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Abstract

Capturing and rendering life-like hair is particularly
challenging due to its fine geometric structure, the complex
physical interaction and its non-trivial visual appearance.
Yet, hair is a critical component for believable avatars. In
this paper, we address the aforementioned problems: 1) we
use a novel, volumetric hair representation that is com-
posed of thousands of primitives. Each primitive can be
rendered efficiently, yet realistically, by building on the lat-
est advances in neural rendering. 2) To have a reliable con-
trol signal, we present a novel way of tracking hair on the
strand level. To keep the computational effort manageable,
we use guide hairs and classic techniques to expand those
into a dense hood of hair. 3) To better enforce temporal
consistency and generalization ability of our model, we fur-
ther optimize the 3D scene flow of our representation with
multiview optical flow, using volumetric raymarching. Our
method can not only create realistic renders of recorded
multi-view sequences, but also create renderings for new
hair configurations by providing new control signals. We
compare our method with existing work on viewpoint syn-
thesis and drivable animation and achieve state-of-the-art
results. https://ziyanw1.github.io/hvh/

1. Introduction

Although notable progress has been made towards the
realism of human avatars, cephalic hair is still one of the
hardest parts of the human body to capture and render: with
usually more than a hundred-thousand components, with
complex physical interaction among them and with com-
plex interaction with light, which is extraordinarily hard to
model. However, it is an important part of our appearance
and identity: hair styles can convey everything from reli-
gious beliefs to mood or activity. Hence, hair is critically
important to make virtual avatars believable and universally
usable.

Previous work on mesh based representations [3, 20, 25,

52,57,58,68] has shown promising results on modeling the
face and skin. However, they suffer when modeling hair, be-
cause meshes are not well suited for representing hair geom-
etry. Recent volumetric representations [26, 35] have high
DoF which allows modeling of a changing geometric struc-
ture. They have achieved impressive results in 3D scene ac-
quisition and rendering from multi-view photometric infor-
mation. Compared to other geometric representations like
multi-plane images [2,5,34,56,76] or point-based represen-
tations [1,19,33,49,65], volumetric representations support
a larger range of camera motion for view extrapolation and
do not suffer from holes when rendering dynamic geome-
try like point-based representations. Furthermore, they can
be learned from multi-view RGB data using differentiable
volumetric ray marching, without additional MVS methods.

However, one major flaw of volumetric representations
is their cubic memory complexity. This problem is particu-
larly significant for hair, where high resolution is a require-
ment. NeRF [35] circumvents theO(n3) memory complex-
ity problem by parameterizing a volumetric radiance field
using an MLP. Given the implicit form, the MLP-based im-
plicit function is not limited by spatial resolution. A hi-
erarchical structure with a coarse and fine level radiance
function is used and an importance resampling based on the
coarse level radiance field is utilized for boosting sample
resolution. Although promising empirical results have been
shown, they come with at the advance of high rendering
time and the quality is still limited by the coarse level sam-
pling resolution. Another limitation of NeRFs is that they
were initially designed for static scenes. There is some re-
cent work [21, 22, 41, 42, 46, 59, 63, 67, 74] that extends the
original NeRF concept to modeling dynamic scenes. How-
ever, they are still limited to relatively small motions, do not
support drivable animation or are not efficient for rendering.

We present a hybrid representation: by using many vol-
umetric primitives, we focus the resolution of the model
onto the relevant regions of the 3D space. For each of
the volumes, we construct a neural representation that cap-
tures the local appearance of the hair in great detail, similar
to [24, 27, 47, 63] . However, without explicitly modeling
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the dynamics and structure of hair, it would be hard for
the model to learn these properties solely through the in-
direct supervision of the multi-view appearance. Given that
the model learns to position primitives in an unsupervised
manner, the model is also prone to overfitting as a result
of not incorporating any temporal consistency during train-
ing. We address the problem of spatio-temporal modeling
of dynamic upper head and hair by explicitly modeling hair
dynamics at the coarse level and by enforcing temporal con-
sistency of the model by multi-view optical flow at the fine
level.

