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Abstract

To interpret deep networks, one main approach is to
associate neurons with human-understandable concepts.
However, existing methods often ignore the inherent con-
nections of different concepts (e.g., dog and cat both belong
to animals), and thus lose the chance to explain neurons re-
sponsible for higher-level concepts (e.g., animal). In this
paper, we study hierarchical concepts inspired by the hier-
archical cognition process of human beings. To this end, we
propose HIerarchical Neuron concepT explainer (HINT) to
effectively build bidirectional associations between neurons
and hierarchical concepts in a low-cost and scalable man-
ner. HINT enables us to systematically and quantitatively
study whether and how the implicit hierarchical relation-
ships of concepts are embedded into neurons. Specifically,
HINT identifies collaborative neurons responsible for one
concept and multimodal neurons pertinent to different con-
cepts, at different semantic levels from concrete concepts
(e.g., dog) to more abstract ones (e.g., animal). Finally, we
verify the faithfulness of the associations using Weakly Su-
pervised Object Localization, and demonstrate its applica-
bility in various tasks, such as discovering saliency regions
and explaining adversarial attacks. Code is available on
https://github.com/AntonotnaWang/HINT.

1. Introduction
Deep neural networks have attained remarkable success

in many computer vision and machine learning tasks. How-
ever, it is still challenging to interpret the hidden neurons
in a human-understandable manner, which is of great sig-
nificance in uncovering the reasoning process of deep net-
works and increasing the trustworthiness of deep learning
to humans [3, 31, 61].

Early research focuses on finding evidence from in-
put data to explain deep model predictions [4, 10, 29, 33,
34, 48, 51, 52, 54–57, 64], where the neurons remain un-
explained. More recent efforts have attempted to asso-
ciate hidden neurons with human-understandable concepts
[7–9,11,23,44,45,67,68,71,72]. Although insightful inter-

pretations of neurons’ semantics have been demonstrated,
i.e., identification of the neurons controlling contents of
trees [8], existing methods define the concepts in an ad-hoc
manner which heavily relies on human annotations, such as
manual visual inspection [11, 44, 45, 72], manually labeled
classification categories [23], or hand-crafted guidance im-
ages [7–9, 71]. They thus suffer from heavy costs and scal-
ability issues. Moreover, existing methods often ignore the
inherent connections among different concepts (e.g., dog
and cat both belong to mammal), and treat them indepen-
dently, which therefore loses the chance to discover neurons
responsible for implicit higher-level concepts (e.g., canine,
mammal, and animal) and explore whether the network can
create abstractions of things like our humans do.

The above motivates us to rethink how concepts should
be defined to more faithfully reveal the roles of hidden neu-
rons. We draw inspirations from the hierarchical cognition
process of human beings– human tend to organize things
from specific to general categories [37, 47, 60]– and pro-
pose to explore hierarchical concepts which can be har-
vested from WordNet [39] (a lexical database of semantic
relations between words). We investigate whether deep net-
works can automatically learn the hierarchical relationships
of categories that were not labeled in the training data. More
concretely, we aim to identify neurons for both low-level
concepts such as Malamute, Husky, and Persian cat, and
the implicit higher-level concepts such as dog and animal
as shown in Figure 1 (a). Note that we call less abstract
concepts low-level and more abstract concepts high-level.

To this end, we develop HIerarchical Neuron concepT
explainer (HINT), which builds a bidirectional association
between neurons and hierarchical concepts (see Figure 1).
First, we develop a saliency-guided approach to identify the
high dimensional representations associated with the hier-
archical concepts on hidden layers (noted as responsible
regions in Figure 1 (b)), making HINT low-cost and scal-
able as no extra hand-crafted guidance is required. Then,
we train classifiers shown in Figure 1 (c) to separate differ-
ent concepts’ responsible regions, where the weights rep-
resent the contribution of the corresponding neuron to the
classification. Based on the classifiers, we design a Shap-
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(a) Bidirectional associations between hidden layer neurons and hierarchical concepts

