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Figure 1. Our hybrid dataset, the base and detail model of FaceVerse, as well as our single-image fitting result.

Abstract

We present FaceVerse, a fine-grained 3D Neural Face
Model, which is built from hybrid East Asian face datasets
containing 60K fused RGB-D images and 2K high-fidelity
3D head scan models. A novel coarse-to-fine structure is
proposed to take better advantage of our hybrid dataset. In
the coarse module, we generate a base parametric model
from large-scale RGB-D images, which is able to predict ac-
curate rough 3D face models in different genders, ages, etc.
Then in the fine module, a conditional StyleGAN architec-
ture trained with high-fidelity scan models is introduced to
enrich elaborate facial geometric and texture details. Note
that different from previous methods, our base and detailed
modules are both changeable, which enables an innovative
application of adjusting both the basic attributes and the
facial details of 3D face models. Furthermore, we pro-
pose a single-image fitting framework based on differen-
tiable rendering. Rich experiments show that our method
outperforms the state-of-the-art methods.

1. Introduction
3D human face modeling has been a hot topic in com-

puter vision and computer graphics, which enables a wide
range of applications such as film, video games, mixed re-
ality, etc. Since 3D Morphable Model (3DMM) [4] was

proposed in 1999, it has been one of the most powerful
tools in face-related researches due to its effective control
of facial shape, expression and texture. However, recent
researches pose more challenges to 3DMM in terms of ac-
curacy, photo-realistic details and editability. On one hand,
the performance of 3DMMs is limited due to the difficulty
of data acquisition. On the other hand, given a coarse face
model, detailed facial geometry and texture are still not
changeable in the previous methods [26, 43], which lim-
its the detailed adjustment of facial features. To overcome
the above issues, we propose a hybrid dataset and design a
coarse-to-fine structure to combine high generalization abil-
ity and fidelity. Furthermore, facial geometry and texture
details, like small changes of facial features, can also be
parameter-changeable.

At one end of the spectrum, existing 3D face datasets
are usually limited in either scale or fidelity. The captur-
ing system can be divided into two categories: sparse or
dense camera arrays [6, 19, 26, 31, 43] and consumer depth
sensors [8, 18, 30, 45]. The former system requires elab-
orated setup and the data collection process is quite time-
consuming, which limits the scale of captured dataset to a
few hundreds. The latter system is off-the-shelf and takes
less time in data acquisition, which allows collecting RGB-
D data from a large number of identities. However, the cap-
tured RGB-D data usually suffers from low resolution and
low precision. The insufficiency of scale or fidelity limits
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the performance of previous works in either generalization
or fidelity. Therefore, we propose to build a hybrid dataset.

At the other end, the formulation of previous 3DMMs
can not represent parameter-changeable facial details.
PCA-based methods [6, 18, 27, 30, 45] can describe shape
and expression changes in an effective way. Multi-linear
methods [8, 31] present a larger parameter space to cover
more information of the corresponding datasets. Non-linear
methods [21,40] use neural networks to achieve better flex-
ibility. However, all the above methods can not repre-
sent the facial details, like the detailed shape of facial fea-
tures. Recent methods [26,43] show strong capability in 3D
fine-grained face model reconstruction, but they still rely
on pre-trained super-resolution or displacement prediction
networks, which means the facial details are not parame-
ter changeable. To conclude, a 3DMM representation with
changeable facial details has not been proposed yet.

To overcome the limitations above, in this paper, we pro-
pose FaceVerse, which achieves high generalization abil-
ity and fidelity using a hybrid dataset and can generate
parameter-changeable facial details. Firstly, we collect a
hybrid dataset of East Asians consisting of a large-scale
dataset captured by consumer depth sensors and a high-
fidelity dataset captured by a multi-camera system. Sec-
ondly, we propose a coarse-to-fine structure to scheme our
parametric model. The base model is first built from the
large-scale dataset, which guarantees strong generalization
ability and basic fidelity of the base model. Then, input with
the UV maps unwrapped from the base model, we build
our detailed model using a novel conditional StyleGAN ar-
chitecture, which can generate changeable facial details in-
put with additional latent code and noise while preserving
the basic facial attributes provided by the input base model.
Different from the original StyleGAN [22, 23], our genera-
tor takes advantage of multi-scale features encoded from the
input maps to constrain the output maps and we use an ad-
ditional normal discriminator to further enrich the geometry
details. Note that two conditional StyleGAN networks are
used in two phases: detail generation and expression refine-
ment. Finally, we propose a single-image fitting pipeline
based on differentiable rendering, which also follows the
coarse-to-fine idea. Benefiting from the hybrid dataset, the
coarse-to-fine scheme and the novel conditional StyleGAN
architecture, the proposed FaceVerse shows better perfor-
mance than previous 3DMM methods both qualitatively and
quantitatively.