Procedurally, we first perform hair strand tracking at a
coarse level by lifting multi-view optical flow to a 3D scene
flow. To constrain the hair geometry and reduce the im-
pact of the noise in multi-view optical flow, we also make
sure the tracked hair strands preserve geometric properties
like shape, length and curvature across time. As a second
step, we attach volumes to hair strands to model the dy-
namic scene which can be optimized using differentiable
volumetric raymarching. The volumes that are attached to
the hair strands are regressed using a decoder that takes per-
hair-strand features and a global latent code as input and is
aware of the hair specific structure. Additionally, we further
enforce fine 3D flow consistency by rendering the 3D scene
flow of our model into 2D and compare it with the corre-
sponding ground truth optical flow. This step is essential
for making the model generalize better to unseen motions.
To summarize, the contributions of this work are

• A hybrid neural volumetric representation that binds
volumes to guide hair strands for hair performance
capture.

• A hair tracking algorithm that utilizes multiview op-
tical flow and per-frame hair strand reconstruction
while preserving specific geometric properties like hair
strand length and curvature.

• A volumetric ray marching algorithm on 3D scene flow
which enables optimization of the position and orien-
tation of each volumetric primitive through multiview
2D optical flow.

• A hair specific volumetric decoder for hair volume re-
gression and with awareness of hair structure.

2. Related Work
In this section, we discuss the most closely related classi-

cal hair dynamic and shape modeling methods. We then dis-
cuss learning-based approaches that use either volumetric
or non-volumetric scene representations for spatio-temporal
modeling.
Image-based Hair Geometry Acquisition is challenging
due to the complicated hair geometry, massive number

of strands, severe self occlusion and collision and view-
dependent appearance. Paris et al. [38, 39] and Wei et
al. [64] reconstruct 3D hair geometry from 2D/3D orien-
tation fields using multi-view images. Luo et al. [29, 31]
further improve the 3D reconstruction by refining the point
cloud from traditional MVS with structure-aware aggrega-
tion and strand-based refinement. Luo et al. [30] and Hu et
al. [12] progressively fit hair specific structures like ribbons
and wisps to the point cloud. Recently, Nam et al. [36] sub-
stitute the plane assumption in the conventional MVS by
a line-based structure to reconstruct 3D line clouds. Sun
et al. [55] use OLAT images for more efficient reconstruc-
tion of line-based MVS and develop an inverse rendering
pipeline for hair that reasons about hair specific reflectance.
However, none of those methods explicitly model temporal
consistency for a time series capture.
Dynamic Hair Capture. Compared to the vast body of
work on hair geometry acquisition, the work on hair dy-
namics [11, 69, 71, 75] acquisition is much less. Zhang et
al. [75] uses hair simulation to enforce better temporal con-
sistency over a per-frame hair reconstruction result. Hu et
al. [11] solves the physics parameters of a hair dynamics
model by running parallel processes under different simula-
tion parameters and adopting the one that best matches the
visual observation. Xu et al. [69] performs visual tracking
by aligning per-frame reconstruction of hair strands with
motion paths of hair strands on a horizontal slice of a video
volume. Yang et al. [71] developed a deep learning frame-
work for hair tracking using indirect supervision from 2D
hair segmentation and a digital 3D hair dataset. However
those methods mainly focus on geometry modeling and are
not photometrically accurate or do not support drivable an-
imation.
Non-Volumetric Representations are widely studied in the
literature of spatio-temporal modeling Mesh-based repre-
sentations [3, 20, 25, 57, 58, 68] are a perfect fit for model-
ing surfaces and highly efficient to render. However, they
have limitations for modeling complex geometries like hair.
Multi-plane images [2, 5, 34, 56, 76] are good at modeling
continuous shapes similar to volumetric representations, but
are limited to a constrained set of viewing angles. Point
cloud representations [1, 19, 33, 49, 65] can model various
geometries with high fidelity. When used for appearance
modeling, however, point-based representations might suf-
fer from their innate sparseness which might result in holes.
Thus image-level rendering techniques [48] are often ac-
companied with such representations for completeness.
Volumetric Representations are highly flexible and thus
can model many different objects. They are designed for
geometric completeness given their dense grid-like struc-
ture. Many previous works have demonstrated the strength
of such representations in geometry modeling [8, 9, 15,
60, 61, 66, 77]. Some recent works [26, 44, 53] have also
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shown their effectiveness in modeling appearance. Deep-
Voxels [53] learn a 3D grid of features as the scene rep-
resentation. Neural volumes [26] learns a grid of discrete
color and density values via volumetric raymarching. Neu-
ral body [44] incorporates SMPL [28] with Neural Vol-
umes [26] for body modeling. Nevertheless, the render-
ing quality, efficiency and memory footprint of those vol-
umetric representations is still limited by the voxel resolu-
tions. To conquer this major drawback of volumetric meth-
ods, MVP [27] proposes a hybrid representation for effi-
cient and high-fidelity rendering. It attaches a set of local
volumetric primitives to a tracked head mesh and employs
a tailored volumetric raymarching algorithm that is devel-
oped for fast rendering via a BVH [16]. The tracked mesh
provides a good initialization for the positions and rotations
of the primitives that are jointly learned. Still, finding the
globally optimal positions and rotations purely based on a
photometric reconstruction loss is highly challenging due to
many local minima in the energy formulation.
Coordinate-based Representations have been the major
focus of recent literature in 3D learning due to their low
memory footprint and ability to dynamically assign the
model capacity to the correct regions of 3D space. Many
works have demonstrated their ability to reconstruct high
fidelity geometry [6, 10, 14, 32, 40, 43, 50, 51] or to gener-
ate photo-realistic rendering results [24, 35, 37, 54, 72, 73].
NeRF [35] learns a volumetric radiance field of a static
scene from multi-view photometric supervision using a dif-
ferentiable raymarcher, but comes with a large rendering
time. Several works [23, 24, 47, 73] have improved the ren-
dering efficiency of NeRF on static scene. Among all those
approaches, the most related to ours are spatio-temporal
modeling techniques [21, 22, 41, 42, 46, 59, 63, 67]. Non-
rigid NeRF [59], D-NeRF [46] and Nerfies [41] introduce
a dynamic modeling framework with a canonical radiance
field and per-frame warpings. Some works [21, 22, 62, 63,
67, 74] model a 3D video by additionally conditioning the
radiance field on temporally varying latent codes or an addi-
tional time index. Xian et al. [67] further leverages depth as
an extra source of supervision. STaR [74] models scenes
that consist of a background and one dynamic rigid ob-
ject. NSFF [22] also combines a static and dynamic NeRF
pipeline and uses optical flow to constrain the 3D scene
flow derived from the NeRF model of adjacent time frames.
Wang et al. [63] introduce a grid of local animation codes
for better generalization and improved rendering efficiency.
However, these methods are still limited by either sampling
resolution or ability to model complex motions and do not
generalize well to unseen motions.

