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Figure 1. An overview of FERV39k composed of video frames of 7 basic expressions across 4 scenarios subdivided by 22 scenes.

Abstract
Current benchmarks for facial expression recognition

(FER) mainly focus on static images, while there are limited
datasets for FER in videos. It is still ambiguous to evalu-
ate whether performances of existing methods remain sat-
isfactory in real-world application-oriented scenes. For ex-
ample, the “Happy” expression with high intensity in Talk-
Show is more discriminating than the same expression with
low intensity in Official-Event. To fill this gap, we build a
large-scale multi-scene dataset, coined as FERV39k. We
analyze the important ingredients of constructing such a
novel dataset in three aspects: (1) multi-scene hierarchy
and expression class, (2) generation of candidate video
clips, (3) trusted manual labelling process. Based on
these guidelines, we select 4 scenarios subdivided into 22
scenes, annotate 86k samples automatically obtained from
4k videos based on the well-designed workflow, and finally
build 38,935 video clips labeled with 7 classic expressions.
Experiment benchmarks on four kinds of baseline frame-
works were also provided and further analysis on their
performance across different scenes and some challenges
for future research were given. Besides, we systematically
investigate key components of DFER by ablation studies.

∗ Corresponding author

The baseline framework and our project are available on
https://github.com/wangyanckxx/FERV39k.

1. Introduction

Facial expression recognition (FER) in static images [43]
or videos [29] is of great importance to many applications,
such as human-computer interaction (HCI) [2] and lie de-
tection [3]. With millions of images uploaded every day by
users from different events and social gatherings, there are
various available large-scale datasets for static FER, such as
RAF-DB [27] and AffectNet [34]. On top of these datasets,
various methods [14, 15, 26, 44] are designed to understand
human emotion and recognize facial expressions. In con-
trast to static image FER, there are only a few video-based
facial expression datasets. In the early period, researchers
paid attention to in-the-lab datasets, such as CK+ [32] and
Oulu-CASIA [48], which are collected from lab environ-
ments and contain limited posed video clips with no more
than 30 frames. Recently, recognizing expressions from in-
the-lab short video clips has achieved considerable progress
[29,45,49], but these models often fail to be directly applied
for in-the-wild scenes. Typically, limited samples without
complex and varied scene context might be impractical for
real-world applications.
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Dataset (Year) Samples Emo. Anno. Best. Context Scene Video Sources
Lab Shot Movie TV Live Show Others

CK+ (2010) [32] 327 7 Exps 1 99.69 Lab ✓
Oulu-CASIA (2011) [48] 560 6 Exps 1 92.7 Lab ✓
Aff-Wild (2017) [23] 298 V-A 8 N/A Wild ✓ ✓ ✓
AFEW-VA (2017) [24] 600 V-A 2 N/A Wild ✓
AFEW 8.0 (2018) [11] 1,809 7 Exps 2 53.26 Wild ✓
CAER (2019) [25] 13,201 7 Exps 3 77.04 Wild ✓
DFEW (2020) [21] 16,372 7 Exps 10 56.41 Wild ✓ ✓
FERV39k (2021) 39,546 7 Exps 30 N/A Wild ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of statistics of existing available DFER datasets and our built FERV39k. (Emo. = Emotion distribution; Anno. =
Annotation times; Best. =Best accuracy; Exps = Expressions; V-A = Valence-Arousal.)

With the development of AFEW competition [11, 24],
video-based in-the-wild datasets are released progressively,
but their video clips are limited and not enough for devel-
oping deep FER models. Although the seeming datasets,
such as CAER [25] and DEFW [21], claim that their sources
of videos are diverse, there exist some limitations in these
datasets. For CAER [25], data volume reaches 13k, how-
ever, its scene is single and lacks challenge to FER meth-
ods. DEFW [21] is a large-scale and well-annotated uncon-
strained dataset for FER in videos, but it fails to consider
and further differentiate scene categories [9], which are es-
sential for application-oriented expression recognition. Be-
sides, these works all overlook how to automatically gener-
ate abundant candidate video clips for manual annotation to
meet the need of building a larger-scale dataset.

