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Abstract

Occluded person re-identification (ReID) aims at match-
ing occluded person images to holistic ones across dif-
ferent camera views. Target Pedestrians (TP) are often
disturbed by Non-Pedestrian Occlusions (NPO) and Non-
Target Pedestrians (NTP). Previous methods mainly focus
on increasing the model’s robustness against NPO while ig-
noring feature contamination from NTP. In this paper, we
propose a novel Feature Erasing and Diffusion Network
(FED) to simultaneously handle challenges from NPO and
NTP. Specifically, aided by the NPO augmentation strategy
that simulates NPO on holistic pedestrian images and gen-
erates precise occlusion masks, NPO features are explic-
itly eliminated by our proposed Occlusion Erasing Mod-
ule (OEM). Subsequently, we diffuse the pedestrian repre-
sentations with other memorized features to synthesize the
NTP characteristics in the feature space through the novel
Feature Diffusion Module (FDM). With the guidance of the
occlusion scores from OEM, the feature diffusion process
is conducted on visible body parts, thereby improving the
quality of the synthesized NTP characteristics. We can
greatly improve the model’s perception ability towards TP
and alleviate the influence of NPO and NTP by jointly op-
timizing OEM and FDM. Furthermore, the proposed FDM
works as an auxiliary module for training and will not be
engaged in the inference phase, thus with high flexibility.
Experiments on occluded and holistic person ReID bench-
marks demonstrate the superiority of FED over state-of-the-
art methods.

1. Introduction
Person Re-Identification (ReID) aims at retrieving the

same pedestrians captured by different cameras with differ-
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Figure 1. Illustration of pose estimation and human parsing on
pedestrian images. Both models perform well on holistic and
object occluded pedestrians but fail on multi-pedestrian images.
Meanwhile, human parsing models have difficulty in identifying
personal belongings, e.g., backpacks, and umbrellas.

ent viewpoints, lighting conditions, and locations. With the
rapid development of deep learning area and publication of
large-scale image and video ReID datasets, ReID methods
based on deep neural networks have achieved remarkable
performance [14, 19, 27, 29]. Most of these approaches as-
sume that a holistic body of each pedestrian is available for
feature extraction. However, in real-world scenarios, e.g.,
railway stations, schools, hospitals, and shopping malls,
pedestrians are inevitably disturbed by non-pedestrian oc-
clusions (NPO) and non-target pedestrians (NTP). There-
fore, designing a powerful network for the occluded person
ReID is essential.

Methods assisted by human key points [5, 21] and hu-
man parsing information [15] dominate the state-of-the-art
performance of the occluded ReID task. Generally, an aux-
iliary model extracts the body information first, and then
the extracted information will assist the training of models.
The strategy can greatly avoid mistakenly treating NPO as
human parts. However, such methods have many caveats.
Firstly, due to the domain gap between the training and test-
ing data, the performance of the auxiliary models can not
be consistent. In Fig.1, we adopt official pose estimation
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model [22] and retrained human parsing model [37] to ex-
tract body information. It is clear that both models perform
well on holistic and object occluded pedestrian images but
fail on multi-pedestrian ones, which means that noise from
NTP will contaminate the final representations. Compared
with object occlusion, the characteristics of NTP will result
in a higher mismatching probability because of the semantic
guidance. Secondly, the human parsing model can not rec-
ognize some person belonging, e.g., backpacks, umbrellas,
which may lead to the deficiency of valuable information.
At last, the enormous computation brought by the auxiliary
models makes it unacceptable for real-time video surveil-
lance.