3. Method
In this section, we introduce our hybrid neural volu-

metric representation for hair performance capture. Our

representation combines both, the drivability of guide hair
strands and the completeness of volumetric primitives. Ad-
ditionally, the guide hair strands serve as an efficient coarse
level geometry for volumetric primitives to attach to, avoid-
ing unnecessary computational expense on empty space. As
a result of guide hair strand tracking as well as dense 3D
scene flow refinement, our model is temporally consistent
with better generalization over unseen motions. As illus-
trated in Fig. 1, the whole pipeline contains two major steps
which we will explain separately. In the first step, we per-
form strand-level tracking that leverages multi-view optical
flow information and propagates information about a subset
of tracked hair strands into future frames. To save com-
putation time, we track only guide hairs instead of track-
ing all hair strands. This is a widely used technique in hair
animation and simulation [7, 13, 45], which leads to a sig-
nificant boost in run time performance. However, getting
the guide hairs tracked is not enough to model the hair mo-
tion and appearance or to animate all the hairs due to the
sparseness of the guide hairs. To circumvent this, we com-
bine it with a volumetric representation by attaching vol-
umetric primitives to the nodes on the guide hairs. This
hybrid representation has good localization of hairs in an
explicit way and has full coverage of all the hairs, making
use of the benefits of both representations. Another advan-
tage is that the introduction of volumes allows optimizing
hair shape and appearance by multi-view dense photomet-
ric information via differentiable volumetric ray marching.
In the second step, we use the attached volumetric primi-
tives to model the hairs that are surrounding the guide hair
strands to achieve dense hair appearance, shape and motion
acquisition. A hair specific volume decoder is designed for
regressing those volumes, conditioning on both a global la-
tent vector and hair strand feature vectors with hair struc-
ture awareness. Additionally, we develop a volumetric ray-
marching algorithm for 3D scene flow that facilitates the
learning from multi-view 2D optical flow. We show in the
experiments that the introduction of additional optical flow
supervision yields better temporal consistency and general-
ization of the model.