Our contributions are summarized as follows:

• We build a hybrid dataset and propose a coarse-to-fine
scheme to make better use of the dataset: the large-
scale RGB-D dataset guarantees high generalization
ability of our base model and the high-fidelity scan
dataset helps to enrich the geometry and texture details
of our detailed model.

• We propose a conditional StyleGAN architecture with
normal discriminators, which allows changing facial
details while preserving basic facial attributes.

• The proposed FaceVerse provides a powerful tool for
face modeling of East Asians and we have released our
pre-trained models and the detailed dataset to public
for research purpose1.

2. Related Work
3D Face Morphable Model. The 3D face morphable
model (3DMM) has been a long-standing research topic in
computer vision since first proposed by Blanz et al. [4] in
1999. 3DMM was first formulated as a linear model by the
PCA algorithm, which can represent the shape and texture
of 3D face model. The following researches [2, 5, 8, 26,
28, 30, 43] improved the performance using larger 3D face
datasets. Moreover, new representations including multi-
linear and non-linear models for 3DMM were also proposed
in [7, 25, 26, 29, 35, 39, 40, 42].

Recent 3D face datasets show higher diversity in both
identities and expressions. LSFM [5] was built from a large
3D face dataset containing 10,000 face scans and shows
better generalization in facial shape fitting. In the mean-
while, 3D face datasets with rich expressions were also
collected to incorporate the facial expression bases into
3DMM [2,8,28,42,43]. Furthermore, with the development
of elaborated capturing system like dense camera arrays, re-
cent 3DMM methods [2,26,43] exhibited even higher accu-
racy in 3D face modeling.

Besides the improvement in 3D face datasets, novel
modeling mechanisms were also presented for better per-
formance and flexibility. Vlasic et al. [42] first proposed
a multi-linear model to jointly estimate the variations in
identity and expression, Cao et al. [8] and Yang et al. [43]
built comprehensive bilinear models which decompose the
face meshes in both identity and expression dimensions.
Recently, non-linear models were also proposed to enable
adaptive and high-level facial deformations. Neumann et
al. [29] decomposed the captured face mesh sequences into
the sparse and localized deformation components. With
the development of neural networks, generative adversar-
ial networks (GAN) were also used to build the non-linear
3DMMs [1,16,26,39], the face representations of which can
be controlled by high-level semantics.

Monocular Face Reconstruction Based on 3DMM.
Monocular 3D face reconstruction based on 3DMM plays
an important role in many applications like face align-
ment [14, 17, 48] and face view synthesis [15, 47]. With
the assistance of 3DMM, the 3D face reconstruction task

1https://github.com/LizhenWangT/FaceVerse
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can be simplified as a model fitting problem. Early meth-
ods [30, 33, 37] mainly tried to regress the parameters of
3DMM using the facial landmarks or some other facial fea-
tures. Then the convolutional neural networks were used
to directly predict the parameters from an input face im-
age [12, 14, 17, 36, 41, 48]. Recently, self-supervised meth-
ods [10, 11] based on differentiable rendering were pre-
sented and show great performance in fitting 3D face mod-
els from a single face image.

The above methods based on model parameters predic-
tion are limited in representing facial details, and thus multi-
layer refinement structures are proposed to reconstruct de-
tailed face models. Recent works [9, 13, 20, 32, 34, 38, 43]
firstly generated a rough face model through the model pa-
rameters prediction, and then refined the facial details by
adjusting the rendered depth or predicting a displacement
map. Lin et al. [2] generated high-fidelity models by the
optimization of the albedo and normal maps. However, the
detailed facial features are still not parameter-changeable in
these researches, which limits the adjustment of facial de-
tails in 3D face models.

