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Abstract

Multi-view clustering has received increasing attention
due to its effectiveness in fusing complementary informa-
tion without manual annotations. Most previous methods
hold the assumption that each instance appears in all views.
However, it is not uncommon to see that some views may
contain some missing instances, which gives rise to in-
complete multi-view clustering (IMVC) in literature. Al-
though many IMVC methods have been recently proposed,
they always encounter high complexity and expensive time
expenditure from being applied into large-scale tasks. In
this paper, we present a flexible highly-efficient incomplete
large-scale multi-view clustering approach based on bipar-
tite graph framework to solve these issues. Specifically, we
formalize multi-view anchor learning and incomplete bipar-
tite graph into a unified framework, which coordinates with
each other to boost cluster performance. By introducing the
flexible bipartite graph framework to handle IMVC for the
first practice, our proposed method enjoys linear complexity
respecting to instance numbers, which is more applicable
for large-scale IMVC tasks. Comprehensive experimental
results on various benchmark datasets demonstrate the ef-
fectiveness and efficiency of our proposed algorithm against
other IMVC competitors. The code is available at 1.

1. Introduction

Multi-view clustering (MVC) comprehensively inte-
grates diverse source information to divide data samples
with similar structures or patterns into the same cluster
without stressful label annotations [4, 10, 12, 14, 17, 19, 20,
24, 30, 44, 46, 48]. In recent years, numerous multi-view

*Corresponding author
1https://github.com/wangsiwei2010/CVPR22-IMVC-CBG

clustering algorithms have been proposed in computer vi-
sion and machine learning communities, which can ba-
sically be categorized into the following four categories:
co-training style, multiple kernel clustering (MKC), non-
negative matrix factorization (NMF) and graph clustering.
The co-training strategy for MVC proposes to alternately
combine multiple clustering results which provide predic-
tions for the unlabeled data of other views [8]. By this way,
besides extracting the specific information from the corre-
sponding view, the clustering labels can reach an agree-
ment on various views. By following the multiple ker-
nel learning framework, MKC methods unitize kernel ma-
trix from a group of pre-defined kernel matrices in Hilbert
space [4, 17, 19, 21, 33, 42, 43]. Besides, the NMF applies
matrix factorization into multi-view clustering with unified
latent space and graph clustering approaches optimize a
unified graph structure from multi-view data representation
[2, 3, 25, 27, 28, 50]. In addition, deep multi-view clustering
(DMVC) has also been intensively studied [13, 31, 38, 40].

Although existing MVC algorithms have been proposed
to improve performances in various application tasks, most
of them hold a common assumption: all of the views are
complete. Unfortunately, it is not uncommon to see that
some instances may be inaccessible from some views. For
example, for web-page analysis, some have text, audio, and
picture features while others may contain only one or two
kinds [45]. Besides, patients may fail to do all kinds of
medical testing due to financial inconvenience which leads
to sample incompleteness in corresponding views. The in-
completeness causes heavy performance degeneration or
even execution failure for existing MVC algorithms, which
makes incomplete multi-view clustering (IMVC) a chal-
lenging problem.

To deal with IMVC problem, a series of pioneer work
have been proposed in literature. Existing incomplete multi-
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view clustering can be divided into three categories: ma-
trix factorization (MF)-based [6, 9, 26], graph or kernel-
based [18, 21, 36, 37, 39] and deep learning [13, 31, 38, 40].
MF-based IMVC approaches attempt to establish a unified
representation with incomplete data across various views.
For example, PVC is the first attempt to adopt the NMF
to derive the consensus latent representation of incomplete
data [9]. Following PVC, MIC [26] then introduces the
weighted NMF and ℓ2,1 regularizer to boost performance.
Moreover, Hu et al. propose to align multi-view informa-
tion based on semi-NMF representation alignment and ba-
sic space alignment [6]. The graph or kernel-based IMC
approach attempts to recover the similarity graph or ker-
nel matrix that is consistent across multiple views in var-
ious perspectives. Liu et al. propose to unify incomplete
filling and clustering into one framework to boost the clus-
tering performance [21]. With the widespread development
of deep learning, many researchers extract deep informa-
tion via deep neural networks to address the IMVC prob-
lem. Li et al. design a deep IMVC model which could si-
multaneously learn the representation and recovery data by
contrastive learning [13]. However, the intensive compu-
tational complexity, complicated optimization process and
high time expenditure prevent all the existing algorithms
from being applied into large-scale tasks. Moreover, more
flexible IMVC framework should be developed to handle
arbitrary view incomplete other than just two.