To tackle the challenges above, we propose the feature
erasing and diffusion network (FED) to simulate NPO on
images and NTP in the feature space for increasing the
model’s perception ability towards TP. Specifically, we aim
at the NPO feature erasing by proposing the NPO aug-
mentation strategy along with an occlusion erasing module
(OEM). The augmentation strategy will generate object oc-
cluded data of pedestrians by pasting cropped patches with a
specific strategy. At the same time, by analyzing the pixel-
level value differences, we can get precise part labels, in-
dicating whether object occlusion or not. We refer to the
part labels as occlusion masks. Sequentially, the occlusion
masks will guide the OEM to analyze the semantic informa-
tion and generate the final occlusion scores for part features.
For alleviating the distractions from NTP, a straightforward
way is pasting other pedestrians onto the image for data
augmentation. However, pedestrian images with diversi-
fied background information can destroy the globality of the
original images by simple pasting. Besides, the resize oper-
ation needs designing carefully for maintaining aspect ratio.
Therefore, image-level augmentation for NTP is challeng-
ing and complex. Here, we propose a learnable structure
named feature diffusion module (FDM), which will simu-
late multi-pedestrian images by diffusing characteristics of
NTP to the original features. With the guidance of occlu-
sion scores from OEM, the feature diffusion operation will
be conducted only on body parts, guaranteeing the simu-
lated features are more realistic. By optimizing the model
through diffused features, we can indirectly improve the
model’s perception ability towards TP and robustness to-
wards NTP.

In summary, we propose the feature erasing and diffu-
sion network (FED) to tackle the distractions from NPO
and NTP for occluded person ReID. FED consists of three
innovative components: NPO augmentation strategy, oc-
clusion erasing module (OEM), and feature diffusion mod-
ule (FDM). These components enable the network to pre-
cisely perceive the TP regardless of the NPO and NTP.
At the same time, extensive experiments on both occluded
datasets (Occluded-DukeMTMC [21], Partial-REID [33],

and Occluded-REID [43]) and holistic datasets (Market-
1501 [38] and DukeMTMC-reID [40]) demonstrate the ef-
fectiveness of our proposed method. Especially on the
Occluded-DukeMTMC and Occluded-REID dataset, our
Rank-1 and mAP accuracy surpass other state-of-the-art
methods by a large margin.

2. Related Works

In this section, we briefly overview the existing methods
of holistic person ReID and occluded person ReID.

2.1. Holistic Person Re-Identification

Person re-identification (ReID) aims to retrieve a per-
son of interest in other camera views and great progress
has been made in recent years. Existing ReID methods can
be summarized into three categories, including hand-crafted
descriptor methods [20,34], metric learning methods [3,41],
and deep learning methods [23, 28, 32]. Due to the publish-
ing of large-scale datasets and the development of Graph-
ics Processing Unit (GPU), deep learning based methods
have become dominant in the person re-identification area
nowadays. Recent works utilizing part-based features have
achieved state-of-the-art performance for the holistic person
ReID. Zhang et al. [36] perform an automatic part feature
alignment through the shortest path loss during the learning,
without requiring extra supervision or explicit pose infor-
mation. Sun et al. [23] propose a general part-level feature
learning method, which can accommodate various part par-
titioning strategies. The attention mechanism has also been
adopted to ensure the model focus on human areas, which
extracts more effective features [16,24,33]. However, these
methods fail to retrieve persons with high accuracy when
occlusions happen. The shortcoming limits the utility of the
methods, especially in the common crowd scenes.

2.2. Occluded Person Re-Identification

The study of the occluded person ReID is proposed
by Zhou et al. [43]. The training set and gallery set are
constructed by holistic pedestrian images, and the query
set is constructed by occluded pedestrian images. Recent
study methods in this topic can be divided into two cat-
egories: assisted by pose estimation [10, 12] and human
parsing [15, 35]. Gao et al. propose a Pose-guided Visi-
ble Part Matching (PVPM) method that jointly learns the
discriminative features with pose-guided attention and self-
mines the part visibility in an end-to-end framework. He et
al. [10] introduce a novel method named Pose-Guided Fea-
ture Alignment (PGFA), exploiting pose landmarks to dis-
entangle the useful information from the occlusion noise.
Huang et al. propose a model named HPNet to extract part-
level features and predict the visibility of each part, based
on human parsing. By extracting features from semantic
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Figure 2. Overview of the proposed feature erasing and diffusion network for occluded person re-Identification. The two branches share the
same parameters and the network consists of the feature extractor, occlusion erasing module (OEM), and feature diffusion module (FDM).
The ‘NPO Aug’ indicates the NPO augmentation strategy. The solid lines connected to the Memory Banks indicate that the features
participate in the memory update and loss calculation. The dashed lines indicate only loss calculation. The FDM is an auxiliary module
for simulating NTP on feature level and will not be engaged in the inference phase.

part regions and performing comparisons with considera-
tion of visibility, the method not only reduces background
noise but also achieves body alignment.

