and negative role in the
same position in the source and target models. These pa-
rameters are more active and play a co-directional role in
representation extraction. Thus we term them as domain-
invariant parameters (DIP). In contrast, the inconsistency
between the positive and negative parameters of the source
model and the target model under training at the same lo-
cation indicates that they act in opposite directions, we
thus term these parameters as domain-specific parameters
(DSP). Based on the analysis above, we design a domain-
balanced identifying criterion as follows. At the t-th itera-
tion, denote by wsi (t) stored in the source model and wti(t)
stored in the target model at the same position. The judg-
ment criterion is denoted by gi, i.e.,

gi = |wsi (t) + wti(t)|, i ∈ [m] , (2)

where m is the parameter number of the feature extractor
and target hypothesis. If the value of gi is large, wti is
viewed as a domain-invariant parameter. Otherwise, wti is
regarded as a domain-specific one that tends to fit domain-
specific information. By the way, the target hypothesis with
exploring domain-invariant parameters aims to avoid up-
dating the target-oriented gradients, further promoting the
learning of domain-invariant parameters.

3.4. Identify the Proportion of DIP

Intuitively, with network training, the representations
gradually tend to be domain-invariant. So we determine the
proportion of domain-invariant parameters with the increase
of training iterations. Specifically, we denote by τ the dy-
namic proportion of domain-invariant parameters, which is
defined by

τ = 1− d
2exp(−10cTm

)

1.0 + exp(−10cTm
)
, (3)

where c represents current iterations, and Tm represents the
maximal iterations, τ ∈ [1− d, 1].

3.5. Updating Parameters with Different Rules

Updating the parameters for different types is a fine-
grained version of the conventional parameter fine-tuning-
based strategies. The domain-invariant parameters can be

(a) D→A (b) W→A

Figure 4. The t-SNE visualization of target features.

further found and updated to emphasis, weakening the po-
tential influence of domain-specific ones, thus producing
domain-invariant representations. Therefore, for domain-
invariant parameters, we utilize standard stochastic gradient
descent (SGD) [27] algorithm to update, termed as active
update rule,

WIP (t+ 1)←WIP (t)− η(
∂L(WIP (t))

∂WIP (t)
+ λWIP (t)),

(4)
where λ ∈ R+ is a regularization parameter which equals to
the weight decay coefficient with SGD, η > 0 is the learning
rate, and t indicates the t-th iteration. WIP represents the
set of domain-invariant parameters, andWSP represents the
set of domain-specific ones.

For domain-specific parameters, we update them only
utilizing a regularization item, i.e., weight decay, termed
as passive update rule [46]. Moreover, we use the stan-
dard sgn function to replace the normal weight decay by sgn
(WSP ), which would make the value of WSP converge to
zero or near zero faster as the network training. The passive
update rule is defined by

WSP (t+ 1)←WSP (t)− ηλsgn(WSP (t)), (5)

In practice, the label of target data is unavailable, and the
poor quality of the pseudo-labels predicted by the model it-
self would learn the wrong information. Therefore, we pro-
pose the clustering correction to correct the pseudo labels.

Clustering Correction Fig. 4 shows the t-SNE visualiza-
tion of target features on the source model. It indicates that
the same class of the target data can still form a cluster in
the embedding space under domain shift. Moreover, many
domain adaptation works [5,21,30,40] have verified the ef-
fectiveness of clustering. So the clustering helps explore the
inherent structure of the target data. Further, we propose the
clustering correction to obtain more accurate pseudo labels
and support the optimization of supervised loss.

Clustering correction aims to correct the error-prone
pseudo labels by exploring the relationship between repre-
sentations. Specifically, clustering correction first utilizes
the deep k-means clustering [23] to predict the pseudo la-
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bels of target samples, in which the model output and clus-
tering results are utilized as supervisory information. Then,
it corrects the samples with ambiguous pseudo labels that
are located in the decision boundary.

First, clustering correction obtains the pseudo-labels by
weighted k-means clustering [23]:

ŷt = argmin
k

Df (gt(xt), ck) , (6)

where Df (·, ·) denotes the cosine distance of two variables,
gt denotes the learned representations, ck denotes the class
centroids which can robustly and more reliably characterize
the distribution of different classes within the target domain.