In order to solve the aforementioned issues, we present a
flexible and highly-efficient incomplete large-scale multi-
view clustering approach based on consensus bipartite
graph framework termed as IMVC-CBG in this paper.
Firstly, we formalize IMVC problem under incomplete bi-
partite graph framework, which is the first practice for this
community. Instead of fusing large pair-wise similarity ma-
trices from multiple views in the previous study, we unify
anchor learning and incomplete bipartite graph construc-
tion together to make instances share the consensus bipartite
graph and ensure structure consistency across views. We
also provide the interpretation of our method with proba-
bility model. Then, a four-step alternative optimization al-
gorithm with proved convergence is proposed to efficiently
solve the resultant optimization problem. By virtue of the
proposed novel framework, our proposed method enjoys
linear complexity respecting to instance numbers, which is
more applicable for large-scale clustering tasks. Compre-
hensive experimental results on various benchmark datasets
demonstrate the effectiveness and efficiency of our pro-
posed algorithm against other IMVC competitors. Remark-
ably, ours is the first algorithm that can efficiently and effec-
tively run on datasets with more than 100000 samples with
64G RAM in IMVC community. The main contributions of
this paper can be summarized as follows,

• We propose a flexible IMVC approach (IMVC-CBG)

Table 1. Main notations used throughout the paper.

Notation Meaning

n number of samples
v number of views
k number of clusters
m number of selected anchors

α ∈ Rv×1 view coefficient vector
di dimension for the i-th view
d

∑v
i=1 di

X(i) ∈ Rdi×n data matrix for the i-th view
A(i) ∈ Rn×ni missing index for i-th view
W(i) ∈ Rk×di projection matrix for the i-th view
S ∈ Rn×n similarity matrix
C ∈ Rk×m consensus anchor matrix
Z ∈ Rm×n consensus anchor graph

with incomplete bipartite graph fusion to handle scal-
ability issues in the previous study. By introducing
a flexible framework to handle arbitrary view incom-
pleteness for the first practice, IMVC-CBG is a pio-
neering work that integrates IMVC and bipartite graph
into a joint framework.

• Comparing to the existing IMVC approaches, we si-
multaneously utilize the unified bipartite graph to cap-
ture the complementary information and learn to re-
cover clustering structures across incomplete views.

• We design a four-step alternative optimization algo-
rithm to effectively and efficiently solve IMVC-CBG
with proven convergence. Our proposed method en-
joys linear complexity respecting to instance numbers,
which is more applicable for large-scale IMVC tasks.
Comprehensive experimental results clearly demon-
strate the effectiveness and efficiency of our proposed
approach.

2. Related Work

In this section, we briefly introduce some related works
in the following subsection, namely, IMVC and MVC with
bipartite graphs. Table 1 lists main notations used through-
out the paper.

2.1. Incomplete Multi-view Clustering

The incomplete multi-view clustering (IMVC) problem
has gotten increased attention in recent years. We di-
vide the incomplete multi-view clustering algorithms into
three categories: matrix factorization (MF)-based algo-
rithms [6, 9, 15, 26, 49], graph or kernel-based algorithms
[21, 32, 47, 49] and deep algorithms [13, 31, 40, 41]. MF-
based IMVC approaches attempt to establish a representa-
tion unifying the incomplete data across various views with
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Figure 1. The framework of our proposed IMVC-CBG. We project the multi-view incomplete data into a shared latent space and construct
the respective incomplete bipartite graph for each view. By regularizing consistent anchors, all views contribute to filling in the consensus
bipartite graph with respective stretching matrix A(i). Finally, we directly preform clustering algorithm with the complete consensus bi-
partite graph Z. IMVC-CBG is proved to have O(n) complexity which both effectively and efficiently handle large-scale IMVC problems.