3.1. Guide Hair Tracking

We frame the guide hair tracking process as an optimiza-
tion problem. Given the guide hair strands and multi-view
optical flow at the current frame t, we unproject and fuse
optical flow under different camera poses into 3D flow and
use that to infer the next possible position of the guide hairs
at the next frame t+ 1. The guide hair initialization at first
frame is prepared by artist.
Data Setup and Notation. In our setting, we perform
hair tracking using multi-view video data. We use a multi-
camera system with around 100 synchronized color cam-
eras that produces 2048× 1334 resolution images at 30 Hz.
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Figure 1. Pipeline. Our method consists of two stages: in the first stage, we perform guide hair tracking with multiview optical flow as
well as per-frame hair reconstruction. In the second stage, we further amplify the sparse guide hair strands by attaching volumetric neural
rendering primitives and optimizing them by using the multiview RGB and optical flow data.

The cameras are focused at the center of the capture system
and distributed spherically at a distance of one meter to pro-
vide as many viewpoints as possible. Camera intrinsics and
extrinsics are calibrated in an offline process. We generate
multi-view optical flow between adjacent frames for each
camera, using the OpenCV [4] implementation of [18]. We
acquire per-frame hair geometry by running [36]. We pa-
rameterize guide hairs as connected point clouds. Given a
specific hair strand St at time frame t, we denote the Eu-
clidean coordinate of the nth node on hair strand St as Stn.
Similarly, we have the future position of Stn at time frame
t + 1 as St+1

n . Next we introduce the notations for multi-
view camera related information. We denote Πi(·) as the
camera transformation matrix of camera i which projects a
3D point into 2D image coordinate. We denote Iof,i and
Id,i as 2D matrix of optical flow and depth of camera i re-
spectively. We denote Ht

n as the reconstructed point cloud
with direction from [36, 55]. Unless otherwise stated, all
bold lower case symbols denote vectors.
Tracking Objectives. Given camera i, we could project a
3D point into 2D to retrieve its 2D image index. The camera
projection is defined as

p̂ts,i =

[
pts,i
1

]
= Πi(S

t
n),

where p̂ts,i is the homogeneous coordinate of pts,i. Given
the camera projection formulation, we formulate the first
data-term objective based on optical flow as follows:

Lof =
∑
n,i

ωn,i||St+1
n − Zi(S

t+1
n )Π−1i (pts,i + δp)||22,

ωn,i = exp(−σ||Zi(Stn)− Id,i(p
t
s,i)||22),

δp = Iof,i(p
t
s,i),

where we denote Zi(·) as the function that represents the
depth of a certain point under camera i and ωi serves as a
weighting factor for view selection where a smaller value
means larger mismatch of projected depth and real depth
under the ith camera pose. We use a σ = 0.01.

In parallel with the data-term objective on optical flow,
we add another data-term objective to facilitate geometry
preserved tracking, which compares the Chamfer distance
between tracked guide hair strands and the per-frame hair
reconstruction from [36]. This loss is designed to make sure
that the guide hair geometry point cloud will not deviate too
much from the true hair geometry. Unlike the conventional
Chamfer loss, we also penalize the cosine distance between
the directions of Stn and the direction of its closest k = 10
neighbors asH(St+1

n ) ( {Ht+1
n }; the losses are defined as:

Lhdir =
∑

n,h∈H(St+1
n )

ωdn,h(1− | cos(dir(St+1
n ),dir(h))|),

Lhpos =
∑

n,h∈H(St+1
n )

ωrn,h||St+1
n − h||22,

where ωdn,h = exp(−σ||St+1
n − h||22) is a spatial weight-

ing, cos(·, ·) is a cosine distance function between two
vectors and dir(St+1

n ) = St+1
n+1 − St+1

n is a first order
approximation of the hair direction at St+1

n . ωrn,h =

cos(dir(St+1
n ),dir(h)) is a weighting factor that aims

at describing the direction similarity between St+1
n and

h. With Lhdir, we could groom the guide hairs St+1
n to

have similar direction to its closest k = 10 neighbors in
H(St+1

n ), resulting in a more consistent guide hair direc-
tion distribution. Alternatively, Lhpos guarantees that the
tracked guide hairs do not deviate too much from the recon-
structed hair shapes.