Different from the above methods, our approach does not
rely on extra models and can be trained in an end-to-end
fashion. We simulate NPO and NTP on both image and fea-
ture levels and thus greatly improve the model robustness.

3. Feature Erasing and Diffusion Network

In this section, we introduce the proposed feature erasing
and diffusion network (FED) in detail. The overall architec-
ture of the network is illustrated in Fig.2. It begins with the
NPO augmentation strategy that produces image pairs and
occlusion masks. Following [13], we simply adopt the Vi-
sion Transformer (ViT) [4] as the feature extractor. Position
embeddings and a classification [cls] token are prepended
to the input image. The output feature for each image is
f ∈ R(n+1)×c, where n + 1 indicates the images tokens
and one [cls] token, and c is the channel dimension. Under
our settings, n and c are 128 and 768, respectively. Next,
we conduct the part pooling operation on image tokens and
obtain N local features, which will be fed into the occlu-
sion erasing module (OEM). Here, we set N as 4 in ac-
cordance with NPO augmentation strategy. Two memory
banks will be initialized at the beginning and updated with
training processing. The auxiliary feature diffusion module
(FDM) takes the image features and the first memory bank
as input for multi-pedestrian simulation. Details of each
module will be presented in the following section.

3.1. NPO Feature Erasing

Typically, NPO feature erasing needs auxiliary informa-
tion for guidance. In this section, we propose the NPO aug-
mentation strategy and occlusion erasing module to explic-
itly learn NPO-robust features.

NPO Augmentation Strategy. Occlusion augmentation
strategies are effective in occluded ReID. Typically, there
are two categories: (1) Zhong et al. [42] randomly select a
rectangle region in an image and erase its pixels with ran-
dom values; (2) Chen et al. [2] paste the selected objects or
backgrounds onto images. The first method helps to reduce
the risk of over-fitting and makes the model robust to oc-
clusion. However, when facing the diversified occlusions,
the trained model fails to identify them due to weak gener-
alization. The second method implicitly learns NPO-robust
features by simulating the occlusion scenes. However, it
fails to fully utilize the potential information, e.g., precise
occlusion region, brought by the augmentation.

Inspired by the methods above, we propose the NPO
augmentation strategy. The strategy consists of occlusion
augmentation and mask generation, which will generate
augmented images for occlusion simulation and occlusion
masks for further semantic analysis, respectively.

Empirically, occlusions happen at four locations (top,
bottom, left, right) with a quarter to half areas. Our aug-
mentation strategy is similar to Chen et al. [2], but with
particular modifications. For occlusion augmentation, one
important step is the patch set collection. To avoid extra
body parts included in the patch set, we manually crop the
backgrounds and occlusion objects from the chosen images
in the training set and refer to these patches as the occlu-
sion set. We formally describe the occlusion augmentation
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process as follows. Firstly, given an input image, we do
common augmentations, e.g., resize, padding, and random
crop, on it and get x ∈ R3×h×w, where h and w represent
the height and width, respectively. Secondly, we select a
patch p ∈ R3×ph×pw from the occlusion set, where ph and
pw are the height and width. Rather than randomly paste the
patch onto x, we believe that only reasonable occlusions for
pedestrians can generate valuable data for training. There-
fore, we calculate the aspect ratio of the patch: α = ph/pw.
When α is larger than 3, it implies the patch is more like
a vertical occlusion, otherwise horizontal occlusion. Com-
mon augmentations, e.g., random crop, and colorjitter, are
also applied on the patch for increasing its varieties. We
resize the patch according to the occlusion type (horizontal
or vertical) to R(H/4∼H/2,W ) and R(H,W/4∼W/2), respec-
tively. Thirdly, we randomly select one corner of x as the
starting point and past the augmented patch on it. The aug-
mented image is named x′.