latent subspace . In this category, partial multi-view clus-
tering (PVC) [9] is a pioneer work which uses the Non-
negative Matrix Factorization (NMF) to derive the consen-
sus latent representation of incomplete data. Following
PVC, Shao et al. [26] then introduce the weighted NMF
and ℓ2,1 regularizer to boost performance. Furthermore,
Hu et al. propose DAIMC method [6] to achieve consen-
sus information across multiple views based on semi-NMF
representation alignment and basic space alignment. The
graph-based or kernel-based IMC methods attempt to re-
cover the similarity graph or kernel matrix that is consis-
tent across multiple views in various ways. Considering a
graph laplacian term, IMG [49] extends PVC by exploring
the compact global structure over the multiple views. Liu
et al. [21] combine filling and clustering into one frame-
work to boost the clustering performance. These two cat-
egories mentioned above are all shallow algorithms. With
the widespread use of deep learning, many researchers ex-
tract high-level information via deep neural networks to ad-
dress the IMC problem. Cai et al. propose an adversarial
incomplete multi-view clustering method [41] to extend it
to multiple views. After that, Wen et al. propose a DIMC-
net [40], which adaptively fuses the view-specific high-level
information to seek a consensus representation. Based on
DIMC-net, CDIMC-net [38] additionally introduces a self-
paced strategy to reduce the negative influence of outliers.

2.2. Bipartite Graph for Clustering

Bipartite graph has been widely regarded as an effective
strategy to deal with large-scale datasets in multi-view spec-

tral clustering [7, 10, 11, 28, 29, 35]. The main advantage of
bipartite graph is to select/sample a relative small propor-
tion of representative landmarks and explore the relation-
ship between anchors and original samples. The traditional
framework of multi-view bipartite graph can be written as
follows,
min
Z(i),Z

∥∥∥X(i) −C(i)Z(i)
∥∥∥2
F
+Ω(Z(i),Z), s.t. Z(i) ≥ 0,Z(i)⊤1 = 1,

(1)
where C(i) ∈ Rdi×m denotes the m selected or sampled
instances in i-th view. Then the size of respective graph has
been reduced from Rn×n to Z ∈ Rm×n. Following this
line, Li et al. propose an alternate anchor sampling strategy
to build individual anchor graphs and then combine them
into the consensus graph [10]. As demonstrated by former
anchor subspace methods, the anchor graph can help reduce
both storage and computational time while providing com-
parable clustering performance. However, existing bipartite
graph framework cannot handle IMVC circumstances. In
the next section, we will introduce IMVC-CBG for the first
practice on large-scale IMVC with bipartite graph.

3. Incomplete Large-scale Multi-view Clus-
tering with Consensus Bipartite Graph
(IMVC-CBG)

3.1. Problem Formulation

To handle IMVC problem with bipartite graph, we firstly
define the incompleteness of X(i). Given the indicator vec-
tor h(i) ∈ Rni containing the index for ni existing sam-
ples for i-th view in sort, we can define the index matrix
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A(i) ∈ Rn×ni for i-th view as follows,

A(i)
pq =

{
1, if the entry h

(i)
q = p,∀q = 1, 2 · · ·ni,

0, otherwise.
(2)

It is easy to verify that X(i)A(i) ∈ Rdi×ni is the sorted
complete data matrix in the i-th view. Thus we can adopt
Eq. (1) with single-view bipartite graph construction as,

min
Z(i)

∥∥∥X(i)A(i) −C(i)Z(i)A(i)
∥∥∥2
F
+Ω(Z(i)), s.t. Z(i) ≥ 0,Z(i)⊤1 = 1,

(3)
However, if the incomplete ratio is relatively large (very

small ni), the k-means or uniform sampling based anchor
selection strategy will heavily affect the anchor quality with
insufficient available instance information.