Compared with the state-of-the-art 3DMM and monocu-
lar facial reconstruction methods, our approach is superior
in the following aspects: (a) our model is built from a hy-
brid dataset, which contains a large-scale coarse dataset and
a high-fidelity detailed dataset; (b) we propose a coarse-
to-fine model which consists of a PCA-based model and
a novel conditional styleGAN-based non-linear model; (c)
our coarse-fine model-fitting pipeline based on differen-
tiable rendering can not only reconstruct high-fidelity 3D
face models from in-the-wild face images, but also generate
facial details which can be adjusted by our detailed param-
eters.

3. Hybrid Dataset

3.1. Coarse Dataset

We chose the structured-light depth sensors to collect
coarse 3D face data from volunteers, which show better per-
formance than ToF-based devices in distance below 1 me-
ter. Compared with dense camera array, the structured-light
depth sensors are cost-friendly and more convenient for par-
allel setup, which allows collecting RBG-D data from a
large number of identities. In practice, as shown in Fig. 2.a,
we collect about 5 RGB-D frames for each volunteer and the
frames are fused by ICP registration to generate a smooth
facial point cloud. The whole capturing process for each
volunteer only costs 5 to 10 seconds. With the assistance
of several data acquisition companies and parallel captur-
ing, we finally get 60K textured facial point clouds of East
Asians after data cleaning. Volunteers are required to keep
neutral expression during the capturing to ensure the con-
sistence of data distribution in expression.

Figure 2. The coarse data acquisition process and the age and
gender distribution of our coarse dataset.

In order to generate a topologically uniformed paramet-
ric model, we use a pre-designed 3D facial template mesh to
fit the point clouds. We firstly detect facial landmarks using
OpenSeeFace2 from the captured RGB images and project
them to the fused point clouds. Then we roughly align the
point clouds to our template mesh by 3D landmarks. Fi-
nally, a Non-rigid ICP algorithm [24] is utilized to deform
the template mesh to the aligned point clouds. The distribu-
tion of age and gender is presented in Fig. 2.b.

3.2. Detailed Dataset

Our camera system for 3D scan model collection con-
sists of 128 DSLR cameras, which equip with 85 mm lenses
and are placed about 2.5 meters away from the volunteer,
as shown in Fig. 3. The cameras are arranged in cylinder
facing towards the center by 16 pillars with 8 cameras on
each, which is similar to high quality full body scan sys-
tem in [44, 46]. During data collection, 128 images with
6000 × 4000 resolution will be synchronously collected
from different view points. We follow the Data acquisition
process of FaceWarehouse [8], where the volunteers are re-
quired to perform 21 specific expressions including neutral
expression. We finally collect 2,310 scan models (110 iden-
tities in 21 expressions) for training and 378 scan models
(18 identities in 21 expressions) for testing, which has been
released to public for research purpose.

After the data collection, the 3D scans are fitted to our
topologically uniformed template. Firstly, 3D landmarks
are marked for rigid-ICP alignment by projecting 2D land-
marks onto the 3D scans. Our base model generated from
the coarse dataset (Sec. 4.1) is used to fit the scans with cor-
responding 3D landmarks. Then, the resulting fitted mod-
els are up-sampled in the UV space (from 200 × 200 to
1024 × 1024) for the subsequent registration. Finally, we
conduct the detailed deformation on the fitted models using
Non-rigid ICP [24].

2https://github.com/emilianavt/OpenSeeFace
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Figure 3. Our camera system for data collection, as well as de-
tailed 3D scan models and corresponding registration results.

4. FaceVerse Model
A coarse-to-fine scheme is proposed to generate the pro-

posed model, FaceVerse, from the hybrid dataset: our base
model is built from the large-scale coarse dataset by PCA
and the detailed model is built from the high-fidelity de-
tailed dataset by our conditional StyleGAN networks. In
addition, we also present a single-image fitting framework
based on differentiable rendering.