It is necessary to build a multi-scene dataset to advance
the FER in video. The benchmark should satisfy several im-
portant requirements to cover realistic challenges. 1) Con-
sidering the complexity of real-world applications, selected
scenes should cover various aspects. 2) With billions of
videos currently accessed from the Internet and video plat-
forms, there is an urgent need for robust algorithms that
can automatically generate massive video clips. 3) Due to
the complexity of facial expression annotations, the work-
flow of annotating video clips needs to be well-designed.
Based on the above guidelines, we build FERV39k (Fig-
ure 1), which is a large-scale, multi-scene, high-quality
dataset, and contains 38,935 video clips labeled with 7 clas-
sic expressions in 4 scenarios: Daily Life, Weak-Interactive
Shows, Strong-Interactive Activities, and Anomaly Issues.
We design scenarios and scenes for four reasons: 1) Plenty
of video sources and samples. 2) Expandability of 22 fine-
grained scenes. 3) Large variations and limited overlapping.
4) Distinct associations with scene context. Besides, we de-
sign a four-stage strategy, which itself generates 86k candi-
date video clips from 4k raw videos.

Specifically, our built FERV39k has 3 main character-
istics: 1) Multi-scene: clips are divided into 4 scenarios
and subdivided into 22 scenes with different characteris-
tics. 2) Large-scale: the amount of video clips reaches 39k
with last time from 0.5s to 4s, which indicates that available
video frames and cropped facial images reach 1M with the

resolution of 336 × 504, and 224 × 224, respectively. 3)
High-quality: workflow of crowdsourcing and professional
annotation is adopted to ensure high-quality labels with the
guidance of fine-grained expressions.

Given the well-annotated and multi-scene video clips in
our built dataset, we first benchmark four kinds of deep
learning-based architectures for FER in videos on the chal-
lenging FERV39k following action recognition baselines
[7, 22, 30]. We then perform several baseline evaluations
with four baselines and representative backbones to reveal
challenging aspects of multi-scene expression representa-
tion in videos. According to our analysis on FERV39k
benchmark, we uncover several new challenges: 1) dif-
ficulty and confusion of 7 basic expression classes. 2)
discrepancy across 4 scenarios. 3) unsatisfactory cross-
scenario performance. 4) long-tail distribution of expres-
sions and duration. To systematically enumerate key com-
ponents in modeling DFER based on the four baseline ar-
chitectures on FERV39k, we further carry out several ab-
lation studies and figure out some significant findings: 1)
Pre-training on large-scale datasets is not always helpful. 2)
More sampling fails to steadily improve performance. 3)
Scene information plays a complementary role on DFER.

In summary, our work has three main contributions:
1) We construct a novel large-scale multi-scene FERV39k
dataset for both intra-scene and inter-scene DFER. The
dataset contains 38,935 video clips labeled with 7 clas-
sic expressions across 22 fine-grained scenes in 4 isolated
scenarios. To our best knowledge, this is the first dy-
namic FER dataset with 39K clips, scenario-scene division
as well as cross-domain supportability. 2) We proposed
four-stage candidate clip generation and two-stage anno-
tation workflow with a balance between cost and quality
control which can be used in other large-scale facial video
dataset construction. 3) We benchmark four kinds of deep
learning-based architectures and conduct in-depth studies
of FERV39k, which reveal the key challenges of our dataset
and indicate new directions of future research according to
extensive ablation studies.
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2. Related Work

2.1. Video-based Datasets for DFER

Video-based FER datasets [11, 25, 48] have been pro-
posed since the start of the research on facial expressions.
In the earlier time, the participants were required or induced
to perform targeted facial expressions in the controlled envi-
ronments to collect data such as CK+ [32] and Oulu-CASIA
[48]. However, subject to the scale of participants and ex-
periment conditions, in-the-lab datasets are usually small-
scaled and in which facial expressions are usually far from
the real-world expressions. Besides, most methods [29, 35]
(Table 1) have already obtained excellent performance on
these benchmarks.

As a result, more attention is attracted by datasets col-
lected from in-the-wild conditions with naturalistic emotion
states, such as AFEW [11], Aff-Wild [23], AFEW-VA [24],
CAER [25], and DFEW [21]. AFEW [11] is the first in-the-
wild dataset proposed in 2013 which contains 1,809 clips
of 330 subjects labeled twice with seven labels. AFEW-
VA [24] provides more subjects, samples, and professional
annotations as well as valence-arousal annotation. CAER
[25] increases the number of video clips to 13,201 and con-
siders cropped face and context information. DFEW [21]
expands the scale and diversity of data and improves the an-
notation quality. Table 1 compares statistics among existing
datasets with our built FERV39k, which has the following
characteristics: 1) the largest number of samples reaches
39k obtained from 86k automatically generated candidate
video clips. 2) the well-designed workflow of annotation in
the combination of crowdsourcing and professional review.
3) The hierarchy design of two-level scenes is creative to
help application-oriented DFER and Cross-domain learning
in different contexts. 4) All raw videos are collected from
cross-platform sources.