Different from existing complete bipartite graph strategy,
we decide to iteratively learn anchors based on all the avail-
able instances among views. IMVC-CBG seeks to construct
consensus bipartite graph structure with anchors. Firstly, we
project various dimensional complete data X(i)A(i) ∈ Rdi

into a common latent space. With the consensus latent an-
chor C, we define the optimization goal for IMVC-CBG as
follows,

min
α,{W(i)}v

i=1
,C,Z

v∑
i=1

α2
i

∥∥∥W(i)X(i)A(i) −CZA(i)
∥∥∥2

F
+ λ

∥∥∥Z∥∥∥2

F
,

s.t. α⊤1 = 1,W(i)W(i)⊤ = Ik,CC⊤ = Ik,Z ≥ 0,Z⊤1 = 1.
(4)

where X(i) ∈ Rdi×n is the i-th view of original data and
C ∈ Rk×m is the unified anchor matrix with m selected
anchors. λ is the balanced hyper-parameter for consensus
bipartite graph construction and regularization term.

Although bipartite graph learning works have been
widely adopted to reduce complexity in multi-view cluster-
ing, none of the existing works has successfully adopted in
IMVC tasks. As can be seen from Eq. (4), simply intro-
ducing the incomplete indicator matrix A(i) ∈ Rn×ni will
bring O(n2) space complexity and O(n3) time complexity,
which become a serious issue for large-scale data.

We summarize our contributions as:(i)novelly solve
large-scale IMVC issues by revealing X(i)A(i)A(i)⊤ =
X(i) ⊗ P(i) where P(i) = 1di

a(i) ∈ Rdi×n and a(i) =

[a
(i)
1 , ..., a

(i)
n ]⊤ with a

(i)
j =

∑ni

l=1 A
(i)
j,l . With the carefully

designed objective in Eq. (4), we reduce the space com-
plexity from O(vn2) to O(dn) and the time complexity to
O(dn). (ii)IMVC-CBG is a pioneering work that integrates
IMVC and bipartite graph for the first successful practice
for large-scale IMVC tasks.(iii) By following our proposed
framework, new bipartite graph methods for IMVC can be
easily proposed and benefit the community.

3.2. Interpretation with Probability Model

In this section, we provide a deep theoretical interpre-
tation for our IMVC-CBG in Figure 2. Followed [16], we

Figure 2. Interpretation of our framework with probability model.

establish the one-step stationary Markov random-walk with
transition probability matrix M = Z⊤ where M1 = 1.
Then the transition probability in one-step for i-th sample
and j-th anchor as follows,

M(1)(xi|cj) =
Zji∑m
j=1 Zji

,M(1)(cj |xi) =
Zji∑n
i=1 Zji

. (5)

For multiple bipartite graph across views in Figure 2, the
incomplete sample can regraded as no connection with an-
chors (dotted lines) and the respective transition probability
is 0. By fusing them into the complete bipartite graph Z
with proper stretching, the double-step transition probabil-
ity matrix can be reconstructed as S = Z⊤Λ−1Z where
Λii =

∑n
j=1 Zij . It is easy to prove that S is a doubly

stochastic matrix and thus we can simply perform SVD on
Z to get clustering labels. Details of derivation can be found
in supplementary materials.

3.3. Optimization

The optimization problem in Eq. (4) is not jointly convex
when all variables are considered simultaneously. There-
fore, we propose an alternating optimization algorithm to
optimize each variable with the other variables been fixed.

3.3.1 Update projection matrix
{
W(i)

}v

i=1
.

When C, Z and αi are fixed, the objective function w.r.t.
W(i) can be formulated as

min
W(i)

v∑
i=1

α2
i

∥∥W(i)X(i)A(i) −CZA(i)
∥∥2

F
, s.t. W(i)W(i)⊤ = Ik.