Figure 1. Overall illustration of HINT. (a) HINT is able to build bidirectional associations between hidden layer neurons and hierarchical
concepts. It can also identify collaborative neurons and multimodal neurons. Further, HINT helps to indicate how the neurons learn the
hierarchical relationships of categories. (b)-(c) Main steps. See Section 3.1 for Step 1, Section 3.2 for Step 2, and Section 3.3 for Step 3.

ley value-based scoring method to fairly evaluate neurons’
contributions, considering both neurons’ individual and col-
laborative effects.

To our knowledge, HINT presents the first attempt to as-
sociate neurons with hierarchical concepts, which enables
us to systematically and quantitatively study whether and
how hierarchical concepts are embedded into deep network
neurons. HINT identifies collaborative neurons contribut-
ing to one concept and multimodal neurons contributing to
multiple concepts. Especially, HINT finds that, despite be-
ing trained with only low-level labels, such as Husky and
Persian cat, deep neural networks automatically embed hi-
erarchical concepts into its neurons. Also, HINT is able to
discover responsible neurons to both higher-level concepts,
such as animal, person and plant, and lower-level concepts,
such as mammal, reptile and bird.

Finally, we verify the faithfulness of neuron-concept as-
sociations identified by HINT with a Weakly Supervised
Object Localization task. In addition, HINT achieves re-
markable performance in a variety of applications, includ-
ing saliency method evaluation, adversarial attack explana-
tion, and COVID19 classification model evaluation, further
manifesting the usefulness of HINT.

2. Related Work
Neuron-concept Association Methods. Neuron-concept
association methods aim at directly interpreting the inter-
nal computation of CNNs [2, 12, 25, 43]. Early works show
that neurons on shallower layers tend to learn simpler con-
cepts, such as lines and curves, while higher layers tend to

learn more abstract ones, such as heads or legs [63, 64].
TCAV [30] and related studies [22, 24] quantify the con-
tribution of a given concepts represented by guidance im-
ages to a target class on a chosen hidden layer. Object
Detector [72] visualizes the concept-responsible region of
a neuron in the input image by iteratively simplifying the
image. After that, Network Dissection [7, 8, 71] quantifies
the roles of neurons by assigning each neuron to a concept
with the guidance of extra images. GAN Dissection [8, 9]
illustrates the effect of concept-specific neurons by alter-
ing them and observing the emergence and vanishing of
concept-related contents in images. Neuron Shapley [23]
identifies the most influential neuron over all hidden lay-
ers to an image category by sorting Shapley values [49].
Besides pre-defined concepts, feature visualization meth-
ods [11, 44, 45] generate Deep Dream-style [42] explana-
tions for each neuron and manually interpret their mean-
ings. Additionally, Net2Vec [20] maps semantic concepts
to vectorial embeddings to investigate the relationship be-
tween CNN filters and concepts. However, existing meth-
ods cannot systematically explain how the network learns
the inherent connections of concepts and suffer from high
cost and scalability issues. HINT is proposed to overcome
these limitations and goes beyond exploring each concept
individually. Specifically, HINT adopts hierarchical con-
cepts to explore their semantic relationships.

Saliency Map Methods. Saliency map methods are a
stream of simple and fast interpretation methods which
show the pixel responsibility (i.e. saliency score) in the in-
put image for a target model output. There are two main cat-
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egories of saliency map methods – backpropagation-based
and perturbation-based. Backpropagation-based methods
mainly generate saliency maps by gradients; they include
Gradient [52], Gradient x Input [51], Guided Backprop-
agation [55], Integrated Gradient [57], SmoothGrad [54],
LRP [5, 26], Deep Taylor [41], DeepLIFT [50], and Deep
SHAP [13]. Perturbation-based saliency methods pertur-
bate input image pixels and observe the variations of model
outputs; they include Occlusion [64], RISE [46], Real-time
[15], Meaningful Perturbation [21], and Extremal Perturba-
tion [19]. Inspired by saliency methods, in HINT, we build
a saliency-guided approach to identify the responsible re-
gions for each concept on hidden layers.