2.2. Dynamic FER Approaches

Though various methods can recognize expressions from
static images [26], dynamic videos usually contain more in-
formation including the movement of appearance as well as
other temporal information. There are two kinds of network
structures, named 3-dimensional convolutional networks
(3D ConvNet) and 2D ConvNet-LSTM, commonly used for
DFER. The 3D ConvNet-based methods [31, 40] use 3D
ConvNet extracting spatio-temporal features and generating
embedding for DFER. For example, the works [1, 40] use
C3D [40] for local spatio-temporal feature extraction. The
2D ConvNet-LSTM based methods [29, 33, 47] combine
the CNNs and the LSTM for extracting spatial features and
learning temporal modeling, respectively. Most works [13]
mainly rely on the analysis of cropped face regions, ignor-
ing scene context information for emotion recognition in the
wild. To solve these limitations, Lee et al. [25] investigated

the influence of context information by a two-stream en-
coding network (CAER-Net) which utilizes face encoding
stream and context encoding stream to encode the cropped
face region and context information, separately. With anal-
ysis and comparison among existing video-based represen-
tation architectures on whether convolutional layers use 2D
or 3D kernels, and whether the input to a network includes
scene context, we design four kinds of baseline architec-
tures.

3. The FERV39k Dataset

To introduce a novel and challenging benchmark for
application-oriented DFER, we propose a well-designed
procedure of dataset construction to build our FERV39k
with high-quality annotations. The FERV39k is more chal-
lenging and inspiring than previous ones in multiple ap-
plication scenes, cross-domain learning supportability, au-
tomatic candidate clip selection and two-stage efficient &
highly credible annotation. While other types of annota-
tions based on these data will be included in succeeding
versions, e.g., frame-level annotation with key expression,
the current version of FERV39k mainly provides annota-
tions for DFER on 4 isolated scenarios with 22 fine-grained
scenes labeled by 7 basic expressions.

3.1. Key Challenges

Inspired by the key challenges [38], we consider a series
of unprecedented difficulties and scheme the corresponding
strategies, which are followed as:
How to define and generate the scenes and expressions?
Since thousands of contexts/scenes and dozens of facial ex-
pressions occurred systematically in all countries, it is im-
practical to fulfill the all-scene task in work [9]. Fortunately,
we analyze the findings and conclusions from the work of
Cowen et al. [9], which help us summarize 4 scenarios con-
sisting of 22 scenes as well as the 7 basic expressions. Fur-
thermore, a novel scene-based keyword list and fine-grained
labels are designed.
How to automatically generate candidate video clips?
Different from static facial images crawled from the In-
ternet based on keywords [34], extra segmentation is re-
quired to obtain short-duration video clips with a single ex-
pression due to the story complexity of a video or movie.
Generally, the pipeline of candidate video clips collection
for a DFER dataset is crawling large-scale videos (meta-
data) from the Internet and cropping the single expression
clips manually. However, manual operation is costly for
a large-scale dataset. Therefore, a novel four-stage FER-
based video segmentation process is proposed.
How to design annotation procedure with quality con-
trol? Crowdsourcing services such as Amazon Mechanical
Turk or JD Crowdsourcing are commonly used to build a
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Figure 2. An overview of FERV39k construction.
large-scale dataset. However, discovering the subtle dif-
ference between some expressions requires professional
knowledge. As a result, a two-stage annotation workflow
is proposed to get quality-guaranteed annotation with a bal-
ance between cost and reliability.

3.2. Dataset Construction Procedure

In Sec. 3.2, we will introduce the three steps for dataset
construction named selection of scene vocabulary and ex-
pression class, generation of candidate video clips and data
annotation (Figure 2).
Selection of scene vocabulary and expression class. Be-
fore data collection, we first design the Scene Vocabulary
(including their keywords) and Expression Class in par-
allel. For the Scene Vocabulary, we analyze the statis-
tic results from work [9], select 22 representative scenes
and divide them into 4 scenarios: 6 scenes {Argue, So-
cial, School, Medicine, Conflict, and Daily-Life} designed
for Daily Life (DL11k), 6 scenes {Action, Scholar-Reports,
Speech, Elegant-Art, Live-Show, and Talk-Show} designed
for Weak-Interactive Shows (WIS9k), 6 scenes {Business,
Experiment, Official-Event, Crime, Interview, Contest}
for Strong-Interactive Activities (SIA10k) and 4 scenes
{History, Terror, War and Crisis} for Anomaly Issues
(AI9k). For our scene-based raw material collection, we
also design a keyword list for each scene. And to design
our Expression Class, 7 basic expressions namely “Angry”,
“Disgust”, “Fear”, “Happy”, “Sad”, “Surprise”, “Neutral”
are selected as annotation labels. And we follow the taxon-
omy defined by Parrot etc. [42] to carefully select 26 words
[28] aiming at clarifying the difference of fine-grained emo-
tion classes, which results in the final expression hierar-
chy shown in Figure 3(a). Following the expression defi-
nition [11, 21, 34], we also initialize an expression list and
write a handbook to clarify each expression.
Generation of candidate video clips. Following the works
[21, 23, 27, 34], online videos originate from real-life en-
vironments in different scenes, hence the human expres-
sion in the videos can be recognized as real-world facial
expression. We start with reviewing top-level 22 scenes and
then collecting corresponding online videos, TV shows and