(6)
Since each W(i) is separated from each other, we can trans-
form Eq. (6) into the following equivalent problem by
expanding the Frobenius norm by trace and removing the
items that are not related to W(i),

maxW(i) Tr(W
(i)B(i)), s.t. W(i)W(i)⊤ = Ik, (7)

where B(i) =
(
X(i) ⊗P(i)

)
Z⊤C⊤. Supposing the Sin-

gular value decomposition (SVD) result of B(i) is UΣV⊤,
the optimal W(i) can be easily obtained by calculating
UkV

⊤
k according to [34]. The total time complexity of
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calculating
{
W(i)

}v

i=1
needs O(d(nm + km + k2)) per

iteration.

3.3.2 Update consensus anchor matrix C.

With W(i), Z and αi being fixed, the consensus anchor ma-
trix C can be updated as follows,

min
A

v∑
i=1

α2
i

∥∥∥W(i)X(i)A(i) −CZA(i)
∥∥∥2

F
, s.t. CC⊤ = Ik.

(8)
Similar to the optimization of W(i), the optimization of C
in Eq. (8) equals to the following form

max
C

Tr(C⊤G), s.t. CC⊤ = Ik, (9)

where G =
∑v

i=1 α
2
iW

(i)
(
X(i) ⊗P(i)

)
Z⊤. Similarly,

the optimal solution of updating variable A can be attained
the product of left singular matrix and the right singular ma-
trix of C. The total time complexity of calculating C needs
O(ndk + nmk +m2k) per iteration.

3.3.3 Update consensus anchor graph Z.

Fixing other variables W(i), C and αi, the optimization
problem for updating variable Z can be rewritten as,

min
Z

∑v

i=1
α2
i

∥∥∥W(i)X(i)A(i) −CZA(i)
∥∥∥2

F
+ λ

∥∥∥Z∥∥∥2

F
,

s.t. Z ≥ 0, Z⊤1 = 1.

(10)

Denoting Z:,j as a vector with the i-th element to be zij , we
optimize Z by column:

minZ:,j ∥Z:,j − fj∥2F , s.t. Z⊤
:,j1 = 1, Z ≥ 0, (11)

where f⊤j =
∑v

i=1 α2
iX

(i)
:,j

⊤
W(i)⊤C

λ+
∑v

i=1 α2
iP

(i)
1j

. We write the La-

grangian function of Eq. (11) as,

L (Z:,j , β, η) = ∥Z:,j − fj∥2F − βj

(
Z⊤

:,j1− 1
)
− η⊤j Z:,j ,

(12)
where β and ηj are the respective Lagrangian multipliers.
Then the KKT conditions are written as,{

Z:,j − fj − βj1− ηj = 0,

ηj
⊙

Z:,j = 0,
(13)

Together with Z⊤
:,j1 = 1, we can easily obtain that

Z:,j = max (fj + βj1, 0) , βj =
1 + f⊤j 1

m
. (14)

Since the optimum value of Z can be analytically obtained,
the time complexity is O(nk(d+m)).

3.3.4 Update view coefficient αi.

Fixing the irrelevant variables, we can obtain the optimiza-
tion problem for updating αi.

minαi

∑v

i=1
α2
i τi, s.t. α⊤1 = 1, (15)

Algorithm 1 IMVC-CBG

Input: Input v views incomplete dataset {X(i)}vi=1, the
missing index {P(i)}vi=1 and the number of cluster k.
Initialize: Initialize C, Z and αi with 1

v .
1: while not converged do
2: Update W(i) by solving the problem in Eq. (7).
3: Update C by solving the problem in Eq. (9).
4: Update Z by solving the problem in Eq. (11).
5: Update αi by solving Eq. (15).
6: end while
7: Obtain U by performing SVD on Z.
8: Output: Perform k-means on U to achieve the final

clustering result.

where τi =
∥∥W(i)X(i)A(i) −CZA(i)

∥∥2
F

. According
to Cauchy-Buniakowsky-Schwarz inequality, the optimal
αi can be directly obtained by αi = e

τi
, where e =

1
1
τ1

+ 1
τ2

+···+ 1
τv

. the time complexity is O(nk(d+m)).