Then, clustering correction searches the multiple neigh-
bors (closest to the cosine distance) for each sample and
corrects ambiguous pseudo labels. In detail, if the majority
of the neighbors of this sample have the same pseudo label
as itself, the sample’s label is maintained. Else, the fuzzy
sample’s label is corrected to the label of the majority of its
neighbors, such as the samples at the decision boundary in
the upper right corner of Fig. 3. The red, orange, and blue
colors represent three classes, respectively. The ambiguous
labels of uncertain samples (red border) are corrected by

ŷt = maxcommon(ŷt1, ŷt2, ..., ŷtn) , (7)

where n represents the number of neighbors.
Based on the accurate pseudo labels of target samples,

we optimize a standard supervised loss by

Lself = E(xt,ŷt)∈(Xt,Ŷt)

∑K

k=1
1[k=ŷt]logδk(hs(gt(xt)) .

(8)
Besides, for promoting the target outputs reliable and

globally diverse, we apply the information maximization
(IM) [11] loss which is composed of entropy minimization
(Lent) and Kullback–Leibler divergence (Ldiv):

Lent(fts;Xt) = −Ext∈Xt

∑K

k=1
δk(fts(xt))log(δk(fts(xt))) ,

Ldiv(fts;Xt) =
∑K

k=1
p̂klog(p̂k) = DKL(p̂,

1

K
1(K))− log(K) ,

LsIM = Lent(fts;Xt) + Ldiv(fts;Xt) ,
(9)

where fts(x) = hs(gt(x)) is the K-dimensional output of
each target sample, 1(K) is a K-dimensional vector with
all ones, and p̂ =

∑
xt∈Xt

[δ(fts(xt)] is the mean output
embedding of the whole target data. In addition, to prevent
the learned feature from being source-oriented, we calculate
the LtIM from target hypothesis, where ft(x) = ht(gt(x)).

In summary, the overall optimization goal for updating
two types of parameters is stated as

L(W,S) = LsIM + γLtIM + βLself . (10)

where β > 0 and γ > 0 are balancing hyper-parameters.
The overall procedure of the proposed method DIPE is sum-
marized in Algorithm 1.

Algorithm 1 DIPE Algorithm.
Input: source model fs = gs ◦ hs, target data {xit}

nt
i=1;

Parameters: maximum number of epochs E, trade-off pa-
rameters d, β, γ;
Initialization: freeze source hypothesis hs and copy the
parameters to gt and ht;

1: Let epoch = 1, iter num = 0;
2: while epoch ≤ E do
3: obtain pseudo labels based clustering correction with

Eq. (6-7);
4: while iter num < nb do
5: Fetch mini-batch D̂t from Dt;
6: Calculate L(W,S) loss with Eq (8), (9),(10);
7: Divide W into WIP and WSP with Eq (2), (3);
8: Update WIP with Eq (4);
9: Update WSP with Eq (5);

10: end while
11: end while

4. Experiment
4.1. Experimental Setup

Digits is a standard UDA dataset that supports digit
recognition with diverse domains. Following the protocol
in [14], we utilize three subsets: SVHN (S) [29], MNIST
(M) [18], and USPS (U) [16]. Each domain has 10 classes.

Office-31 [33] is a small-scale UDA dataset consisting of
three diverse domains: Amazon (A), Dslr (D), and Webcom
(W). Each domain has 31 classes.

Office-Home [43] is a more challenging UDA dataset
consisting of four domains: Artistic images (Ar), Clip Art
images(Cl), Product images (Pr), and Real-world images
(Re). Each domain has 65 classes.

VisDA-C [32] is a simulation-to-real dataset with two
extremely distinct domains: Synthetic images, and Real
images. Each domain has 12 classes. The source domain
contains 152 thousand images generated by rendering 3D
models, and the target domain has 55 thousand real images
sampled from Microsoft COCO [24].