movies from searching/video engines. To acquire clips, ex-
isting works ask annotators to manually segment video clips
with expressions via video editing software. For processing
data on a smaller scale, the cost of time and labor is af-
fordable. However, for our 39k clips dataset (raw materials
are even more), it seems impractical to extract clips manu-
ally. Hence, we adopt a four-stage strategy to collect and
generate candidate video clips for multi-scene videos, the
pipeline of which is shown in Figure 3(b).

Firstly, we download over 6k metadata with different
lasting time from 8 worldwide open-source engines con-
taining Asian, African, and European/American videos via
generated keyword list. Afterwards, we sort and randomly
remove some of the videos. After this step, 4k pieces of data
are left with balanced time distribution of scenes. Accord-
ing to work [5], we randomly segment them into video clips
among 0.5-4 seconds. To generate facial clips, we make
a rule list to help our well-designed mechanism adaptively
and automatically select a twenty-fold number of clips than
the expected scale of the final dataset. However, the rule-
based selection mechanism is rough for generating a good
candidate and manual refinement is still a hard job. As a
result, we utilize a pre-trained light-weight ResNet-50 FER
detector to refine these clips and generate candidate clips
with expression predictions. Finally, with the prospect that
the scale of filtered clips is double of the final dataset scale,
we randomly remove some clips and keep the latency distri-
bution of estimated expressions fit the real-world work [9].
Manual annotation. To achieve the balance of profes-
sional annotation and cost control, we design a workflow
of annotation-examine for data annotation (Figure 3(c)). In
our designed procedure, there are two roles named crowd-
sourcing annotator (CA, 20 workers) and professional re-
searcher (PR, 10 workers), respectively. Our goal is to sub-
tly employ PRs to get professional annotation at a lower
cost. To further help annotators differentiate our task from
many others on the platform as well as make our task as
stimulating and engaging as possible, the JD Crowdsourc-
ing establishes a single-page web base on our guidance. The
labelling interface is shown in Figure 3(d), in which one
video clip, introductions and the bounding box of face area
in each frame are provided to assist annotators. Besides, the
platform can automatically convert 26 choices into 7 ex-
pression labels.

The clips are divided into groups at first (5% of each are
PR annotated) and copied 3 times. Then we randomly shuf-
fle the grouped materials and provide them to CAs. CAs
are asked to choose the most likely word or “PASS” on the
platform. After annotation, group copies are checked via
Flag-Recaptured Statistic method [4]. We design 80% and
40% correct rates as two thresholds and mark copies as un-
acceptable (UA), Improper (IP) and Accept (AC). The IP
and AC groups will be passed to PRs for judgement. In
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Figure 3. Four important components for dataset construction. (a) Our design of 4 isolated scenarios, 22 scenes, 7 basic expressions and
26 fine-grained expressions. (b) The four-stage generation of candidate video clips in the FERV39k dataset. (c) The procedure of data
annotation, statistic evaluation, professional judgement and label generation. (d) The labeling interface in the crowd-sourcing platform.

this step, PRs only need to decide whether the annotation
of a group is acceptable. The UA ones will retreat to CAs
and ones still IP will be relabeled by the PRs. For both UA
and IP, PRs will provide feedback to CAs. Afterwards, the
Weighted-Winner-take-all (WWTA) voting method is used
for generating final facial expression labels. To our goal,
after iterations on a few groups, the annotators can provide
relatively reliable annotations and verification work will be-
come less complex.