3. Method

Overview. Considering a CNN classification model f and a
hierarchy of concepts E : {e} (see Figure 1 (a)), our goal is
to identify bidirectional associations between neurons and
hierarchical concepts. To this end, we develop HIerar-
chical Neuron concepT explainer (HINT) to quantify the
contribution of each neuron d to each concept e by a con-
tribution score ϕ where higher contribution value means a
stronger association between d and e, and vice versa.

The key problem therefore becomes how to estimate the
score ϕ for any pair of e and d. We achieve this by identify-
ing how the network maps concept e to a high dimensional
space and quantifies the contribution of d for the mapping.
First, given a concept e and an image x, on feature map z of
the lth layer, HINT identifies the responsible regions re to
concept e by developing a saliency-guided approach elabo-
rated in Section 3.1. Then, given the identified regions for
all the concepts, HINT further trains concept classifier Le to
separate concept e’s responsible regions re from other re-
gions rE\e∪rb∗ , where b∗ represents background (see Sec-
tion 3.2). Finally, to obtain ϕ, we design a Shapley value-
based approach to fairly evaluate the contribution of each
neuron d from the concept classifiers (see Section 3.3).

3.1. Responsible Region Identification for Concepts

In this section, we introduce our saliency-guided ap-
proach to collect the responsible regions re for a certain
concept e ∈ E to serve as the training samples of the con-
cept classifier which will be described in Section 3.2.

Taking an image x containing a concept e as input, the
network f generates a feature map z ∈ RDl×Hl×Wl where
there are Dl neurons in total. Generally, not all regions of z
are equally related to e [68]. In other words, some regions
have stronger correlations with e while others are less cor-
related, as shown in Figure 1 (b) “Step 1”. Based on the
above observation, we propose a saliency-guided approach
to identify the closely related regions re to the concept e in
feature map z. We call them responsible regions.

Algorithm 1: HINT
Input: A set of images with hierarchical concepts

{(x, e)}, a set of neurons D for experiment,
modified saliency method Λ, aggregation
method ζ, and threshold t ∈ (0, 10.

Output: Score matrix Φ where every element ϕ is
the Shapely value of neuron d to concept e.

Init: Responsible region containers re = { } for
each e in E , background region container
rb∗ = { }, and score matrix Φ = {0}|D|×|E|.

1 for each (x, e) do
2 feature map z = fl(x) ;
3 saliency map s = Λ(x, fl | e) ;
4 z ← zD,:,: ;
5 s← sD,:,: ;
6 ŝ = Normalization(ζ(s)) ∈ [0, 1]Hl×Wl ;
7 ze = z ⊙ (ŝ ≥ t), add ze to re ;
8 zb∗ = z ⊙ (ŝ < t), add zb∗ to rb∗ ;

9 for each e in E do
10 Train classifier Le which separates re and

rE\e ∪ rb∗

11 for each e in E do
12 for each d in D do
13 ϕ = Shapley value of neuron d to concept e;
14 Update Φ with ϕ;

First, we obtain the saliency map on the lth layer. As
shown in Figure 1 (b) “Step 1”, with the feature map z on
the lth layer extracted, we derive the lth layer’s saliency
map s with respect to concept e by the saliency map es-
timation approach Λ. Note that HINT is compatible with
different back-propagation based saliency map estimation
methods. We implement five of them [51, 52, 54, 55, 57],
please refer to the Supplementary Material for more details.
Note that different from existing works [51, 52, 54, 55, 57]
that pass the gradients to the input image as saliency scores,
we early stop the back-propagation at the lth layer to ob-
tain the saliency map s. Here, we use modified Smooth-
Grad [54] as an example to demonstrate our approach:

Λ = 1
N

∑N
n=1

∂fe(x
′
)

∂z′ where x
′
= x + N (µ, σ2

n) and N
indicates normal distribution. It is notable that we may also
optimally select part of the neurons D for analysis.