We compare our designed DIPE algorithm with state-
of-the-art methods: (1) ResNet-50, ResNet-101 [12]; (2)
UDA: Domain Adversarial Network (DANN) [10], Ad-
versarial Discriminative Domain Adaptation (ADDA) [41],
Conditional domain adversarial networks (CDAN) [25],
Cycle-Consistent Adversarial Domain Adaptation (C
yCADA) [14], Cluster Alignment with a Teacher (CAT)
[6], Sliced Wasserstein Discrepancy (SWD) [19], Step-
wise Adaptive Feature Norm (SAFN) [47], Batch Spec-
tral Penalization (BSP) [2], Adversarial Dropout Regular-
ization (ADR) [35], Margin Disparity Discrepancy (MDD)
[49], Gradually Vanishing Bridge (GVB-GD) [4], Stochas-
tic classifiers (STAR) [28], Structurally Regularized Deep
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Table 1. Accuracy (%) on Digits.

Method S→M U→M M→U Avg

Source only [14] 67.1±0.6 69.6±3.8 82.2±0.8 73.0
ADDA [42] 76.0±1.8 90.1±0.8 89.4±0.2 85.2
ADR [35] 95.0±1.9 93.1±1.3 93.2±2.5 93.8
CyCADA [14] 89.2 98.0 95.6 94.3
CDAN [25] 90.4±0.4 96.5±0.1 95.6±0.4 94.2
rRevGrad+CAT [6] 98.8±0.0 96.0±0.9 94.0±0.7 96.3
SWD [19] 98.9±0.1 97.1±0.1 98.1±0.1 98.0

source model only 69.2 87.8 79.1 78.7
SHOT [23] 99.0±0.0 99.0±0.0 97.7±0.1 98.6
MA [22] 99.4±0.1 99.3±0.1 97.3±0.2 98.7

DIPE 99.0±0.0 99.0±0.0 98.2±0.1 98.7

Clustering (SRDC) [40]; (3) Source-free domain adapta-
tion: Source Free Domain Adaptation (SFDA) [17], Source
Hypothesis Transfer (SHOT) [23], Model Adaptation (MA)
[22]. Note that SFDA, SHOT and MA are the previous best
source-free domain adaptation methods.

We implement our algorithm in PyTorch. As for some
necessary parameters, we set momentum to 0.9, weight de-
cay to 1e−3, learning rate to η0 = 1e−2 for the new layers
and the layers learned from scratch in all experiments ex-
cept η0 = 1e−3 for VisDA-C. We further adopt the same
learning rate scheduler η = η0(1 + 10p)

−0.75, where p is
changed from 0 to 1. Moreover, we set the batch size to 64,
initialize β = 0.3 , γ = 0.3, n = 4, ε = 0.1 for all experi-
ments except β = 0.1 for Digit, and initialize d =0.5 for all
experiments expect d =0.6 for Office-Home.

4.2. Results

4.2.1 Results on Digit Recognition

Table 1 reports the classification accuracy of DIPE and
other algorithms on the digits. DIPE obtains the best av-
erage accuracy on these three tasks compared to all meth-
ods. MA receives the same results compared to DIPE at
the cost of tremendous computation. DIPE also improves
the accuracy of the source model by 20%, demonstrating its
effectiveness.

4.2.2 Results on Object Recognition

Tables 2, 3, and 4 report the classification accuracy on
three object recognition benchmarks: Office-31, VisDA-
C, and Office-Home, respectively. It is clear to see that
DIPE significantly outperforms the state-of-the-art meth-
ods in Office-Home, improving the average accuracy from
71.3% to 72.5 % without accessing the source data. Mean-
while, DIPE performs the best among 6 out of 12 tasks
compared to all methods. For the large-scale and challeng-
ing synthesis-to-real VisDA-C dataset, DIPE still achieves
the best per-class accuracy. Inside Office-31, DIPE also
achieves the best performance on A→D. These results show
that by exploring domain-invariant parameters in the feature

Table 2. Accuracy (%) on Office-31 (ResNet-50).

Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 [13] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [10] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
SAFN+ENT [47] 90.7 90.1 73.0 98.6 70.2 99.8 87.1
rRevGrad+CAT [6] 90.8 94.4 72.2 98.0 70.2 100.0 87.6
CDAN [25] 92.9 94.1 71.0 98.6 69.3 100.0 87.7
DSBN+MSTN [1] 92.2 92.7 71.7 99.0 74.4 100.0 88.3
CDAN+BSP [2] 93.0 93.3 73.6 98.2 72.6 100.0 88.5
CDAN+BNM [3] 92.9 92.8 73.5 98.8 73.8 100.0 88.6
MDD [49] 93.5 94.5 74.6 98.4 72.2 100.0 88.9
CDAN+TransNorm [45] 94.0 95.7 73.4 98.7 74.2 100.0 89.3
GVB-GD [4] 95.0 94.8 73.4 98.7 73.7 100.0 89.3
SRDC [40] 95.8 95.7 76.7 99.2 77.1 100.0 90.8

source model only 79.5 77.2 62.2 96.1 62.5 98.6 79.4
SHOT [23] 94.8 88.2 73.6 98.4 75.5 99.8 88.4
MA [22] 92.7 93.7 75.3 98.5 77.8 99.8 89.6

DIPE 96.6 93.1 75.5 98.4 77.2 99.6 90.1

extractor, we can obtain more domain-invariant representa-
tions that further align the unseen source distribution.

4.3. Ablation Studies

Effect of Domain-Invariant Parameters (DIP). We
conducted experiments on Office-Home in several methods,
e.g., the source model finetuned by pseudo labels predicted
by itself, SHOT [23], and our proposed DIPE, aiming to ver-
ify DIP’s effectiveness. Here ‘-DIP’ indicates that the DIP
is not explored in the experiments. In Table 5, we can ob-
serve a significant improvement of about 1.0% in challeng-
ing tasks, e.g., Cl→Ar, Pr→Cl, and Re→Cl, and a weak
improvement in simple tasks, which indicates that explor-
ing DIP is more effective for challenging tasks in SFDA.
Moreover, it is clear that exploring DIP brings better per-
formance on all introduced SFDA methods, which verifies
that exploring DIP is essential for SFDA. Now the MA [22]
is not involved as it requires reproducing the generative and
adversarial framework with lots of computation costs. In
addition, through the change of accuracy with increasing
epoch in Fig. 5, we can observe that exploring DIP not only
improves the performance but also stabilizes the effect.

(a) Cl→Ar (b) Re→Cl

Figure 5. Ablation studies on the DIP.

Effect of Clustering Correction. Fig. 6 (a) and (b)
demonstrate the advantage of the clustering correction on
the challenging tasks in Office-31. (a) represents the ac-
curacy of pseudo labels at the first epoch, where the clus-
ter correcting receives the best result. (b) shows that the
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Table 3. Accuracy (%) on VisDA-C (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ResNet-101 [13] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
ADR [35] 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [25] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [2] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN [47] 93.6 61.3 84. 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [19] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
DSBN+MSTN [1] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
STAR [28] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

source model only 58.7 20.4 48.2 70.6 63.9 12.1 82.1 18.3 76.4 32.8 87.1 7.4 48.2
SFDA [17] 81.5 79.4 80.3 61.8 92.3 91.9 84.5 82.7 86.5 58.4 74.2 43.5 76.4
MA [22] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [23] 94.8 87.7 77.6 53.0 94.0 94.8 82.2 82.6 90.6 87.7 85.5 58.0 82.4

DIPE 95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1

Table 4. Accuracy (%) on Office-Home (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg

ResNet-50 [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [25] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+BSP [2] 52.0 68.6 76.1 58.0 70.3 70.1 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SAFN [47] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
MDD [49]] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
CDAN+BNM [3] 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4
GVB-GD [4] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SRDC [40] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

source model only 45.8 67.4 74.1 52.5 61.8 64.7 51.7 42.3 73.8 64.9 47.6 78.2 60.4
SFDA [17] 48.5 71.3 75.6 63.9 69.0 72.1 62.4 43.5 76.0 70.4 50.1 76.1 64.9
SHOT [23] 55.3 78.1 80.5 68.7 76.0 78.8 65.7 52.2 82.4 73.1 57.5 84.2 71.0

DIPE 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5

clustering correction also improves the final classification
accuracy, suggesting that more accurate pseudo labels can
further promote the exploring of domain-invariant parame-
ters. Meanwhile, the results of the last row in Table 6 on
Office-Home also verify its effectiveness.