Mask generation is a fine-to-coarse process. Firstly, we
get the pixel differences by subtraction and absolute func-
tion d = |x − x′|. Considering the subsequent part-based
occlusion erasing module, each position of the occlusion
mask should correspond to specific body parts. However,
there are mis-alignments of semantics (body parts) between
different images, fine-grained occlusion masks will have
many false labels. Therefore, we roughly split the image
into 4 stripes horizontally and aim at labeling them. As said
before, there are vertical and horizontal occlusions in real-
world scenarios. Vertical occlusion only damages parts of
the symmetric characteristics. Usually, ReID models can
easily distinguish between pedestrians and vertical occlu-
sions and get discriminative representations without refer-
ring to further information. Therefore, the vertical occlu-
sion is ignored while mask generation and stripes are re-
garded as a human part (valued 1). For the horizontal oc-
clusion augmentation, we conduct the soft binarization op-
eration. We take stripes covered more than three-quarters as
occlusions (value 0), otherwise as human parts (value 1). In
this way, we get the precise occlusion masks for the image
pair.

Occlusion Erasing Module. Although the augmenta-
tion strategy is employed while training, the NPO may still
contaminate representations. To further eliminate the in-
fluence of NPO, we propose the occlusion erasing mod-
ule (OEM) for part feature erasing. As shown in Fig.2,
the module is constructed by 4 sub-modules corresponding
to each body part. For each sub-module, it is constructed
by two fully connected (FC) layers, one layer normaliza-
tion [1], and one Sigmoid function. The layer normaliza-
tion is placed between the FC layers, and the Sigmoid func-
tion is located at the end. The first FC layer compresses the
channel dimension to the quarter of the original one, aim-
ing to wipe off the characteristic information and reserve the
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Figure 3. Illustration of the feature diffusion module. The module
diffuses characteristics of memory bank M to the features f ′ for
simulating NTP on feature level.

semantic ones. The final Sigmoid function will output the
regressed occlusion scores si for each part feature. We refer
to the multiplication between the occlusion scores and part
features as f ′. Functionally the progress can be represented
by

f ′
i = Sigmoid(WrgLN(Wcpfi)) · fi, (1)

where Wcp ∈ Rc/4×c, Wrg ∈ R1×c/4, LN is the layer
normalization and i indicates i th part feature.

Here, the occlusion masks from the NPO augmentation
strategy are adopted to supervise the training of OEM. We
calculate the Mean Square Error (MSE) Loss between oc-
clusion masks and occlusion scores, and the function can be
expressed as

LMSE =
1

N

4∑
i=1

(si,maski). (2)

3.2. Feature Diffusion Module

Previous works have not focused on the challenges of
NPO. Apart from destroying the feature integrity of the
TP, NTP also contaminates representations with realistic se-
mantic noise. To solve this issue, we propose a learnable
structure named feature diffusion module (FDM) to simu-
late multi-pedestrian images in the feature space. By opti-
mizing the diffused features, we aim at indirectly enhancing
the model’s perception ability towards TP and robustness
towards NTP. As shown in Fig.3, apart from the image fea-
tures, an extra memory bankM, which is a collection of
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characteristics, is taken as the input. In the following ses-
sion, we will introduce M and FDM, respectively.

Memory Bank. The generation of M includes mem-
ory initialization and memory update. We follow the same
strategy as [7]. The memory is initialized with the ID cen-
ters in the training set. We get the extracted features by
performing forward computation, and average features with
identical identities to get ID centers. Note that the mem-
ory initialization is only operated at the beginning of the
algorithm and memory update is processed at each iteration
in each mini-batch during training. The k-th center ck is
updated by the mean of the encoded features belonging to
identity k in the mini-batch as:

ck = mck + (1−m)
1

|Bk|
∑

f ′
i∈Bk

f ′
i , (3)

where Bk denotes the feature set belonging to identity k
in the mini-batch, m is the momentum coefficient for up-
dating, f ′ is the flattened features after OEM. Apart from
acting as the characteristic set, the memory bank M is also
adopted for calculating the Contrastive Loss which will be
introduced in the following section. We set m as 0.2 in our
experiments.