Next is to identify the responsible regions on feature map
z with the guidance of the saliency map s. Specifically,
we categorize each entry zD,i,j in z to be responsible to e
or not. To this end, the saliency map s is first aggregated
by an aggregation function ζ along the channel dimension
and then normalized to be within [0, 1]. Note that different
aggregation functions ζ can be applied (see five different
ζ shown in Supplementary Material). Here, we aggregate
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s using Euclidean norm ζ = ∥s∥ along its first dimension.
After that, we obtain ŝ ∈ [0, 1]Hl×Wl with each element si,j
indicating the relevance of zD,i,j to concept e. By setting a
threshold t ( we set t as 0.5 in the paper) and masking z
with ŝ ≥ t and ŝ < t, we finally obtain responsible regions
and background regions respectively (see the illustration of
the two regions Figure 1 (b): “Step 1”).

Our saliency-guided approach extends the interpretabil-
ity of saliency methods, which originally aim to find the
“responsible regions” to a concept on one particular image.
However, our approach is able to identify “responsible re-
gions” to a concept on the high dimensional space of a hid-
den layer from multiple images, which can more accurately
describe how the network represents concept e internally.
Therefore, our saliency-guided approach provides better in-
terpretability as it helps us to investigate the internal ab-
straction of concept e in the network.

3.2. Training of Concept Classifiers

For all images, we identify its responsible regions for
each concept e ∈ E following the procedures described in
3.1 and construct a dataset which contains a collection of
responsible regions re and a collection of background re-
gions rb∗ . Given the dataset, as shown in Figure 1 (c) “Step
2”, we use the high dimensional CNN hidden layer features
to train a concept classifier Le which distinguishes re from
rE\e ∪ rb∗ , i.e., separating concept e from other concepts
E\e ∪ b∗ (Line 9 and 10 in Algorithm 1).

Le can have many forms: a linear classifier, a decision
tree, a Gaussian Mixture Model, and so on. Here, we use
the simplest form, a linear classifier, which is equivalent to
a hyperplane separating concept e from others in the high
dimensional feature space of CNN.

Le(r) = σ
(
αT r

)
, (1)

where r = zD,i,j ∈ R|D| represents spatial activation
with each element representing a neuron; α is a vector of
weights, σ is a sigmoid function, and Le(r) ∈ [0, 1] repre-
sents the confidence of r related to a concept e.

It is notable that we can apply the concept classifier Le

back to the feature map z to visualize how Le detect concept
e. Classifiers of more abstract concepts (e.g., whole) tend to
activate regions of more general features, which helps us
to locate the entire extent of the object. On the contrary,
classifiers of lower-level concepts tend to activate regions
of discriminative features, such as eyes and heads.

3.3. Contribution Scores of Neurons to Concepts

Next is to decode the contribution score ϕ from the con-
cept classifiers. A simple method to estimate ϕ is to use
the learned classifier weights corresponding to each neuron
e, where a higher value typically means a larger contribu-
tion [40]. However, the assumption that α can serve as

the contribution score is that the neurons are independent
of each other. However, it is generally not true. To achieve
a fair evaluation of neurons’ contributions to e, a Shapley
value-based approach is designed to calculate the scores ϕ,
which considers neurons’ individual effects as well as the
contributions coming from the collaboration with others.

Shapely value [49] is from Game Theory, which eval-
uates channels’ individual and collaborative effects. More
specifically, if a channel cannot be used for classification
independently but can greatly improve classification accu-
racy when collaborating with other channels, its Shapley
value can still be high. Shapely value satisfies the prop-
erties of efficiency, symmetry, dummy, and additivity [40].
Monte-Carlo sampling is used to estimate the Shapley val-
ues by testing the target neuron’s possible coalitions with
other neurons. Equation (2) shows how we calculate Shap-
ley value ϕ of a neuron d to concept e.