3.3. Dataset Statistics

The FERV39k consists of 4 isolated scenarios subdi-
vided by 22 detailed scenes, including nearly 39k video
clips labeled with 7 basic facial expressions [26] with an
average duration of 1.5 seconds. In general, the clips
are evenly distributed in 4 scenarios but the scale of each
scene also reflects a severe long-tailed distribution. For
further analysis, Figure 4 (left) shows the number of clips
in each scene and the distribution of expressions in our
built FERV39k, which is used for baseline analysis in this
paper. The histogram chart shows a natural long-tailed
distribution across 7 basic expressions in different scenes.
For instance, “Fear” appears more in the “Terror” scene
(18%) and “Happy” appears more in the “Live-Show” scene
(33%). This will be a new challenge for DFER models. Fig-
ure 4 (right) shows the distribution of expression duration
of video clips in different scenes. The large variation of ex-
pression duration makes it more difficult for DFER models
to accurately localize keyframes like [38]. Moreover, ex-
pression instances in FERV39k are often related to longer
temporal context and interactions with context. These in-

herent challenges of FERV39k require a more powerful and
flexible temporal modeling scheme for expression detec-
tion. Our built FERV39k can be available under the con-
dition of abiding by the agreement.

3.4. Dataset Characteristics

Our FERV39k has several distinguishing and attractive
characteristics compared with existing datasets.
Large-scale candidate video clips. With the introduc-
tion of the four-stage candidate clip generation method, we
can cheaply acquire massive candidate video clips, which
makes FERV39k possible to be further expanded.
High-quality annotation. With our two-stage annotation
strategy, supporting files, fine-grained choices as well as
Flag-Recaptured Statistic methods, Professional Judgement
and WWTA Voting, FERV39k can get reliable labels at
lower cost.
Task difficulty. With 4 difficulties proposed: 1) large vari-
ance of expression duration among clips; 2) different inten-
sities of expressions across different scenes; 3) limited rep-
resenting frames for labeled expression in a clip; 4) severe
long-tailed distribution in different scenes and expressions,
FERV39k brings new challenges for DFER methods.
Application-oriented diversity. With a new sight of ap-
plication, FERV39k pays attention to specific application
performance and cross-scene robustness of DFER methods.

4. Benchmark Performance
In this section, we will conduct experiments to show the

challenges of FERV39k in practical via baseline evaluations
and figure out some findings via ablation studies.
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Figure 4. Statistics of our FERV39k. Left chart is the distribution of 7 expressions of video clips in different scenes, sorted by 4 scenarios
and 7 different expressions. And Right chart is the distribution of 7 expression duration of video clips in different scenes, which is sorted
by 4 scenarios and 5 different time duration.

4.1. Experiment Setup

FERV39k protocol. To build a solid DFER benchmark,
we manually split all data into training set (including vali-
dation set), and testing set. In FERV39k Benchmark, video
clips of all scenes are randomly shuffled and split into train-
ing (80%), and testing (20%) without overlapping, which
forms 27 kinds of configurations consisting of 22 setups for
each scene, 4 setups for isolated scenarios and 1 setup for
all scenes. Cross-scene learning is also available for which
some special scenes are used for testing. Besides, we pro-
vide cropped face images with 224 × 224 resolution and
scene images with 336×504 resolution to meet the require-
ment of context-aware DFER methods.
Implementation details. In our experiments, the whole
framework is built on PyTorch-GPU using NVIDIA
GeForce RTX 2080Ti GPUs. We set learning rate (lr) in
a range between 1e-3 and 1e-2, weight decay as 1e-4, and
the batch size is fixed at 32 for all architectures. The video
clips are taken as input in each epoch with lr as 0.95. All the
models are trained from scratch using FERV39k to present
the benchmarks for 60 epochs with standard stochastic gra-
dient descent (SGD) with momentum as 0.9 and uniformly
sampled frame interval as 8.

Besides, as the number of sequences in FERV39k is lim-
ited for training, we exploit the data-augmentation tech-
niques into the training set: randomly cropping, illumi-
nation changes and image flip. For reducing the depen-
dence on the computation source, all cropped facial images
are resized to 112 × 112, and whole images are resized to
112× 168.
Evaluation metric. Following the standard practice [21,34,
37] for evaluating FER or DFER, we choose two commonly
used metrics: weighted average recall (WAR, also called
overall accuracy) and unweighted average recall (UAR).