As the iteration proceeds, the four variables in the above
optimization are solved separately with other variables
fixed. Since each sub-problem can reach its global opti-
mum, the objective value will monotonically decrease until
the convergence condition is reached and the lower bound
of the objective function can be easily proven to be zero.
The entire procedures of the above optimization are listed
in the following Algorithm 1.

3.4. Discussions

In this subsection, we will analyze our proposed algo-
rithm in terms of space/time complexity and convergence.
Then a theoretical comparison is conducted between SOTA
IMVC method in Table 2.

Space Complexity: In this paper, the major memory
costs of our method are matrices W(i) ∈ Rk×di , P(i) ∈
Rdi×n, C ∈ Rk×m and Z ∈ Rm×n. Thus the space com-
plexity of our IMVC-CBG is (d+m)(n+ k). In our algo-
rithm, m ≪ n and k ≪ n. Therefore, the space complexity
of IMVC-CBG is O(n). We summarize the memory cost of
compared algorithms in the following Table 2.

Time complexity: The computational complexity of
IMVC-CBG is composed of four optimization steps as
mentioned before. When updating

{
W(i)

}v

i=1
, it costs

O(d(nm + km + k2)) to get the optimal value. Simi-
lar to updating

{
W(i)

}v

i=1
, updating C needs O(ndk +

nmk + m2k). When analytically obtaining Z, it costs
O(nk(d+m)) for all columns. The time cost of calculating
α is O(nk(d + m)). Therefore, the total time cost of the
optimization process is O(n(dk+mk+dm)+mdk). Con-
sequently, the computational complexity of our proposed
optimization algorithm is linear complexity O(n).

After the optimization, we perform SVD on Z to obtain
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the spectral embedding and output the discrete clustering
labels by k-means [35]. The post-process needs O(nm2),
which is also linear complexity respecting to samples. In
total, our algorithm achieves IMVC with linear time com-
plexity, which demonstrates the efficiency of IMVC-CBG.

Table 2. Complexity analysis on SOTA IMVC methods

Method Memory Cost Time Complexity

BSV [23] vn2 O(n3)
MIC [26] vn2 + nd+ nvk + vdk O(n3 + n2dk)

MKKM-IK [17] vn2 + vnk O(vn3)
DAIMC [6] vn2 + nd+ nk + dk O(nd3 + ndk)
APMC [5] nd+ vnm+ nk O(n3 + nmd+m3)
UEAF [37] vn2 + dn+ nvk + dk O(n3 + dk2)

MKKM-IK-MKC [22] vn2 + vnk O(vn3)
EEIMVC [18] vn2 + vnk + vk2 O(nk2 + vk3)

FLSD [39] vn2 + dnk + nk O(nd2)
Ours mn+ (d+m)k O(ndk + nmd+mdk)

4. Experiments
4.1. Datasets

We perform experiments on nine widely used multi-view
benchmark datasets: NGs, Caltech101-7, Caltech101-20,
BDGP, Caltech101-all, NUSWIDE, MNIST and Youtube-
Face. The detail of them are shown in Table 3. Specif-
ically, Caltech101-7 and Caltech101-20 are both subsets
of the image dataset Caltech1012. BDGP3 contains 2500
Drosophila embryo samples in 5 classes. NUSWIDE4 is an
object recognition dataset. MNIST5 consists of handwritten
digits of 0 to 9. YoutubeFace6 is a video dataset produced
from YouTube with 101499 instances. These datasets can
be downloaded at 7.

4.2. Compared Methods and Experimental Setting

The following state-of-the-art multi-view clustering
methods are compared with our proposed algorithm in
the experiment. Best Single-view Spectral Clustering
(BSV) [23] fills in the missing parts with the mean val-
ues. Multiple incomplete views clustering via weighted
non-negative matrix factorization with ℓ2,1 regulariza-
tion (MIC) [26] generates a consensus clustering represen-
tation with the latent feature matrices learned from all in-
complete views. Multiple kernel k-means with incom-
plete kernels (MKKM-IK) [17] proposes to impute in-
complete kernels and perform kernel k-means in a unified

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3https://www.fruitfly.org/
4https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/

nuswide/NUS-WIDE.html
5http://yann.lecun.com/exdb/mnist/
6https://www.cs.tau.ac.il/ wolf/ytfaces/
7https://github.com/wangsiwei2010/Incomplete_

multi-view_Datasets

Table 3. Incomplete multi-view datasets in experiments.