ϕ =

∑
r

∣∣∣∑M
i=1

(
L
⟨S∪d⟩
e (r)− L

⟨S⟩
e (r)

)∣∣∣
M |rE ∪ rb∗ |

, (2)

where r = zD,i,j represents spatial activation from rE and
rb∗ ; S ⊆ D\d is the neuron subset randomly selected at
each iteration; ⟨∗⟩ is an operator keeping the neurons in the
brackets, i.e., S∪d or S, unchanged while randomizing oth-
ers; M is the number of iterations of Monte-Carlo sampling;
L
⟨∗⟩
e means that the classifier is re-trained with neurons in

the brackets unchanged and others being randomized.

By repeating the calculation for different e and d (see
Line 11 to line 14 in Algorithm 1), finally, we can get the
score matrix Φ.

3.4. Neuron-Concept Association

By repeating the score calculations for all pairs of e and
d, we obtain a score matrix Φ, where each row represents
a neuron d and each column represents a concept e in the
hierarchy. By sorting the scores in the column of concept e,
we can get collaborative neurons all having high contribu-
tions to a concept e. Also, by sorting the scores in the row
of neuron d, we can test whether d is multimodal (having
high scores to multiple concepts) and observe a hierarchy
of concepts that d is responsible for.

Note that the score matrix Φ cannot tell us the exact num-
ber of responsible neurons to concept e. For a contribution
score ϕ which is zero or near zero, the corresponding neuron
d can be regarded as irrelevant to the corresponding concept
e. Therefore, for truncation, we may set a threshold for ϕ.
In our experiment, for a concept, we sort scores and select
the top N as responsible neurons.
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(a) Responsible channels to hierarchical concepts on layer features.30
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Figure 2. Bidirectional associations between neurons and hierarchical concepts. The width of the link indicates the size of the contribution
score of a neuron to a concept. (a) Responsible neurons to hierarchical concepts (see the hierarchy in Figure 1) on layer features.30 in
VGG19. The F1 scores of concept classifiers show their capability of distinguishing the target concepts. The pictures illustrate the results
of applying concept classifiers on different images. For most of the cases, the concept classifiers only locate the objects belonging to the
target concepts. However, as bird and car share multimodal neurons, the bird classifier responses to the wheels of the car. (b) Responsible
neurons to mammal on different layers. The pictures and F1 scores indicate the network can more easily distinguish mammal from other
concepts as the layer goes higher.

4. Experiments

4.1. Experimental setup

HINT is a general framework which can be applied on
any CNN architectures. We evaluate HINT on several mod-
els trained on ImageNet [17] with representative CNN back-
bones including VGG-16 [53], VGG-19 [53], ResNet-50
[27], and Inception-v3 [58]. In this paper, the layer names
are from PyTorch pretrained models (e.g., “features.30” is
a layer name of VGG19). The hierarchical concept set E
is built upon the 1000 categories of ImageNet with hier-
archical relationship is defined by WordNet [39] as shown
in Figure 1. Figure 3 shows the computational complexity
analysis, indicating that Shapely value calculation is negli-
gible when considering the whole cycle.

4.2. Responsible Neurons to Hierarchical Concepts

In this section, we study the responsible neurons for
the concepts and show the hierarchical cognitive pattern of
CNNs. We adopt the VGG-19 backbone and show the top-
10 significant neurons to each concept (N=10). The results
in Figure 2 manifest that HINT explicitly reveals the hier-
archical learning pattern of the network. Some neurons are

responsible for concepts with higher semantic levels, such
as whole and animal, and others are for more detailed con-
cepts, such as canine. Besides, HINT shows that there can
be multiple neurons contributing to a single concept, and
HINT also identifies multimodal neurons, which have high
contributions to multiple concepts.