4.2. Baseline Network

According to the baseline architectures of action recog-
nition in video [7,8,22], we first briefly define and describe
several standard ConvNet architectures for DFER. We con-
sider four typical approaches for DFER: 2D ConvNet, 2D
ConvNet-LSTM on top of [46], 3D ConvNet [20, 40], and
Two-Stream 3D ConvNet. We then use these architectures
as baselines and compare their performance by training and

testing on the whole FERV39k. Table 2 shows the com-
parison results of four kinds of baseline architectures on
FERV39k.
2D ConvNet. Deep CNNs (2D ConvNet) such as VGG [39]
and ResNet [19], have made great success on image clas-
sification tasks [36]. Hence, we reuse them with minimal
change for DFER. For processing a clip, features of all
frames can be extracted and flatted into embeddings, which
are concatenated and fed into a classifier to obtain results.
2D ConvNet-LSTM. The structure of 2D ConvNet-LSTM
is more appropriate for DFER by adding a recurrent layer to
the model [12] to introduce temporal information. Hence,
we position an LSTM layer with 1024 hidden units and
batch normalization layer (as proposed by Cooijmans et
al. [10]) after the last average pooling layer of 2D ConvNets.
A fully connected layer is added on top as the classifier.
3D ConvNet. 3D ConvNets(e.g., C3D [40] and I3D [7])
can directly model hierarchical representations of spatio-
temporal information with spatio-temporal (3D) filters. One
issue with 3D ConvNets is that they have much more pa-
rameters than 2D ConvNets due to the additional kernel di-
mension. Besides, extra adjustments of network and output
structures are required for DFER.
Two-Stream Networks. Different from the above methods,
two-stream networks can encode the context components of
the scene, as well as the facial expression of a cropped facial
image, together, inspired by CAER [25]. Specifically, we
feed sequences of cropped face images and scene frames
into the Two-Stream 3D ConvNets and 2D ConvNet-LSTM.

4.3. Baseline Evaluation

On top of FERV39k, we systematically evaluate four
kinds of baseline architectures across multiple scenes. Here
we note that all training protocols follow the original papers
unless stated otherwise. Table 2 shows the results of four
kinds of baseline architectures on 9 representative scenes of
FERV39k (showing WAR/UAR performance). All models
are trained from scratch in experiments.

In summary, performance on more specific scenarios
(WIS9k, SIA10k) is better than others, and for 22 fine-
grained scenes, most of the methods achieve the highest re-
sult on Experiment (SIA10k) and lowest on Terror (AI9k).
We attribute the results to the consistency & intensity of ex-
pressions and the discriminability of spatial-temporal con-
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Method All DL11k WIS9k SIA10k AI9k Social DailyLife Liveshow Talkshow Interview Contest Experiment Terror Crisis

R18 39.33/30.30 39.75/31.36 40.50/28.67 42.31/30.02 33.90/27.20 39.74/33.26 41.40/31.13 37.72/26.82 38.57/25.47 45.75/29.18 48.24/33.37 49.56/26.70 31.28/26.69 36.88/29.21
R50 30.57/22.47 30.46/21.52 32.52/23.50 30.56/22.68 30.14/19.94 27.51/25.05 31.00/19.37 28.51/23.13 28.86/20.14 33.25/21.72 37.06/27.55 31.86/16.89 26.54/19.67 24.25/20.11
VGG13 41.02/31.19 40.40/31.59 43.04/30.23 43.44/29.99 38.86/29.94 48.03/35.50 39.07/28.63 44.74/30.40 40.57/26.25 44.34/28.83 47.62/32.39 49.56/26.52 36.73/31.48 42.52/31.65
VGG16 41.66/32.01 41.81/32.59 42.93/30.77 42.31/29.58 39.60/31.46 43.23/34.77 41.19/28.73 46.05/33.65 39.43/24.96 47.17/30.77 48.03/32.92 52.21/33.12 39.57/34.21 40.86/32.95

R18-LSTM 42.59/30.92 43.34/32.24 44.12/29.59 42.85/28.78 39.66/30.40 42.36/31.47 41.61/29.11 46.93/31.59 44.57/27.23 45.52/28.01 50.10/33.79 48.67/25.42 35.55/29.96 44.85/33.46
R50-LSTM 40.75/32.12 40.93/32.91 41.74/30.70 42.16/30.39 38.01/31.16 42.79/35.70 41.61/28.00 40.35/30.40 40.00/27.42 43.87/30.02 48.24/34.32 47.79/33.17 36.26/32.46 39.87/31.87
VGG13-LSTM 43.37/32.41 42.29/32.46 44.23/30.81 45.00/31.45 41.20/31.49 43.67/34.64 46.07/31.50 45.61/31.28 44.29/29.17 47.17/30.07 49.90/33.66 57.52/36.17 40.28/33.61 42.86/31.11
VGG16-LSTM 41.70/30.93 42.99/32.32 41.63/28.42 43.83/29.83 37.04/29.39 49.34/36.83 44.37/30.58 36.84/25.76 41.14/26.39 46.23/27.39 48.65/34.15 53.10/30.03 36.26/32.83 41.53/33.59