However, with just the data-term loss, the tracked guide
hairs might overfit to noise in the data terms. To prevent
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this, we further introduce several model-term objectives for
hair shape regularization.

Llen =
∑
n

(||dir(St+1
n )||2 − ||dir(S0

n)||2)2,

Ltang =
∑
n

((St+1
n+1 − St+1

n − Stn+1 + Stn) · dir(Stn))2+

((Stn+1 − Stn − St+1
n+1 + St+1

n ) · dir(St+1
n ))2,

Lcur =
∑
n

(cur(St+1
n )− cur(S0

n)),

where cur(Stn) is a numerical approximation of curvature
at point Stn and is defined as:

√
24(||dir(Stn)||2 + ||dir(Stn)||2 − ||Stn − Stn+2||2)

||Stn − Stn+2||32
.

We optimize all loss terms together to solve {St+1
n }

given {Stn} with:

Lhair =Lof + ωhdirLhdir + ωhposLhpos
+ ωlenLlen + ωtangLtang + ωcurLcur.

By utilizing momentum information across the temporal
axis, we can provide a better initialization of St+1

n given its
trajectory and intialize St+1

n as

St+1
n = 3Stn − 3St−1n + St−2n .

3.2. HVH

Background. Similar to MVP, we define volumetric prim-
itives Vn = {tn,Rn, sn,Vn} to model a volume of local
3D space each, where Rn ∈ SO(3), tn ∈ R3 describes
the volume-to-world transformation, sn ∈ R3 are the per-
axis scale factors and Vn = [Vc,Vα] ∈ R4×M×M×M is
a volumetric grid that stores three channel color and opac-
ity information. The volumes are placed on a UV-map that
are unwrapped from a head tracked mesh and are regressed
from a 2D CNN. Using an optimized BVH implementation,
we can efficiently determine how the rays intersect each vol-
ume and find hit boxes. For each ray rp(t) = op + tdp,
we denote (tmin, tmax) as the start and end point for ray
integration. Then, the differentiable aggregation of those
volumetric primitives is defined as:

Ip =

∫ tmax

tmin

Vc(rp(t))
dT (t)

dt
dt,

T (t) = min(

∫ t

tmin

Vα(rp(t))dt, 1).

We composite the rendered image as Ĩp = Ip + (1 −
Ap)Ip,bg whereAp = T (tmax) and Ip,bg is the background
image.
Encoder. The encoder uses the driving signal of a specific
point in time and outputs a global latent code z ∈ R256.
We use the tracked guide hairs {Stn} and tracked head
mesh vertices {vtm} to define the driving signal. Symmet-
rically, we learn another decoder in parallel with the en-
coder in an auto-encoding way that regresses the tracked
guide hairs {Stn} and head mesh vertices {vtm} from the
global latent code z . The architecture of the encoder is
an MLP that regresses the parameter of a normal distribu-
tionN (µ,σ),µ,σ ∈ R256. We use the reparameterization
trick from [17] to sample z from N (µ,σ) in a differen-
tiable way.
Hair Volume Decoder. Besides the volumes that are at-
tached to the tracked mesh {vtm}, we define additional hair
volume Vhairn that are associated with guide hair nodes Stn.
The position tn = t̂n + δtn , orientation Rn = δRn

· R̂n

and scale sn = ŝn+δsn of each hair volume are determined
by the base hair transformation (̂tn, R̂n, ŝn) and regressed
hair relative transformation (δtn , δRn , δsn). The base trans-
lation t̂n of each hair node is directly its position Stn. The
base rotation R̂n is derived from the hair tangential direc-
tion and the hair-head relative position. We denote τn as
the hair tangential direction at position Stn and ν′n as the
direction pointing to the tracked head center starting from
Stn. Then, the base rotation is R̂n = [τTn ; ρTn ; νTn ], where
ρn = τn × ν′n, νn = ρn × τn.