Concepts of different levels. First, we investigate the con-
cepts of different levels in Figure 2 (a). Among all the con-
cepts, whole has the highest semantic level, including ani-
mal, person, and plant. To study how a network recognizes
a Husky (a subclass of canine) image on a given layer, HINT
hierarchically identifies the neurons which are responsible
for the concept from higher levels (like whole, animal) to
lower ones (like canine). Besides, HINT is able to identify
multimodal neurons which take responsibility to many con-
cepts at different semantic levels. For example, the 445th

neuron delivers the most contribution to multiple concepts,
including animal, vertebrate, mammal, and carnivore, and
also contributes to canine, manifesting that the 445th neu-
ron captures the general and species-specific features which
are not labeled in the training data.

Concepts of the same level. Next, we study the respon-
sible neurons for concepts at the same level identified by
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HINT. For mamml, reptile, and bird, there exist multimodal
neurons as the three categories share morphological simi-
larities. For example, the 199th and 445th neurons con-
tribute to both mammal and bird, while the 322nd and 347th

neurons are individually responsible for both reptile and
bird. Interestingly, HINT identifies multimodal neurons
contributing to concepts which are conceptually far part to
humans. For example, the 199th neuron contributes to both
bird and car. By applying the bird classifier to images of
bird and car, we find that the body of the bird and the
wheels of the car can be both detected.
Same concept on different layers. We also identify re-
sponsible neurons on different network layers with HINT.
Figure 2 (b) illustrates the 10 most responsible neurons to
mammal in other four network layers. On shallow layers,
such as on layer features.10, HINT indicates that the con-
cept of mammal cannot be recognized by the network (F1
score: 0.04). However, as the network goes deeper, the
F1 score of mammal classifier increases until around 0.8
on layer features.30, which is consistent with the existing
works [63, 64] that deeper layers capture higher-level and
richer semantic meaningful features.

4.3. Verification of Associations by Weakly Super-
vised Object Localization

With the associations between neurons and hierarchi-
cal concepts obtained by HINT, we further validate the
associations using Weakly Supervised Object Localization
(WSOL). Specifically, we train a concept classifier Le (see
detailed steps in Section 3.1 and 3.2) with the top-N signif-
icant neurons corresponding to concept e at a certain layer,
and locate the responsible regions using Le as the localiza-
tion results. Good localization performance of Le indicates
the N neurons also have high contributions to concept e.
Comparison of localization accuracy. Quantitative evalu-
ation in Table 1 and 2 show that HINT achieves compara-
ble performance to existing WSOL approaches, thus val-
idating the associations. We train animal (Table 1) and
whole (Table 2) classifiers with 10%, 20%, 40%, 80% neu-
rons sorted and selected by Shapley values on layer “fea-
tures.26” (512 neurons) of VGG16, layer “layer3.5” (1024
neurons) of ResNet50, and layer “Mixed 6b” (768 neu-
rons) of Inception v3, respectively. To be consistent with
the commonly-used WSOL metric, Localization Accuracy
measures the ratio of images with IoU of groundtruth and
predicted bounding boxes larger than 50%. In Table 1, we
compare HINT with the state-of-the-art methods on dataset
CUB-200-2011 [59], which contains images of 200 cate-
gories of birds. Note that existing localization methods
need to re-train the model on the CUB-200-2011 as they
are tailored to the classifier while HINT directly adopts the
classifier trained on ImageNet without further finetuning on
CUB-200-2011. Even so, HINT still achieves a comparable

Table 1. Comparison of Localization Accuracy on CUB-200-
2011. * indicates fine-tuning on CUB-200-2011.