Feature Diffusion Module. Essentially, FDM is a mod-
ified cross attention module based on the standard archi-
tecture of the transformer [25]. Given the feature vec-
tor, queries Q arise from the f ′, and keys K and values
V arise from the memory bank M. The input feature is
f ′ ∈ R1×(N×c), where N corresponds to the previous part
pooling operation and is 4. Firstly, we conduct Memory
Searching Operation between f ′ and M. It finds K near-
est centers MK ∈ RK×(N×c) with different identities from
the input image. Cosine distance is adopted for measure-
ment. Here, we discard the center with an identical identity
for avoiding polarization of the attention matrix which is
calculated through cross-product. Formally,

Q = f ′W 1,Ki = MK
i W 2, Vi = MK

i W 3, (4)

where i ∈ 1, 2, ...,K, and W1 ∈ Rd×d′
, W2 ∈ Rd×d′

,
W3 ∈ Rd×d′

are linear projections. Then we calculate the
attention matrix and corresponding part features. Formally,

mi =
exp(βi)∑K
j=1 exp(βj)

, βi =
QKi√
dk

, (5)

where
√
dk is a scaling factor. Each element of the atten-

tion matrix indirectly indicates the connections between Q
and Ki, and the cross-product operation between V and the
attention matrix will generate the diffused features. The ag-
gregation process can be defined as:

fd = Att(Q,K, V ) =

K∑
i=1

miVi, (6)

The multi-head attention operation is of great significance
in this module. Since MK has many similar patterns with
the input image and these patterns are distributed randomly
in K feature centers. The multi-head operation will split
each center into multi parts and generate attention weights
for each part individually, thus ensuring more patterns sim-
ilar to TP and sufficient unique patterns of NTP can be ag-
gregated. In this way, we can simulate the multi-pedestrian
images on feature level. After the cross attention opera-
tion, we utilize the post-layer normalization feed forward
network (FFN1) [31] to conduct non-linear transforma-
tion. FFN1(·) is a simple neural network with two fully
connected layers and one activation function. The residual
connection before the layer normalization is applied. Next,
the occlusion scores generated by OEM are adopted for
weighted summation between the transformed features and
f ′. This ensures the characteristics of NTP are only added
on human parts rather than pre-recognized object occlusion
parts, improving the realness and quality of the diffused fea-
tures. Besides, the weighted residual operation can stabilize
the training process. Then, we utilize another FFN2 [31]
for generating the final diffused representation of each im-
age. Formally,

f ′
d = FFN2(mask · FFN1(fd) + f ′), (7)

where FFN2 has the same structure as FFN1.
Since the FDM is just an auxiliary module for simulation

during training, it will be removed in the inference phase.
This makes our model more concise and flexible.

3.3. Loss Functions

There are three varieties of loss functions in our method,
including Mean Square Error (MSE) Loss, Cross Entropy
Loss, and Contrastive Loss. We refer to Cross Entropy Loss
as ID Loss in this paper. As shown in Fig.2, we calculate
the ID Loss on the output features of the classification [cls]
token, flattened features after the OEM, and features after
the FDM. Therefore, there are three additional fully con-
nected layers on the top of the features to calculate the ID
probabilities. Functionally, ID Loss can be presented as:

LID = −yilog(
exp(Wifi)∑IDs

j=1 exp(Wjfj)
), (8)

where W is a linear projection matrix, yi is the correspond-
ing label and IDs is the total number of identities. As for
the Contrative Loss, the key components are the negative
and positive samples. There are two memory banks in our
algorithm, the first is generated after the OEM and the sec-
ond is generated after FDM. The initialization and update
strategies have been introduced in Sec 3.2. Functionally,
the Contrative Loss is:

LC = −log
exp(< f, ci > /τ)∑IDs

j exp(< f, cj > /τ)
, (9)
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where τ is a predefined temperature parameter and ci rep-
resents the feature center with an identical identity. Al-
though the training strategy is a parallel architecture, the
lower branch does not involve in the memory initialization
and update due to the characteristic deficiency caused by
the NPO augmentation. In Fig.2, we utilize the solid lines
to represent jointly memory update and loss calculation and
dashed lines to represent loss calculation only.

Therefore, the final loss function can be expressed:

LFinal =
1

2

2∑
i=1

Li
MSE +

1

2

6∑
i=1

Li
ID +

1

2

4∑
i=1

Li
C . (10)

4. Experiments
4.1. Datasets and Evaluation Setting

Occluded-DukeMTMC [21] consists of 15,618 training
images of 702 persons, 2,210 query images of 519 persons,
and 17,661 gallery images of 1,110 persons. It is the most
challenging occluded person ReID datasets due to the di-
verse scenes and distractions.