Dataset Size Classes Views Dimensionality

NGs 500 5 3 500/500/500
Caltech101-7 1474 7 6 48/40/254/198/512/928

Caltech101-20 2386 20 6 48/40/254/198/512/928
BDGP 2500 5 3 1000/500/250

Caltech101-all 9144 102 5 48/40/254/512/928
NUSWIDE 30000 31 5 65/226/145/74/129

MNIST 60000 10 3 342/1024/64
YoutubeFace 101499 31 5 64/512/64/647/838

framework. Doubly aligned incomplete multi-view clus-
tering (DAIMC) [6] learns a common representation with
aligned samples based on semi-NMF and aligns the base
matrices with ℓ2,1 regularized regression. Anchors bring
ease: An embarrassingly simple approach to partial
multi-view clustering (APMC) [5] fuses constructed an-
chor similarity matrices and is restricted to use on datasets
with two views or three views. Unified embedding align-
ment with missing views inferring for incomplete multi-
view clustering (UEAF) [37] jointly imputes missing sam-
ples by using locality preservation and learns latent rep-
resentation with embedding alignment. Multiple kernel
k k-means with incomplete kernels (MKKM-IK-MKC)
[22] unifies kernel imputation and kernel k-means cluster-
ing into a joint framework. Efficient and effective regular-
ized incomplete multi-view clustering (EEIMVC) [18]
jointly imputes the low dimensional base feature matrices
and seeks a consensus feature matrix for clustering. Gener-
alized incomplete multi-view clustering with flexible lo-
cality structure diffusion (FLSD) [39] jointly learns view-
specific latent representations and the shared representation.

In our experiments, we randomly select np paired sam-
ples which are observed in all views. For the rest n − np

samples, a random matrix H =
[
h1,h2, . . . ,h(n−np)

]
∈

{0, 1}(n−np)×v is generated, 0 <
∑v

i=1 hli < v. The j-th
sample is observed in the r-th view with hjr = 1, other-
wise the j-th sample is missing in the r-th view. With the
paired ratio ϵ =

np

n setting as [0.1 : 0.1 : 0.9], we generate
incomplete multi-view datasets.

For all the above-mentioned algorithms, we have down-
loaded their public Matlab code implementations from orig-
inal websites. The parameters of the compared meth-
ods are set according to the suggestions of the corre-
sponding literature. In the proposed method, we tune λ
in [0.001, 0.01, 1, 10] and the number of anchor points in
[k, 2k, 3k, 5k] with a grid search scheme. Moreover, we re-
peat each experiment 20 times for average performance and
standard deviation. To evaluate the clustering performance,
we employ three widely used criteria including accuracy
(ACC), normalized mutual information (NMI), Purity and
Fscore. All the experiments are performed on a desktop
with Intel core i9-10900X CPU and 64G RAM, MATLAB
2020b(64-bit).
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Table 4. The aggregated ACC, NMI, Purity and Fscore comparison (mean±std) of different algorithms on benchmark datasets. ’-’ means
out of the CPU memory. The detailed results are omitted due to space limit and provided in supplementary materials.

Datasets BSV MIC MKKM-IK DAIMC APMC UEAF MKKM-IK-MKC EEIMVC FLSD Proposed
ACC

NGs 41.13±2.03 20.92±0.46 79.63±0.09 74.53±9.27 89.41±0.01 89.49±0.03 49.87±0.13 77.84±0.12 84.19±0.03 88.95±0.02
Caltech101-7 54.63±0.07 37.33±1.97 38.08±0.33 42.10±3.72 - 40.65±0.34 43.64±2.02 40.1±0.67 55.08±0.22 60.40±0.88