The geometry of hair can not be simply described by a
surface. Therefore, we design a 2D CNN that convolves
along the hair growing direction and the rough hair spatial
position separately. Specifically, in the each layer of the 2D
CNN, we seperate a k×k filter into two k×1 and 1×k fil-
ters and apply convolution along two orthogonal directions
respectively, similar to [70]. To learn a more consistent hair
shape and appearance model, we optimize per-strand hair
features {f tn} that are shared across all time frames besides
the temporally varying global latent code z . For each node
St
n on a hair strand St, we assign an unique feature vector
f tn. The shared per-strand hair features and the temporal
varying latent code z are fused to serve as the input to the
hair volume decoder, which is shown in Fig. 2.
Differentiable Volumetric Raymarching of 3D Scene
Flow. Learning a volumetric scene representation by multi-
view photometric information is sufficient for high fidelity
rendering and novel view synthesis. However, it is challeng-
ing for the model to reason about motion given the limited
supervision and the results have poor temporal consistency,
especially on unseen sequences. To better enforce tempo-
ral consistency, we develop a differentiable volumetric ray
marching algorithm of 3D scene flow which enables train-
ing via multi-view 2D optical flow.
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Figure 2. Architecture of the hair decoder. The hair decoder
takes both the global latent code z and the per-strand hair features
{f t

n} as inputs. z is first deconvolved into a 2D feature tensor.
It is then padded and concatenated with {f t

n}. In the following
operation, the 2D convolution layers are applied along the hair
growing direction and the hair spatial position seperately.

Given the transformations of each primitive as
(tn,Rn, sn), we express the coordinate of each node
on a volumetric grid at frame u as Vu

xyz = stRtVtpl + tn,
where Vtpl are the coordinates of a 3D mesh grid ranging
between [−1, 1]. Given that the 3D scene flow from frame
u to u + δ can be expressed by each volumetric primitives
as {δVu,u+ε

xyz = Vu+ε
xyz −Vu

xyz} and rendered into 2D flow
as:

Iu,u+δp,flow =

∫ tmax

tmin

(δVu,u+ε
xyz (rp(t)))

dT (t)

dt
dt,

T (t) = min(

∫ tmax

tmin

Vu
α(rp(t))dt, 1).

Training Objectives. We train our model in an end-to-end
manner with the following loss:

L =Lpho + λflowLflow + λgeoLgeo
+ λvolLvol + λcubLcub + λKLLKL.

The first term Lpho is the photometric loss that compares
the difference between the rendered image Ĩp and ground
truth image Ip on all sampled pixels p ∈ P ,

Lpho =
∑
p∈P
||Ip,gt − Ĩp||22.

The second term Lflow aims to enforce temporal consis-
tency of volumetric primitives from frame u and its adja-
cent frame u + ε by minimizing the projected 2D flow and
ground truth optical flow Iu,u+εp,flow,

Lflow =
∑
p∈P
Ap||Iu,u+εp,of − Iu,u+εp,flow||

2
2,

where ε ∈ {−1, 1}. It is important to note that we use
Ap to mask out the background part and we do not back
propagate the errors from Lflow to Ap in order to get rid
of the background noise in optical flows. To better enforce
hair and head primitives moving with the tracked head mesh
and guide hair strands, Lgeo is designed to measure the dif-
ference between the mesh/strand vertices and their corre-
sponding regressed value.

Lgeo =
∑
n

||Stn − Stn,gt||22 +
∑
m

||vtm − vtm,gt||22,

where Stn and vtm are the coordinate of the nth node of the
tracked guide hair and tracked head mesh at frame t and the
Xgt denotes the corresponding ground truth value.

We also add several regularization terms to inform the
layout of the volumetric primitives:

Lvol =
∑

i=1,··· ,Np

∏
j∈{x,y,z}

sji ,

Lcub =
∑

i=1,··· ,Np

||max(sxi , s
y
i , s

z
i )−min(sxi , s

y
i , s

z
i )||,

where Np stands for the total number of volumetric primi-
tives and sxi , s

y
i , s

z
i are the three entries of each volumetric

primitive’s scale sj . The two regularization terms aim to
prevent each primitive from growing too big while preserv-
ing the aspect ratio so that they remain approximately cubic.
The last term is the Kullback-Leibler divergence loss LKL
which makes the learnt distribution of latent code z smooth
and enforces similarity with a normal distributionN (0, 1).