Occluded-REID [43] is an occluded person ReID
dataset captured by mobile cameras. It consists of 2,000
images belonging to 200 identities. Each identity has five
full-body person images and five occluded person images
with different viewpoints and different types of severe oc-
clusions.

Partial-REID [39] is a specially designed ReID dataset
that consists of occluded, partial, and holistic pedestrian im-
ages. It involves 600 images of 60 persons. We take the
occluded query set and holistic galley set for experiments.

Market-1501 [38] is a famous holistic person ReID
dataset. It contains 12,936 training images of 751 persons,
19,732 query images and 3,368 gallery images of 750 per-
sons captured from 6 cameras. Few images in this dataset
are occluded.

DukeMTMC-reID [40] consists of 16,522 training im-
ages of 702 persons, 2,228 queries of 702 persons, and
17,661 gallery images of 702 persons. The images are cap-
tured by 8 different cameras, making it more challenging.
As it contains more holistic images than occluded ones, this
dataset can be treated as a holistic ReID dataset.

Evaluation Protocol. To guarantee a fair comparison
with existing person ReID methods, all methods are evalu-
ated under the Cumulative Matching Characteristic (CMC)
and mean Average Precision (mAP). All experiments are
performed in the single query setting.

4.2. Implementation Details

Unless otherwise specified, all images are resized to
256 × 128. We train our network in an end-to-end fash-
ion through the SGD optimizer with a momentum of 0.9
and weight decay of 1e-4. We initialize the learning rate

O-Duke O-REID P-REID
Method R@1 mAP R@1 mAP R@1 mAP
PCB [23] 42.6 33.7 41.3 38.9 66.3 63.8
RE [42] 40.5 30.0 - - 54.3 54.4
FD-GAN [6] 40.8 - - - - -
DSR [9] 40.8 30.4 72.8 62.8 73.7 68.07
SFR [11] 42.3 32 - - 56.9 -
FRR [12] - - 78.3 68.0 81.0 76.6
PVPM [5] 47 37.7 70.4 61.2 - -
PGFA [21] 51.4 37.3 - - 69.0 61.5
HOReID [26] 55.1 43.8 80.3 70.2 85.3 -
OAMN [2] 62.6 46.1 - - 86.0 -
PAT [17] 64.5 53.6 81.6 72.1 88.0 -
ViT Baseline [13] 60.5 53.1 81.2 76.7 73.3 74.0
TransReID [13] 64.2 55.7 70.2 67.3 71.3 68.6
FED (Ours) 68.1 56.4 86.3 79.3 83.1 80.5
FED* (Ours) 67.9 56.3 87.0 79.4 84.6 82.3

Table 1. Performance comparison with state-of-the-art methods on
Occlude-DukeMTMC, Occluded-ReID and Partial-REID datasets.
* indicates combining OS1 and OS2 for NPO augmentation.

Market-1501 DukeMTMC-reID
Model Rank-1 mAP Rank-1 mAP

PT [18] 87.7 68.9 78.5 56.9
PGFA [21] 91.2 76.8 82.6 65.5
PCB [23] 92.3 77.4 81.8 66.1
OAMN [2] 92.3 79.8 86.3 72.6
BoT [19] 94.1 85.7 86.4 76.4
HOReID [26] 94.2 84.9 86.9 75.6
PAT [17] 95.4 88.0 88.8 78.2
ViT Baseline [13] 94.7 86.8 88.8 79.3
TransReID [13] 95.0 88.2 89.6 80.6
FED (Ours) 95.0 86.3 89.4 78.0

Table 2. Performance comparison with state-of-the-art methods on
Market-1501 and DukeMTMC-reID datasets.

as 0.008 with cosine learning rate decay. For each input
branch, the batch size is 64, which contains 16 identities
and 4 samples per identity. We conduct all experiments on
two RTX 1080Ti GPUs. We set the temperature τ in Con-
trastive Loss as 0.05 and the number of heads in the FDM
as 8. For the occlusion set of NPO augmentation, we crop
30 patches from the training data of Occluded-DukeMTMC
and MSMT17 [30] as occlusion set 1 (OS1) and occlusion
set 2 (OS2), respectively. If not specified, we only adopt
OS1 for NPO augmentation.