C3D [40] 31.69/22.68 26.95/21.02 30.15/19.94 42.70/29.22 27.29/19.80 34.50/24.34 26.96/18.35 28.51/22.55 36.57/23.25 43.16/26.35 46.58/32.44 54.87/22.87 22.99/20.31 32.56/20.93
I3D [7] 38.78/30.17 38.56/29.25 38.52/29.11 40.55/31.07 37.44/28.15 37.55/32.05 39.70/26.09 37.72/30.57 26.29/18.27 41.51/27.87 45.55/35.43 53.10/31.56 33.89/29.10 36.54/28.81
3D-R18 [41] 37.57/26.67 37.69/27.47 38.40/24.85 40.40/26.08 33.45/25.40 41.48/29.83 35.67/24.95 39.04/25.12 36.29/21.86 42.69/22.70 44.10/28.32 54.87/32.50 31.28/27.83 37.21/27.25

Two C3D 41.77/30.72 41.45/31.37 43.44/29.77 44.71/30.15 37.89/28.09 47.16/32.22 35.46/23.26 41.23/25.74 42.00/27.89 46.23/28.45 48.03/32.31 63.72/37.55 35.78/30.47 40.86/29.60
Two I3D 41.30/31.01 41.02/31.55 42.31/30.14 43.63/31.20 38.75/28.53 44.98/30.94 40.76/28.93 38.16/25.91 39.43/28.37 44.81/29.96 48.03/33.28 54.87/26.96 36.02/29.19 38.87/28.01
Two 3D-R18 42.28/30.55 42.77/32.72 44.12/29.63 42.95/27.83 38.46/28.54 49.34/31.62 39.28/28.41 41.67/28.50 38.57/24.66 45.52/24.71 48.45/33.16 62.83/33.41 35.07/28.73 42.19/29.58
Two R18-LSTM 43.20/31.28 42.20/31.66 44.91/30.37 46.33/31.09 40.40/30.04 47.60/35.60 40.55/27.09 44.74/26.55 43.43/27.52 47.41/28.50 53.00/33.93 57.52/24.56 36.49/29.94 43.85/31.45
Two VGG13-LSTM 44.54/32.79 44.65/32.96 45.25/31.45 46.57/31.88 40.63/30.96 48.03/36.43 46.92/31.55 48.25/33.02 45.14/28.30 46.70/28.35 52.80/35.32 53.98/31.66 37.44/32.49 46.84/35.11

Average 39.58/29.34 39.27/29.80 40.61/28.11 42.04/28.94 36.55/27.61 42.25/31.97 38.98/26.75 39.79/27.65 38.39/24.75 44.19/27.22 47.33/32.39 52.06/28.57 33.75/28.70 39.12/29.12

Table 2. Comparison results of four kinds of baseline architectures trained from scratch on FERV39k (WAR/UAR).

Figure 5. Further experiment analysis in detail. (a) The worst, average and best scene test result for RS50-LSTM trained on 4 scenarios
respectively. (b) The confusion matrices of Two stream VGG13-LSTM (best performance) on the FERV39k and 9 representative scenes.
(c) The comparison of performance on FERV39k and DFEW of 4 baseline methods.

text features. Two-stream 2D ConvNets-LSTM methods
outperform the others where VGG13-LSTM has the best
performance of 44.54%. And 2D ConvNet-LSTM methods
outperform the 3D ConvNet methods on both one and two
stream structures. We recognize this as the LSTM has a bet-
ter global-local temporal feature utilization mechanism. In
Section 4.4, we further explore the effect of scene & method
and challenges on FER39k for DFER.
Cross-scenario challenge. We evaluate the cross-domain
difficulty among 4 isolated scenarios via RS50-LSTM. Ta-
ble 3 shows a nearly 8% average cross-domain decline. And
the largest decline of WIS9k experiment shows that it is
more challenging to transfer the model from weak inter-
active scenarios (e.g., WIS9k) to stronger ones than vice
versa. To prove it, we also collect statistics of scene perfor-
mance distribution of models training on the corresponding
scenario in Figure 5(a). The result also shows WIS9k has
both ideal performance and smaller differences among the
4 scenarios. The result shows it a challenging task to over-
come varieties of feature distribution of an expression in
different domains of FERV39k.
Scene difficulty and expression confusion. For further an-
alyzing the difficulty in recognizing an expression in differ-
ent scenes, we also provide the confusion matrices in Fig-
ure 5(b) of selected scenes on the best-performed network

Source
Target

DL11k WIS9k SIA10k AI9k

DL11k 37.69/27.21 29.98/19.93 31.15/21.87 24.27/18.54
WIS9k 27.04/19.95 40.5/26.6 31.78/19.9 24.62/19.24
SIA10k 28.57/21.92 31.39/19.95 39.72/24.9 27.75/20.28
AI9k 26.29/20.21 23.3/18.29 23.85/17.93 31.62/24.16

Table 3. Comparison of cross-scenario results on DL11k, WIS9k,
SIA10k, and AI9k of FERV40k on RS50-LSTM.