4. Experiments
4.1. Dataset

For each video recorded with our multi camera system,
we split the them by the motions performed (like nodding
and shaking of the head) and hold out the last 1

4 of each mo-
tion for testing drivable animation. This results in roughly
300 frames for training sequence and 100 frames for testing
sequence. Additionally, on the training sequence, we hold
out 7 cameras that are distributed around the rear and side
view of the head. The captured images are downsampled to
1024× 667 resolution for training and testing. We train our
model exclusively on the training portion of each sequence
with m = 93 training views.

4.2. Novel View Synthesis

We show both qualitative and quantitative comparisons
with other methods [22, 27, 59] on the novel view synthe-
sis task. In the left of Tab. 1, we show the mean squared
error (MSE), SSIM and PSNR between predicted images
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Seq01 Seq02 Seq03
MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

PFNeRF 51.25 0.9269 31.16 103.41 0.8659 28.15 76.59 0.9000 29.50
NSFF 50.13 0.9346 31.21 90.06 0.8885 28.75 83.18 0.8936 29.1

NRNeRF 56.78 0.9231 30.78 132.16 0.8549 27.13 79.83 0.8987 29.33
MVP 47.54 0.9476 31.6 77.23 0.9088 29.62 73.78 0.9224 29.66
Ours 41.89 0.9543 32.17 59.84 0.9275 30.69 71.58 0.9314 29.81

Seq01 Seq02 Seq03
MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

MVP 47.54 0.9476 31.6 77.23 0.9088 29.62 73.78 0.9224 29.66
MVP w/ Lflow 46.49 0.9473 31.69 71.07 0.9107 29.93 75.13 0.9240 29.58

Ours w/o Lflow 43.82 0.9508 31.99 65.98 0.9186 30.27 69.97 0.9359 29.93
Ours 41.89 0.9543 32.17 59.84 0.9275 30.69 71.58 0.9314 29.81
MVP 75.68 0.9200 29.49 85.10 0.9039 29.62 83.76 0.9086 29.16

MVP w/ Lflow 67.86 0.9276 30.00 83.11 0.9037 29.93 80.96 0.9086 29.16
Ours w/o Lflow 71.90 0.9223 29.74 72.74 0.9137 30.27 78.34 0.9198 29.44

Ours 65.96 0.9280 30.09 67.75 0.9208 30.69 75.66 0.9222 29.57

Table 1. Novel view synthesis. On the left, we compare our method with both NeRF stemmed methods like NSFF [22], NRNeRF [59] and
a per-frame NeRF (PFNeRF) baseline, and a volumetric method like MVP [27]. On the right, we further compare our method and different
variants of our methods with MVP on novel views of both seen (top) and unseen (bottom) sequences.

NSFF [22] NRNeRF [59] MVP [27] Ours Ground Truth

Figure 3. Comparison on novel view synthesis between differ-
ent methods. Please see supplementary material for a bigger ver-
sion of this figure.

and ground truth images from the novel views of the train-
ing sequences. Qualitative results are shown in Fig. 3. Our
method has smaller image prediction errors and is able to
generate sharper results, especially on the hair regions.

4.3. Ablation Studies

Temporal consistency. To test the effects of the tempo-
ral consistency and the tracked guide hair, we also conduct
a novel view synthesis task on the test portion of our cap-
tured sequence. Note that our model is not trained using
any part of the test sequence data. On the right of Tab. 1,
we report MSE, SSIM, PSNR on novel views of both seen
and unseen sequences. As we can see, having the coarse
level guide hair strands tracked and without flow supervi-
sion gives us better rendering quality. With flow supervi-
sion, the results are improved further. This improvement is
because the tracking information helps the volumetric prim-
itives to better localize the hair region with higher consis-
tency. While the improvement for seen motions is relatively
small, both our model and MVP are notably improved for

MVP MVP w/ flow Ours w/o flow Ours Ground Truth

Figure 4. Ablation of temporal consistency. We compare our
method and MVP w/ and w/o flow supervision. With flow super-
vision, better temporal consistency and generalization for unseen
sequence can be observed. Please see supplementary for a bigger
version of this figure.