4.1. Base Model Generation
We use the classical data dimension reduction algorithm,

PCA, to build the shape and texture models from the large-
scale coarse dataset, which guarantees the high generaliza-
tion ability and basic fidelity. The first 100 shape principal
components and the first 200 texture principal components
are preserved in our base model. Note that, in order to im-
prove our performance on cheeks, which are almost invisi-
ble in the coarse RGB-D frames, we add the first 20 shape
principal components learned from the detailed dataset into
the base shape model. As a result, our base model can be
expressed by shape parameters pshape = {s1, s2, ..., sm} ∈
Rm and texture parameters ptex = {t1, t2, ..., tk} ∈ Rk:

Sbase = S +

m∑
i=1

siαi Tbase = T +

k∑
i=1

tiβi (1)

where m = 120, k = 200 and S & T denotes mean shape
and texture. The shape and texture principal components
are represented by the shape vectors {α1, α2, ..., αm} and
the texture vectors {β1, β2, ..., βk}, where αi ∈ R3n and
βi ∈ R3n (n denotes the number of vertices).

As the coarse faces are captured in neutral expressions,
the expression model is generated from the detailed dataset
using PCA. The fisrt 64 principal components are used
in our expression base model, which can be formulated

by expression parameters pexp = {e1, e2, ..., el} ∈ Rl

and expression vectors {γ1, γ2, ..., γl}, where l = 64 and
γi ∈ R3n. As a result, our base model can be formulated as

Mbase = {S, T |S = S +

m∑
i=1

siαi +

l∑
i=1

eiγi,

T = T +

k∑
i=1

tiβi}

(2)

Benefiting from the large-scale coarse dataset, our base
model shows strong performance in fitting faces of different
ages and genders quantitatively. However, our base model
can not preserve the facial geometry and texture details,
which will be generated by the following detailed model.

4.2. Detailed Model Generation

As shown in Fig. 4, to incorporate more detailed facial
geometry and texture, we propose a neural representation
for our detailed model, which can take better advantage of
the detailed dataset. The base model is first unwrapped into
the UV space and up-sampled to 1024 × 1024 to facilitate
subsequent processing. The whole refinement work is di-
vided into a shape&texture refinement part and a expression
refinement part.

To better generate the facial details while preserving the
basic facial attributes provided by our base model, we pro-
pose a conditional StyleGAN network. As shown in Fig. 5,
we adopt the generator, mapping network and noise injec-
tion module of StyleGAN and design an extra encoder to
encode multi-scale features from the input UV maps. The
multi-scale features are added into the generator as a con-
ditional input, which helps to constrain the similarity of the
input and output UV maps. Besides, we use two discrimina-
tors in our conditional StyleGAN: one discriminator input
with the input and output UV maps, which helps to generate
more details and constrain the similarity of input and output
maps; another normal discriminator input with a UV nor-
mal map calculated from the output geometry, which helps
to generate more geometry details and constrain a reason-
able neighborhood relationship of the adjacent points. The
input detail latent code z ∈ R512 is sampled from the stan-
dard normal distribution, which will be disentangled into
the style inputs by the mapping network. In the meanwhile,
random noise is injected to enrich tiny details like beard and
eyebrows.

In the shape&texture refinement part, we use a condi-
tional StyleGAN Gdetail to generate facial geometry and
texture details. Firstly, the input base model Mbase in the
neutral expression is unwrapped into a geometry UV map
Sbase and a texture UV map Tbase. Note that we believe
geometry details and texture details should have a strong
correlation, so we concatenate the geometry and texture
UV maps into a 6-channel input Cdetail. Due to the com-
bined training of geometry and texture channels, the output
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Figure 4. FaceVerse model generation pipeline. Using the base PCA model, we first unwrap the base model Mbase into UV maps. Then
the detail generator Gdetail helps to enrich facial details controlled by the additional latent code zdetail and the injected noise. Finally,
the expression-related geometry changes will be further refined by another expression refinement generator Gexp input with the additional
latent code zexp and the injected noise.