4.3. Comparison with State-of-the-art Methods

Comparisons on Occluded Datasets. The results
on Occluded-DukeMTMC (O-Duke), Occluded-REID (O-
REID), and Partial-REID (P-REID) are shown in Table 1.
Since O-REID and P-REID don’t have corresponding train-
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ing set, we simply adopt the model trained on Market-1501
for testing. PAT [17] makes great improvement on accu-
racy. They adopt ResNet50 [8] as the backbone and conduct
diverse part discovery through the transformer encoder-
decoder structure. The prototypes in the network are like
specific feature detectors, which are important to improve
the network performance on occluded data. TransReID
[13] is the first pure transform-based architecture for per-
son ReID. For a fair comparison, we present the results of
TransReID that adopts the Vision Transformer [4] without
the sliding window setting as the backbone and images re-
sized to 256 × 128. Since He et al. [13] do not provide
performance on O-REID and P-REID datasets, we retrain
their official code on Market-1501 dataset and test on the
two occluded datasets. The ViT Baseline performs better
than TransReID on O-REID and P-REID datasets, this is
because TransReID employs many dataset-specific tokens,
which reduces the model’s cross-domain generalization and
increases the overfitting risk.

When comparing our FED (augmented by OS1) with
state-of-the-art methods, we achieve the highest Rank-1 and
mAP on both O-Duke and O-REID datasets. Especially on
O-REID dataset, we achieve 86.3%/79.3% on Rank-1/mAP,
surpassing others by at least 4.7%/2.6%. On O-Duke, we
achieve 68.1%/56.4% on Rank-1/mAP, surpassing others by
at least 3.6%/0.7%. On the P-REID dataset, we achieve
the highest mAP accuracy, reaching 80.5% and surpass-
ing other methods by 3.9%. We fail to achieve the highest
Rank-1 accuracy on this dataset due to the low generaliza-
tion of ViT backbone trained on a small dataset. Mean-
while, to further demonstrate the flexibility and scalability
of the FED, we add more diversified patches (combining
OS1 and OS2) for NPO augmentation. As we can see from
the table, FED* improves Rank-1/mAP on O-REID and P-
REID by at least 0.7% by simply improving the diversity of
the occlusion set. In conclusion, we achieve great perfor-
mance on the occluded ReID datasets.

Comparisons on Holistic Datasets. We also experiment
on holistic person ReID datasets, including Market-1501
and DukeMTMC-reID. While training on the DukeMTMC-
reID dataset, MSE Loss is not calculated. It is because huge
amounts NPO exist in the training set and we are unable
to get precise occlusion masks. The results are shown in
Table.2. We achieve comparable performance compared
with other state-of-the-art methods. The same as Section
4.3.1, the TransReID is without the sliding window setting
and with 256 × 128 image size. It is clear that TransReID
gets better performance than our method on the holistic
datasets. This is because TransReID is specifically designed
for holistic ReID and encodes camera information during
the training process. Besides, our proposed three compo-
nents, which aim at tackling the occlusion issues, are not
fully functional on holistic ReID datasets. However, we also
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Figure 4. Occlusion scores of OEM on horizontal occluded, ver-
tical occluded and multi-pedestrian images. The OEM has the ca-
pacity to identify crucial NPO and fails on NTP.

Occluded-DukeMTMC
Index RE NPO Aug OEM FDM R@1 mAP

0 % % % % 59.1 49.1
1 ! % % % 60.3 53.1
2 % ! % % 65.4 53.5
3 % ! ! % 66.5 55.4
4 % ! % ! 67.1 55.9
5 % ! ! ! 68.1 56.4

Table 3. Performance analysis of each component in FED.

achieve 84.9% Rank-1 accuracy on DukeMTMC-reID, sur-
passing other CNN-based methods and close to TransReID.