(a) (b)

Figure 6. Ablation studies on the clustering correction.

Effect of Loss Functions. We perform ablation studies
to demonstrate the effect of three loss functions in Eq. (10)
on the several tasks in Office-Home. As shown in Table
6, we verify that the naive pseudo labeling (PL) [20] is not
suitable for the SFDA, then we demonstrate the importance
of three loss functions in Eq. (10), since there are noticeable
performance gains after adding each loss in them.

Table 6. Ablation study (%) on Office-Home (ResNet-50).

Method Cl→Ar Cl→Pr Cl→Re Re→Ar Avg

source model only 52.5 61.8 64.7 64.9 61.0
naive pseudo labeling (PL) [20] 59.4 66.6 70.5 67.7 66.1

LsIM 66.9 74.7 76.0 73.1 72.7
LsIM + LtIM 67.5 75.3 77.4 73.1 73.3
LsIM + LtIM + PL [20] 67.0 74.3 75.6 73.1 72.5
LsIM + LtIM + Self-supervised PL [23] 68.7 78.1 78.4 73.2 74.6
LsIM + LtIM + Cluster Correction 70.1 79.8 78.8 74.1 75.7

Effect of Domain-Invariant Parameter Proportion.
We perform ablation studies to dissect the proportion of
domain-invariant parameters on Cl→Ar and Cl→Pr tasks.
When the proportion of domain-invariant parameters is set
to zero, the accuracy is very low, and it does not converge as
all parameters are passively updated, so we do not include
this result in the graph. In contrast, when the proportion
is set to one, the accuracy is still low in Fig. 7 because all
parameters are not treated differently. We can see that the
proportion designed incrementally could obtain the best re-
sults closely in different tasks.

Effect of Loss Weight. We show the classification accu-
racy with different γ and β of Eq. (10) in Fig. 8.

Feature Visualization. Fig. 9 (a) and (b) show the t-
SNE embedding [7] of target representations on the first
5 classes in a challenging task (Cl→Ar) from the source
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Table 5. Ablation study (%) on Office-Home (ResNet-50) with or without exploring DIP.

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg

model - DIP 49.7 72.0 76.0 57.6 66.3 69.3 55.3 45.9 76.3 66.5 51.6 79.7 63.9
model 49.8 73.2 76.3 59.4 66.6 70.5 56.5 46.1 76.9 67.7 52.2 79.9 64.6↑
SHOT - DIP 55.3 78.1 80.5 68.7 76.0 78.8 65.7 52.2 82.4 73.1 57.5 84.2 71.0
SHOT 56.0 78.2 80.9 69.3 75.6 78.9 66.4 53.9 82.5 73.2 58.9 84.0 71.5↑
DIPE - DIP 57.0 78.8 80.6 69.2 78.8 78.8 67.9 54.1 82.9 73.1 58.4 84.6 72.0
DIPE 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5↑

(a) Cl→Ar (b) Cl→Pr

Figure 7. Ablation studies on the effect of domain-invariant pa-
rameters’ proportion.

(a) Cl→Ar (b) Cl→Ar

Figure 8. Ablation studies on the loss weight.

(a) source model (b) ours

Figure 9. The t-SNE visualization of target representations for
the first 5 class classification task. Stars ‘*’ in dark colors denote
unseen source data and circle ‘o’ in light colors denote target data.
Different colors represent different classes.

and learned models. It is clearly shown that the target fea-
ture representations learned by DIPE are more consistent
(b) across domains than the given source model (a), verify-
ing DIPE’s effectiveness.

5. Conclusion

In this paper, we propose a novel method to ex-
plore domain-invariant parameters stored in the well-trained

source model for Source Free Domain Adaptation (SFDA).
It effectively alleviates the domain shift problem since the
learned domain-invariant parameters can promote learn-
ing domain-invariant representations. Extensive experi-
ments on image classification have demonstrated that our
method could achieve more accurate performance in various
privacy-preserving applications. The idea behind domain-
invariant parameters exploring is simple and orthogonal to
other methods. One can extend our work to various prac-
tical SFDA algorithms. Thus our approach opens up a
new perspective for SFDA. In future work, better parameter
judgment criteria and update strategies can be investigated.