Figure 5. The architecture of our conditional StyleGAN network.

geometry and texture are influenced by each other, which
further facilitates the subsequent detailed geometry fitting
(Sec. 4.3). The concatenated 12-channel input and output
UV map of Gdetail is entered into the discriminator Ddetail

and a 3-channel UV normal map is entered into the normal
discriminator Dndetail. As discussed in Sec. 5.3, the output
detailed model Mdetail shows fine-grained facial geometry
and texture details, which can be controlled by zdetail and
the injected noise. Moreover, the basic shape and texture
provided the input base model are still retained. The loss
terms used in the training of Gdetail can be formulated as

Ldetail =λs∥Sbase − Sdetail∥2+

λt∥Tbase − Tdetail∥2 + LGAN

(3)

where LGAN represents the adversarial loss term and the
path length regularization term of StyleGAN provided by
Ddetail and Dndetail. Note that our training process is un-
der incomplete supervision and thus the used training data
contains not only the data pairs from the detailed dataset
but also the conditional UV maps generated from our coarse
dataset, which further guarantees the effective interpolation
capability of our detail generator Gdetail.

In the expression refinement part, detailed expression-
related geometry changes like a smiling mouth will be
further refined by another conditional StyleGAN network
Gexp. Given the detailed geometry UV map in neutral ex-
pression Sdetail and the base expression formulated by the

UV offset map Ebase, Gexp will refine the detailed geome-
try while preserving the basic shape and expression. Specif-
ically, the 6-channel conditional input Cexp consists of a
basic geometry which is the sum of Sdetail and Ebase and
an additional expression offset Ebase, where the basic ge-
ometry input is used to constrain the similarity of the in-
put and output geometry and the additional expression in-
put provides priors of the facial expression. The concate-
nated 9-channel input and output UV map of Gexp is en-
tered into the discriminator Dexp and the concatenated 6-
channel UV map consisting of a normal map and an ex-
pression offset map is entered into the normal discrimina-
tor Dnexp. After training of Gexp, the 3-channel output
geometry Srefine can represent more detailed expression
changes, as discussed in Sec. 5.3, and the generation is also
controlled by the latent code zexp and injected noise. The
training process of Gexp utilizes the paired data generated
from our detailed dataset and the training loss terms can be
formulated as

Lexp =λe∥Sdetail + Ebase − Srefine∥2 + LGAN (4)

4.3. Coarse-to-Fine Single-Image Fitting

We further propose a single-image fitting pipeline, which
adopts an optimization algorithm based on differentiable
rendering, in this subsection, as shown in Fig. 6. The fit-
ting process is divided into three phases: base model fitting,
detailed model fitting and expression refinement.

In the first base model fitting phase, the parameters to be
optimized include pshape, ptex, pexp of our base model and
additional pose&lighting parameters. The pose parameters
ppose ∈ R6 control the 3-dimensional translation and the 3-
dimensional rotation, which are expressed in Euler angles.
We use the first three bands of Spherical Harmonics(SH) [3]
for the definition of lighting parameters plighting ∈ R27.
Our optimization loss terms can be formulated as

Ldiff = Llms + Lphoto + Lreg (5)

where Llms denotes the mean square loss of the detected
2D facial landmarks and the projected landmarks from the
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Figure 6. Our single-image fitting pipeline based on differentiable
rendering.

3D model, Lphoto denotes the mean square loss of the ren-
dered image and the input image and Lreg denotes the L2
regular terms of pshape, ptex and pexp. The resulting shape,
texture and expression are unwrapped into UV maps for
subsequent phases.

In the detailed model fitting phase, we recover the
identity-related facial geometry and texture details through
the optimization of our pre-trained detail generator Gdetail.
The expression offset UV map, ppose and plighting gener-
ated from the previous phase are fixed in this and the next
phase. Input with the UV maps of shape and texture gener-
ated from the previous phase, our detail latent code zdetail
and the injected noise are first randomly sampled and then
optimized by differentiable rendering with the similar loss
terms, where Lreg is changed to the L2 regular terms of
the injected noise. Note that the detailed geometry can also
be generated through the associations between geometry
and texture established by Gdetail. The latent code zdetail
mainly controls the generation of medium-grained face de-
tails like detailed shape of facial features, while the small-
grained facial details like freckles is controlled by the in-
jected noise. As shown in Fig. 6, the facial details can be
generated after the optimization.