(VGG13-LSTM). The overall 10 matrices have similar dis-
tribution with sight offset among scenes in which method
gains better performance on 4 obvious expressions and is
the hardest. The result shows an overall statics consistency
with previous datasets (e.g., DFEW). However, some subtle
changes are worth to be noticed. For example, the perfor-
mance for “Sad” declined in Talkshow, Liveshow and Ex-
periment as well as “Angry” in Interview and Contest. This
situation may be caused by the changes of expressions in
intensity, feature and frequency of occurrence (long-tailed
distribution) in specific scenes. There are obvious biases
and heterogeneity in our built FERV39k, which make it a
challenging dataset. We summarize several directions that
might work: (1) Long temporal modeling; (2) Scene rea-
soning; (3) Global-local fusion in spatial and temporal.
Comparing performance with the existing dataset. To
emphasize the difficulty of FERV39k, we compare results
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Figure 6. The results of three ablation studies. The charts from left to right are the result of pretraining effectiveness, sparse frame sampling
effectiveness and scene information effectiveness, respectively.

with three baseline architectures on DFEW (without a two-
stream baseline). The methods on DFEW get higher av-
erage results of about 10% (Figure 5(c)), which proves
FERV39k is more challenging than state-of-the-art meth-
ods. We attribute this to the following reasons: a) FERV39k
tripled the number of clips than DFEW, b) Data variety rep-
resents a real-world challenge for existing algorithms and c)
22 scenes in this dataset require further application-oriented
research.

4.4. Ablation Studies

Does pre-training on large-scale datasets help? We em-
ploy RS18-LSTM and RS50-LSTM with and without pre-
training using MS-Celeb-1M [18] and DFEW [21] our built
FERV39k. The experiment shows that the former ones do
not outperform the latter in Figure 6 (left). One potential
reason is that the scene and feature distribution of FERV39k
is different from other datasets.
Is sparse sampling sufficient for DFER? The sparse sam-
pling schemes [6, 17, 38] often lead to high efficiency
and promising accuracy in action recognition. To explore
whether sparse sampling is sufficient for DFER, we further
investigate the influence of sampling frames on DFER per-
formance. Here we adjust the number of input frames from
2 to 16 in steps of 2 for four 2D ConvNet-LSTM networks
on FERV39k. The results in Figure 6 (middle) show that
the performance trend varies among different methods but
as frames increase over a threshold, the effect tends to be
flat or fluctuate decline slightly. These results also show
that a more subtle sampling method should be used and the
key frames extraction might be a point [16, 50].
Is scene information auxiliary for DFER? In order to fur-
ther understand whether the scene information can boost the
performance of DFER methods, we compare Two-, single-
stream I3D networks on FERV39k benchmark. We select
the best and worst result scene of 4 scenarios and provide
results in Figure 6 (right), which show that two-stream net-
works can enhance the face-only model and achieve better
results in most scenes due to the fusion of the context infor-
mation in the scene. For example, we could easily guess the
expression as “Sad” with the facial region and scene con-
texts when someone comes.

Why current methods fail to handle FERV39k? By care-
fully summarizing all the experiments, we conclude some
factors that make FERV39k challenging to four baseline
architectures: (1) Limited expression-related frames, espe-
cially scenes with frequent emotional changes. (2) Subtle
spatial semantics, which involves differences in face and
scene-face relationships. (3) Complex temporal dynamics,
such as the direction of motion, and the degree of rotation.
In addition, the FERV39k dataset poses higher requirements
for intermediate representation which is hard to be extracted
due to the diversity in one scene.

5. Conclusion

In this paper, we build a large-scale multi-scene dataset
(FERV39k) for FER in videos. Compared with existing
video-based datasets, our FERV39k has many distinctive
characteristics: 1) Automatic generation of large-scale can-
didate video clips; 2) Well-designed workflow of crowd-
sourcing and professional annotation for high-quality data
labeling; 3) Raising four kinds of challenges and difficulties
for FER in videos; 4) Application-oriented multi-scene hi-
erarchy for the robustness of DFER methods. To benchmark
the FERV39k, we design four kinds of baseline architec-
tures for video-based FER and give an in-depth evaluation
and ablation studies. These results present some important
challenges and uncover critical messages for advancing the
area of video-based FER in the future.
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