Broader Impact
Recently the success of domain adaptation algorithms

has depended on the large scale of labeled source data,
which is impractical in privacy-preserving scenarios. The
positive impact of our work is to improve the robustness and
generalizability of deep neural networks where the domain
shift meets the data privacy protection. While we show im-
proved performance relative to state-of-the-art, the negative
transfer could still occur. Therefore our approach should not
be used in mission-critical applications or to make essential
decisions without human oversight.

Limitations
While we can verify that exploring domain-invariant pa-

rameters is critical for SFDA through the effect improve-
ment, the existence of the domain-invariant parameters is
challenging to prove due to the lacking of the theoretical
guarantees and interpretability of deep networks. Further,
SFDA relies on the well-trained source model that may be
impaired by some causes, e.g., the source model training
process. In these unforeseen circumstances, the robustness
of SFDA methods would face serious challenges.
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[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
5

[19] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and
Daniel Ulbricht. Sliced wasserstein discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10285–10295, 2019. 5, 6, 7

[20] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 7

[21] Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi
Yang. Domain consensus clustering for universal domain
adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9757–9766, June 2021. 4

[22] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9641–9650, 2020. 2, 6, 7

[23] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data ? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 1, 2,
3, 4, 5, 6, 7

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[25] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 1647–1657,
2018. 1, 2, 5, 6, 7

7159



[26] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-
works. In International conference on machine learning,
pages 2208–2217. PMLR, 2017. 2

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 4

[28] Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe
Song, and Tao Xiang. Stochastic classifiers for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9111–9120, 2020. 5, 7

[29] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 5

[30] Yingwei Pan, Ting Yao, Yehao Li, Chong-Wah Ngo, and Tao
Mei. Exploring category-agnostic clusters for open-set do-
main adaptation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 4

[31] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko.
Federated adversarial domain adaptation. arXiv preprint
arXiv:1911.02054, 2019. 3

[32] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv:1710.06924,
2017. 5

[33] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-
rell. Adapting visual category models to new domains. In
European conference on computer vision, pages 213–226.
Springer, 2010. 5

[34] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
Asymmetric tri-training for unsupervised domain adaptation.
In International Conference on Machine Learning, pages
2988–2997. PMLR, 2017. 2

[35] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Adversarial dropout regularization. arXiv preprint
arXiv:1711.01575, 2017. 5, 6, 7

[36] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3723–3732, 2018. 2

[37] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio
Savarese. Learning transferrable representations for unsuper-
vised domain adaptation. In Advances in Neural Information
Processing Systems, pages 2110–2118, 2016. 2

[38] Serban Stan and Mohammad Rostami. Privacy preserving
domain adaptation for semantic segmentation of medical im-
ages. arXiv preprint arXiv:2101.00522, 2021. 1

[39] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi
Kashima, Paul von Bünau, and Motoaki Kawanabe. Direct
importance estimation for covariate shift adaptation. Annals
of the Institute of Statistical Mathematics, 60(4):699–746,
2008. 2

[40] Hui Tang, Ke Chen, and Kui Jia. Unsupervised domain adap-
tation via structurally regularized deep clustering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 4, 6, 7

[41] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 5

[42] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 6

[43] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 5

[44] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 1, 3

[45] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and
Michael Jordan. Transferable normalization: Towards im-
proving transferability of deep neural networks. 2019. 6

[46] Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nan-
nan Wang, Zongyuan Ge, and Yi Chang. Robust early-
learning: Hindering the memorization of noisy labels. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. 4

[47] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger
norm more transferable: An adaptive feature norm approach
for unsupervised domain adaptation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1426–1435, 2019. 5, 6, 7

[48] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu.
Collaborative and adversarial network for unsupervised do-
main adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3801–3809,
2018. 2

[49] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael
Jordan. Bridging theory and algorithm for domain adap-
tation. In International Conference on Machine Learning,
pages 7404–7413. PMLR, 2019. 1, 5, 6, 7

7160