In the expression refinement phase, expression-related
geometry changes will be further refined through the op-
timization of our pre-trained expression refinement genera-
tor, Gexp. Input with a conditional image composed of the
expression offset UV map generated from the base model
fitting phase and the output detailed geometry generated
from the detail model fitting phase, the expression latent
code zexp and the injected noise are also first randomly sam-
pled and then optimized by differentiable rendering with the
same loss terms with the detailed model fitting phase. After
the final optimization, more detailed geometry like a smil-
ing mouth are further refined, as presented in Fig. 6.

Figure 7. High-fidelity single-image fitting results predicted by
our coarse-to-fine fitting pipeline.

Figure 8. We use the base parameters fitted from the left images
and detailed parameters fitted from the top images to generate new
3D face models, which keep the basic shape of the left faces and
the detailed shape of facial features of the top images.

5. Experiments

5.1. Evaluation

We firstly evaluate the performance of our coarse-to-fine
3D model fitting framework in predicting 3D face model
from a single face image. As shown in Fig. 7, based on
FaceVerse, our method shows both high-generalization and
high-fidelity in predicting 3D face models from various
input East Asian face images among different ages, gen-
ders or skin colors. On one hand, the base model built
on large-scale base face dataset provide more prior knowl-
edge in rough face fitting which makes the method more
robust to various face images. On the other hand, the con-
ditional styleGAN-based detailed model trained on the de-
tailed dataset shows powerful ability in facial geometry and
texture details generation. The texture details and geometry
details in Fig. 7 proves that even the facial details in pupils
and eyebrows can still be described by our details generator.
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Figure 9. Comparison with the monocular 3D face reconstruction
methods FaceScape, Hifi3DFace, DECAFace and 3DDFAv2.

In addition, both the base shape and the detailed shape of
facial features can be adjusted by parameters in our method.
To demonstrate the changeability of our model, we conduct
a detail transfer experiment over the single-images fitting
results, as shown in Fig. 8. Using the base parameters fitted
from images in the left column and the detail parameters
fitted from images in the top row, our method can generate
new face models which has the basic shape of the source
face and the details of the target face (e.g. bigger eyes, thin-
ner lips or a broader nose). Some images are sampled from
the FFHQ dataset.

5.2. Comparisons to Prior Works

We compare our monocular fitting results with the state-
of-art monocular facial reconstruction methods, including
FaceScape [43] and Hifi3DFace [2] which are also proposed
for East Asian facial reconstruction, as well as DECA [13]
and 3DDFAv2 [17] which is based on BFM [30] and
FLAME [28] respectively. As shown in Fig. 9, gaining from
the large-scale base model and GAN-based detail generator,
our method shows better qualitative performance in both
fitting face rough shape and generating face details com-
pared with other methods. We also conduct a quantitative
comparison using a single image and the corresponding de-
tailed 3D models sampled from our testing set. As shown
in Fig. 10, the generated models of different methods are
fitted to the ground-truth models by a rigid-ICP algorithm.
The calculated MAE error is displayed below the models
and our method shows the best quantitative performance.

To further demonstrate the effectiveness of our para-

Figure 10. Quantitative Comparison of 3D face reconstruction
methods. The length of ground-truth models is fixed at 200mm.

Figure 11. Quantitative comparison with 3DMM methods in 3D
model fitting.

metric base model, we conduct a quantitative comparison
with the state-of-the-art asian facial parametric models pro-
posed by FaceScape [43] and Hifi3DFace [2], as well as the
BFM [30], on 3D scans from our testing set, which con-
tains 357 models from 17 people and the models are fixed
in the length of 200mm. We fit the parametric models to 3D
scans by an optimization algorithm, which is based on the
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Method MAE Var
Our base model 0.69 0.47
Ours w/o coarse 1.08 1.26
Hifi3DFace [2] 1.08 1.38
FaceScape [43] 1.74 2.60

BFM [30] 2.38 10.78

Figure 12. Quantitative Comparison of our base model,
FaceScape, Hifi3DFace and BFM in 3D model fitting. The left
table presents the mean absolute error and variance in millimeter.

back-propagation through ICP (the algorithm is explained
in detail in our supplementary pdf file). Note that our de-
tailed model needs additional texture input, so we only use
our base model to make a fair comparison. As shown in
Fig. 12, benefiting from the large-scale dataset, our base
model shows the best quantitative performance in 3D model
fitting. The visualized results are also presented in Fig. 11.