VGG16 ResNet50 Inception v3

CAM* [73] 34.4% 42.7% 43.7%
ACoL* [69] 45.9% - -
SPG* [70] - - 46.6%
ADL* [14] 52.4% 62.3% 53.0%
DANet* [62] 52.5% - 49.5%
EIL* [36] 57.5% - -
PSOL* [65] 66.3% 70.7% 65.5%
GCNet* [32] 63.2% - -
RCAM* [6] 59.0% 59.5% -
FAM* [38] 69.3% 73.7% 70.7%
Ours (10%) 66.6% 60.2% 49.0%
Ours (20%) 65.2% 67.1% 55.8%
Ours (40%) 61.3% 77.3% 52.8%
Ours (80%) 64.8% 80.2% 56.2%

Table 2. Comparison of Localization Accuracy on ImageNet.
VGG16 ResNet50 Inception v3

CAM [73] 42.8% - -
ACoL [69] 45.8% - -
SPG [70] - - 48.6%
ADL [14] 44.9% 48.5% 48.7%
DANet [62] - - 48.7%
EIL [36] 46.8% - -
PSOL [65] 50.9% 54.0% 54.8%
GCNet [32] - - 49.1%
RCAM [6] 44.6% 49.4% -
FAM [38] 52.0% 54.5% 55.2%
Ours (10%) 64.7% 59.7% 53.1%
Ours (20%) 66.1% 66.6% 54.1%
Ours (40%) 64.4% 69.4% 54.3%
Ours (80%) 62.6% 70.7% 58.7%

performance when adopting VGG16 and Inception v3, and
performs the best when adopting ResNet50. However, Ta-
ble 2 shows that HINT outperforms all existing methods on
all models on ImageNet. Besides, the differences in Local-
ization Accuracy may indicate different models have dif-
ferent learning modes. Precisely, few neurons in VGG16
are responsible for animal or whole, while most neurons
in ResNet50 contribute to identifying animal or whole. In
conclusion, the results quantitatively prove that the associa-
tions are valid, and HINT achieves comparable performance
to WSOL. More analysis is included in the supplementary
file.
Flexible choice of localization targets. When locating ob-
jects, HINT has a unique advantage: a flexible choice of lo-
calization targets. We can locate objects on different levels
in the concept hierarchy (e.g., bird, mammal, and animal).
In experiments, we train concept classifiers of whole, per-
son, animal, and bird using 20 most important neurons on
layer features.30 of VGG19 and apply them on PASCAL
VOC 2007 [18]. Figure 4 (a) shows that HINT can accu-
rately locate the objects belonging to different concepts.
Extension to locate the entire extent of the object. Many

10259



A. [10 - 20 minutes * N] Get feature maps and saliency maps of N concepts

B. [1 - 2 minutes] Get responsible regions of the target concept and other concepts

C. [1 - 3 minutes] Train classifier of the target concept

D. [~ 5 minutes] Calculate Shapley Values with GPU
Figure 3. Time consumption for different stages of HINT. The most time consuming part is the data preparation process. Shapely value
computation takes about 5 minutes with a single NVIDIA RTX 2080, while linear classifier training takes 1 − 3 minutes. Therefore, the
time consumption of Shapely value calculation is negligible when considering the whole cycle.
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Figure 4. Results of Weakly Supervised Object Localization and ablation study. (a) Illustration of applying different concept classifiers
on PASCAL VOC 2007, showing that HINT can locate objects of chosen concepts. (b) Ablation study showing the results of different
saliency methods. (c) Ablation study showing Shapley values are good measures of neurons’ contributions. The concept classifiers are
trained with 20 neurons selected by different approaches. The pointing game (mask intersection over the groundtruth mask) and IoU (mask
intersection over union of masks) scores show the accuracy of whole, person, animal, and bird concept classifiers on PASCAL VOC 2007.

existing WSOL methods adapt the model architecture and
develop training techniques to highlight the entire extent
rather than discriminative parts of object [6, 32, 36, 38, 62,
65]. However, can we effectively achieve this goal with-
out model adaptation and retraining? HINT provides an
approach to utilizing the implicit concepts learned by the
model. As shown in Figure 4 (c), classifiers of higher-level
concepts (e.g. whole) tend to draw larger masks on objects
than classifiers of lower-level concepts (e.g. bird). It is be-
cause that the responsible regions of whole contain all the
features of its subcategories. Naturally, the whole classifier
tends to activate full object regions rather than object parts.