4.4. Ablation Studies

Analysis of Each Component. In Table.3, we present
the ablation studies of random erasing (RE), NPO aug-
mentation strategy (NPO Aug), occlusion erasing module
(OEM), and feature diffusion module (FDM). The indexes
from 0 to 5 represent baseline, baseline + RE, baseline +
NPO Aug, baseline + NPO Aug + OEM, baseline + NPO
Aug + FDM and FED, respectively. All the models adopt
ViT as the feature extractor. Model0 and Model1 are both
optimized by ID Loss and Triplet Loss [14]. By comparing
Model0∼2, we can see that RE [42] is effective in improv-
ing discrimination of representations, however the improve-
ment is not comparable with our NPO Aug (4.9% higher
on Rank 1). We can conclude that the augmented images
through NPO Aug are realistic and valuable. By compar-
ing Model2 with Model3, the proposed OEM can further
improve the representations and improve mAP by 1.9% by
removing the potential NPO information. By comparing
Model2 with Model4, FDM helps the model with 1.7%
and 2.4% improvements on Rank-1 and mAP. It means that
optimizing the network with diffused features can greatly
improve the model’s perception ability towards TP. Finally,
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Figure 5. Retrieval results of TransReID and our proposed FED on Occluded-DukeMTMC dataset. The top 2 rows show images with NPO
and the bottom 2 rows show images with NTP.

Occlude-DukeMTMC DukeMTMC-reID Market-1501
Model Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP
K=2 67.4 78.4 55.8 89.4 94.7 77.6 95.0 98.6 85.7
K=4 67.7 79.9 56.2 89.2 94.3 78.0 94.8 98.5 86.3
K=6 67.3 79.8 56.2 88.9 94.2 77.3 94.8 98.4 86.0
K=8 68.1 79.3 56.4 89.0 94.3 77.1 94.8 98.4 85.9

Table 4. Analysis of the K in memory searching on both occluded and holistic datasets. CMC curve and mAP are presented for evaluation.

FED achieves the highest accuracy, demonstrating that each
component can work individually and cooperatively.

Analysis of the K in Memory Searching. Here, we
analyze the searching number K in the memory searching
operation. In Table.4, we set K as 2, 4, 6, and 8 and con-
duct experiments on both holistic and occluded datasets. As
we can see, the performance on holistic ReID datasets ap-
pears stably on the various K, with a float within 0.5%. For
the Market-1501, there are few NPO and NTP, failing to
highlight the effectiveness of FDM. For the DukeMTMC-
reID, huge amounts of training data are with NPO and NTP,
and loss constraints can enable the network with high accu-
racy. As for the Occluded-DukeMTMC, since all the train-
ing data are holistic pedestrians, the introduction of FDM
can greatly simulate the multi-pedestrian conditions in the
testing set. With increasing K, FDM can better maintain
the characteristics of TP and introduce realistic noise.

4.5. Qualitative Analysis

In this section, we present qualitative experimental re-
sults and demonstrate the superiority of our proposed FED.

In Fig.4, we present the occlusion scores from OEM for
some pedestrian images. Images with NPO and NTP are
presented. As can be seen, vertical object occlusions (Fig.4
a, b) can hardly affect the occlusion scores, since occlud-
ing less than half of symmetric pedestrians is not a critical
issue for person ReID. For horizontal occlusions (Fig.4 c,
d), our OEM can precisely identify NPO and label them

with smaller values. For multi-pedestrian images (Fig.4
e,f), OEM identifies each stripe as valuable. Taken together,
the subsequent FDM is essential for improving the model.

In Fig.5, we present the retrieval results of TransReID
and our FED. The first two examples are object occluded
images. It is obvious that our network has a better recog-
nition ability on NPO and accordingly can retrieve tar-
get pedestrians precisely. Another two examples provided
are the multi-pedestrian images. Our proposed FED has
a stronger perception ability on TP and achieves a much
higher retrieval accuracy.

5. Conclusion
In this paper, to tackle the NPO and NTP challenges for

occluded person ReID, we propose a novel Feature Eras-
ing and Diffusion network (FED). Specifically, guided by
the image-level NPO augmentation strategy, the occlusion
erasing module (OEM) is trained to eliminate NPO features
based on the predicted occlusion scores. Subsequently, the
feature diffusion module (FDM) performs feature diffusion
between NPO-feature-erased pedestrian representations and
memorized features, synthesizing NTP characteristics in the
feature space. Jointly optimizing OEM and FDM in our
proposed FED network significantly improves the model’s
perception ability on TP, which is demonstrated through
comprehensive experiments and comparisons with state-of-
the-art algorithms on various person ReID benchmarks.
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