unseen sequences with novel hair motion when flow super-
vision is added. Rendering results on unseen sequences are
shown in Fig. 4. In Fig. 5, we visualize the volumetric prim-
itives of the hairs of our model with and without flow super-
vision. Including flow supervision produces notably better
disentanglement between the hair and shoulder.
Hair tracking analysis. We first study the impact of differ-
ent objectives Llen + Ltang and Lcur in hair tracking. As
in Fig. 6, when both Lcur and Llen + Ltang are applied,
the tracking results are more smooth and without kinks. We
observe that, when using the loss Llen + Ltang as the only
regularization term, the length of each hair strand segments
are already preserved but could cause some kinks without
awareness of the correct hair strand curvatures. Lcur itself
does not help and exaggerates the error when the hair strand
length is not correct, but yields smooth results when com-
bined with Llen + Ltang . This is because curvature com-
putation is agnostic to absolute length of the hair and only
controls the relative length ratio.

We show the impact of different initialization for hair
tracking in Fig. 7. When no momentum information from
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w/o flow sup. w/ flow sup. Ground truth

Figure 5. Ablation on flow supervision. We further compare the
volumetric primitives of the models w/ and w/o flow supervision.
We see that model with additional flow supervision yields a con-
sistent and reasonable shape for hair and yields better hair shoulder
disentanglement.

w/o Lcur
Llen + Ltang

w/o Llen + Ltang w/o Lcur
w/ Lcur

Llen + Ltang

Figure 6. Effects of Llen + Ltang and Lcur . We show how the
shape and curvature of tracked hair strands are preserved with both
Llen + Ltang and Lcur .

frame 118 frame 119 frame 120 frame 121 frame 122

no
mm.

1st
ord.
mm.

2nd
ord.
mm.

Figure 7. Ablation of different initialization in hair tracking.
We show tracking results of our methods with different initializa-
tions. From top to bottom, we use no momentum information, first
and second order momentum information for tracking initializa-
tion. Please note the brown and orange strands. As we can see, the
hairs are better tracked when we utilize the dynamic information
from previous frames. Better view in color version.

previous frames is used, there is more obvious drifting on
some of the strands happening, while the drifting is less
severe when we take advantage of the motion information
from previous frames.

Figure 8. Hair position editing. We create a new animation by
direct editing on the guide hair strands. As we can see the vol-
umes of hair are driven by the lifted guide hair to create a new hair
motion. Please see supplementary material for video results.

5. Applications and Limitations

One major application that is enabled by our neural vol-
umetric scene representation is novel view synthesis as we
have shown in Sec. 4.2. Our neural volumetric represen-
tation is also animatable with a sparse driving signals like
guide hair strands. Given that we have explicitly modeled
hair in the form of guide strands, our method allows modi-
fying the guide hairs directly. In Fig. 8, we show four snap-
shots of different configurations of hair positions. Please
see more results and details in the supplementary material.

There are several limitations of our work which we plan
to address in the future: 1) Our method requires the help
from artist to prepare guide hair at the first frame and some
flyaway hair might be excluded. 2) We currently do not con-
sider physics based interactions between hair and other ob-
jects like the shoulder or the chair. 3) Although we achieved
certain level of disentanglement between hair and other ob-
jects without any human labeling, it is still not perfect. We
only showed results on blonde hair which could be better
distinguished from a dark background. Our method might
be limited by other hairstyles like buzz cut or afro-textured
that are hard for artist to prepare guide hair. Please see the
supplementary material for more discussions on hair styles
and generalization. Future directions like incorporating a
physics aware module or leveraging additional supervision
from semantic information for disentanglement could be in-
teresting.

6. Discussion

In this paper, we present a hybrid neural volumetric rep-
resentation for hair dynamic performance capture. Our rep-
resentation leverages the efficiency of guide hair represen-
tation in hair simulation by attaching volumetric primitives
to them as well as the high DoF of volumetric representa-
tion. With both hair tracking and 3D scene flow refinement,
our model enjoys better temporal consistency. We empir-
ically show that our method generates sharper and higher
quality results on hair and our method achieves better gen-
eralization. Our model also supports multiple applications
like drivable animation and hair editing.
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