5.3. Ablation Study

In order to demonstrate the effectiveness of the mod-
ules used in our approach, we compare the fitting results
of our base model, detailed results generated by the detail
generator Gdetail, refined results of the expression refine-
ment generator Gexp and results generated by the detailed
model trained without our normal discriminator. As shown
in Fig. 13, given a base shape and texture, our detail gen-
erator can add reasonable details but still lack description
power of expressions. The geometric changes caused by
expressions can be further refined by Gexp, as indicated by
the blue rectangles in Fig. 13. Besides, the detailed model
trained without our normal discriminator shows messy ge-
ometry, which demonstrates the effectiveness of our normal
discriminator. Furthermore, the ablation study of the effects
of the injected noise and latent code of our detailed model
is presented in our supplementary materials. Please watch
our supplementary video for more results.

To further prove the superiority of introducing the coarse
dataset into our base model, we generate an additional base
model only using our detailed dataset, which contains 50
shape principal components and using the same expression
principal components with our full base model. The 3D
fitting results are also presented in Fig. 11 and Fig. 12 (la-
belled as “Ours w/o coarse dataset”). The quantitative re-
sults prove that the fitting ability is significantly improved
after introducing our coarse dataset.

6. Discussion and Conclusion
Limitations. On one hand, our dataset only contains faces
of East Asians, and thus our performance declines when fit-
ting the faces from other regions. On the other hand, our

Figure 13. Monocular fitting results of our base model, detail
generator, expression refinement generator and the model trained
without the normal discriminator.

Figure 14. Limitations of our method. The proposed FaceVerse
can not generate a thick beard and deep wrinkles.

detailed model still suffers from a lack of detailed 3D face
scans of the old people. As a result, as shown in Fig. 14, our
method can not generate extreme textures like a thick beard
and can not generate deep wrinkles of the old people.

Potential Social Impact. Our method enables 3D face re-
construction from a single image. Therefore, it can be used
to generate a 3D fake model of a person, which needs to be
addressed carefully before deploying the technology.

Conclusion. In this paper, we have presented FaceVerse,
a fine-grained and detail-changeable 3D face morphable
model from a hybrid dataset. We have collected a large-
scale coarse dataset and a high-fidelity detailed dataset and
proposed a coarse-to-fine scheme to build our model, which
guarantees the high generalization ablity and high fidelity
of our model. The proposed conditional StyleGAN is able
to generate and control the facial geometry and texture de-
tails while perserving the basic facial atrributes from the
base model. Experiments have demonstated the superior-
ity of our method in 3D face model fitting and monocu-
lar face reconstruction compared with the state-of-the-art
methods. We believe FaceVerse can be a powerful tool for
face-related researches and our pipeline will inspire the fol-
lowing research of 3DMM and monocular 3D facial recon-
struction.

Acknowledgement. This work is supported by Ant Group
through Ant Research Program and is sponsed by NSFC
No. 62125107 and No. 62171255.

20340



References
[1] Timur Bagautdinov, Chenglei Wu, Jason Saragih, Pascal

Fua, and Yaser Sheikh. Modeling facial geometry using com-
positional vaes. In CVPR, 2018. 2

[2] Linchao Bao, Xiangkai Lin, Yajing Chen, Haoxian Zhang,
Sheng Wang, Xuefei Zhe, Di Kang, Haozhi Huang, Xinwei
Jiang, Jue Wang, Dong Yu, and Zhengyou Zhang. High-
fidelity 3d digital human head creation from rgb-d selfies.
ACM Trans. Graph., 41(1), nov 2021. 2, 3, 7, 8

[3] R. Basri and D.W. Jacobs. Lambertian reflectance and linear
subspaces. TPAMI, 2003. 5

[4] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, 1999. 1, 2

[5] James Booth, Anastasios Roussos, Allan Ponniah, David
Dunaway, and Stefanos Zafeiriou. Large scale 3d morphable
models. IJCV, 2018. 2

[6] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniahy, and D. Dun-
away. A 3d morphable model learnt from 10,000 faces. In
CVPR, 2016. 1, 2

[7] Alan Brunton, Timo Bolkart, and Stefanie Wuhrer. Multilin-
ear wavelets: A statistical shape space for human faces. In
ECCV, 2014. 2