4.4. Ablation Study

We perform an ablation study to show that HINT is gen-
eral and can be implemented with different saliency meth-
ods, and Shapley values are good measures of neurons’ con-
tributions to concepts.
Implementation with different saliency methods. We
train concept classifiers with five modified saliency meth-
ods (see Supplementary Material). Then, we apply the clas-
sifiers to the object localization task. Figure 4 (b) shows
that the five saliency methods all perform well. This shows
that HINT is general, and different saliency methods can be

integrated into HINT,
Shapley values. To test the effectiveness of Shapley val-
ues, we train concept classifiers using 20 neurons on layer
features.30 of VGG19 by different selection approaches, in-
cluding Shapley values (denoted as shap), absolute values of
linear classifier coefficients (denoted as clf coef), and ran-
dom selection (denoted as random). We then use the classi-
fiers to perform localization tasks on PASCAL VOC 2007
(see Figure 4 (c)). Two metrics are used: pointing game
(mask intersection over the groundtruth mask, usually used
by other interpretation methods) [66] and IoU (mask inter-
section over the union of masks). The results show that
“shap” outperforms “clf coef” and “random” when locat-
ing different targets. This suggests that Shapley value is a
good measure of neuron contribution as it considers both
the individual and collaborative effects of neurons. In con-
trast, linear classifier coefficients assume that neurons are
independent of each other.

4.5. More Applications

We further demonstrate HINT’s usefulness and exten-
sibility by saliency method evaluation, adversarial attack
explanation, and COVID19 classification model evaluation
(Figure 5). Please see Supplementary Material for details.
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Figure 5. Other applications of HINT. (a) Saliency method evaluation. Guided Backpropagation (GB) can pass the sanity test in [1,28] if
we observe the hidden layer results. With less randomized layers, the classifier-identified regions are more concentrated on the key features
of the bird – beak and tail, thereby suggesting that GB detects the salient regions. (b) Explaining adversarial attack. We attack images
of various classes to be bird using PGD [35] and apply the bird classifier to their feature map. The responsible regions for concept bird
highlighted in those fake bird images may imply that, some kind of adversarial attacks may be caused by attacking the similar shapes of the
target class (e.g., for the coffee mug image where most shapes are round, adversarial attack catches the only pointed shape and attacks it to
be like bird). (c) COVID19 classification model evaluation. Applying deep learning to the detection of COVID19 in chest radiographs
has the potential to provide quick diagnosis in resource-limited situations. However, the robustness of those models remains unclear [16].
Object localization with HINT can check whether the identified responsible regions overlap with the lesion regions drawn by doctors.

5. Limitations of Interpretations

HINT can systematically and quantitatively identify the
responsible neurons to implicit high-level concepts. How-
ever, our approach cannot handle concepts that are not in-
cluded in the concept hierarchy. It is not effective either to
identify responsible neurons to concepts lower than the bot-
tom level of the hierarchy which are the classification cat-
egories. More explorations are needed if we want to build
such neuron-concept associations.

6. Conclusion

We have presented HIerarchical Neuron concepT ex-
plainer (HINT), which builds bidirectional associations be-
tween neurons and hierarchical concepts in a low-cost and
scalable manner. HINT systematically and quantitatively

explains whether and how the neurons learn the high-level
hierarchical relationships of concepts implicitly. Moreover,
it is able to identify collaborative neurons contributing to
the same concept but also the multimodal neurons contribut-
ing to multiple concepts. Extensive experiments and appli-
cations manifest the effectiveness and usefulness of HINT.
We open source our development package and hope HINT
could inspire more investigations in this direction.
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