[8] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun
Zhou. Facewarehouse: A 3d facial expression database for
visual computing. TVCG, 2014. 1, 2, 3

[9] Anpei Chen, Zhang Chen, Guli Zhang, Kenny Mitchell, and
Jingyi Yu. Photo-realistic facial details synthesis from single
image. In ICCV, 2019. 3

[10] Yajing Chen, Fanzi Wu, Zeyu Wang, Yibing Song, Yonggen
Ling, and Linchao Bao. Self-supervised learning of detailed
3d face reconstruction. IEEE Transactions on Image Pro-
cessing, 29:8696–8705, 2020. 3

[11] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde
Jia, and Xin Tong. Accurate 3d face reconstruction with
weakly-supervised learning: From single image to image set.
In CVPRW, 2019. 3

[12] Pengfei Dou, Shishir K Shah, and Ioannis A Kakadiaris.
End-to-end 3d face reconstruction with deep neural net-
works. In CVPR, 2017. 3

[13] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.
Learning an animatable detailed 3d face model from in-the-
wild images. TOG, 2021. 3, 7

[14] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi
Zhou. Joint 3d face reconstruction and dense alignment with
position map regression network. In ECCV, 2018. 2, 3

[15] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from
the world’s imagery. In CVPR, 2016. 2

[16] Leonardo Galteri, Claudio Ferrari, Giuseppe Lisanti, Stefano
Berretti, and Alberto Del Bimbo. Deep 3d morphable model
refinement via progressive growing of conditional generative
adversarial networks. Computer Vision and Image Under-
standing, 185:31–42, 2019. 2

[17] Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei,
and Stan Z Li. Towards fast, accurate and stable 3d dense
face alignment. In ECCV, 2020. 2, 3, 7

[18] Y. Guo, L. Cai, and J. Zhang. 3d face from x: Learning face
shape from diverse sources. TIP, 2021. 1, 2

[19] D. Hang, W. Pears, N. aLYnd Smith, and C. Duncan. A 3d
morphable model of craniofacial shape and texture variation.
In ICCV, 2017. 1

[20] Loc Huynh, Weikai Chen, Shunsuke Saito, Jun Xing, Koki
Nagano, Andrew Jones, Paul Debevec, and Hao Li. Meso-
scopic facial geometry inference using deep neural networks.
In CVPR, 2018. 3

[21] Zi-Hang Jiang, Qianyi Wu, Keyu Chen, and Juyong Zhang.
Disentangled representation learning for 3d face shape. In
CVPR, 2019. 2

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
TPAMI, 2020. 2

[23] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 2

[24] Hao Li, Robert W. Sumner, and Mark Pauly. Global cor-
respondence optimization for non-rigid registration of depth
scans. In SGP, 2008. 3

[25] Hao Li, Thibaut Weise, and Mark Pauly. Example-based
facial rigging. TOG, 2010. 2

[26] R. Li, K. Bladin, Y. Zhao, C. Chinara, and H. Li. Learn-
ing formation of physically-based face attributes. In CVPR,
2020. 1, 2

[27] Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and ex-
pression from 4d scans. TOG, 2017. 2

[28] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier
Romero. Learning a model of facial shape and expression
from 4d scans. TOG, 2017. 2, 7

[29] Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus
Wacker, Marcus Magnor, and Christian Theobalt. Sparse lo-
calized deformation components. TOG, 2013. 2

[30] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model for pose
and illumination invariant face recognition. In IEEE inter-
national conference on advanced video and signal based
surveillance, 2009. 1, 2, 3, 7, 8

[31] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, C. Jin,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
of the face recognition grand challenge. In ICCV, 2005. 1, 2

[32] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel.
Learning detailed face reconstruction from a single image.
In CVPR, 2017. 3

[33] S. Romdhani and T. Vetter. Estimating 3d shape and tex-
ture using pixel intensity, edges, specular highlights, texture
constraints and a prior. In CVPR, 2005. 3

[34] Matan Sela, Elad Richardson, and Ron Kimmel. Unre-
stricted facial geometry reconstruction using image-to-image
translation. In ICCV, 2017. 3

[35] Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian
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