Caltech101-20 39.16±0.35 26.53±1.55 32.70±1.37 45.68±2.10 - 39.55±1.54 31.95±1.78 41.59±1.69 41.78±1.18 50.25±2.61
BDGP 34.96±1.06 25.37±0.61 32.17±0.24 28.12±0.05 28.12±0.01 44.88±0.02 40.77±0.20 44.00±0.05 42.96±0.03 47.81±0.12

Caltech101-all 10.95±0.26 12.65±0.45 19.54±0.72 - - 17.28±0.46 15.45±0.53 23.07±0.77 15.73±0.46 24.23±1.04
NUSWIDE 12.05±0.03 - - 13.79±0.37 - - - 12.73±0.16 - 12.53 ± 0.11

MNIST - - - 97.57±0.31 - - - - - 98.10±0.06
YoutubeFace - - - - - - - - - 22.96±2.83

NMI
NGs 20.24±1.37 2.37±0.49 63.16±0.11 59.97±6.48 73.36±0.03 73.6±0.08 32.76±0.11 57.23±0.18 64.22±0.04 73.05±0.06

Caltech101-7 15.93±0.60 24.8±1.13 31.32±0.25 45.45±2.12 - 39.98±0.22 31.26±0.53 42.96±0.33 37.20±0.35 43.58±0.58
Caltech101-20 25.26±0.66 30.02±1.31 40.18±0.88 55.56±1.18 - 50.37±0.84 37.39±1.16 55.17±0.82 50.90±0.7 52.92±1.12

BDGP 12.88±0.94 4.47±0.70 7.41±0.16 8.68±0.01 8.68±0.01 23.77±0.04 16.35±0.13 19.91±0.09 18.95±0.06 22.39±0.09
Caltech101-all 21.16±0.26 28.7±0.33 38.09±0.37 - - 35.87±0.21 33.38±0.31 43.74±0.30 34.18±0.21 39.64±0.51

NUSWIDE 2.68±0.03 - - 11.84±0.36 - - - 10.31±0.16 - 10.42 ± 0.03
MNIST - - - 93.89±0.53 - - - - - 94.94±0.13

YoutubeFace - - - - - - - - - 14.12±1.52
Purity

NGs 43.15±1.51 21.3±0.42 79.63±0.09 75.56±9.27 89.41±0.01 89.49±0.03 50.57±0.10 77.84±0.12 84.19±0.03 88.95±0.02
Caltech101-7 64.7±0.61 71.58±1.24 76.36±0.20 81.12±1.08 - 80.91±0.10 77.52±0.57 80.6±0.25 80.03±0.27 80.96±0.08

Caltech101-20 47.78±0.72 54.31±1.2 62.66±1.01 74.92±0.93 - 70.23±0.83 60.33±1.42 74.75±0.74 71.08±0.63 70.3±0.87
BDGP 36.75±0.89 25.67±0.59 33.42±0.18 28.46±0.01 28.46±0.01 45.92±0.01 41.1±0.13 46.4±0.05 44.41±0.03 48.2±0.10

Caltech101-all 17.88±0.22 27.27±0.46 36.26±0.53 - - 34.02±0.33 30.9±0.44 39.16±0.42 32.54±0.32 37.84±0.49
NUSWIDE 13.72±0.04 - - 23.41±0.63 - - - 21.83±0.21 - 22.17 ± 0.19

MNIST - - - 97.57±0.31 - - - - - 98.1±0.16
YoutubeFace - - - - - - - - - 27.11±0.39

Fscore
NGs 32.39±1.08 32.9±0.19 68.72±0.07 64.83±7.49 80.28±0.02 80.55±0.06 42.28±0.09 63.75±0.14 71.8±0.05 79.49±0.03

Caltech101-7 56.03±0.02 37.74±1.35 39.57±0.28 49.44±2.93 - 44.48±0.19 43.6±1.66 44.65±0.34 55.63±0.03 59.28±0.98
Caltech101-20 32.34±0.32 23.78±1.38 25.63±0.91 40.34±2.41 - 36.11±1.83 26.82±1.55 35.22±1.32 38.07±1.61 44.38±2.94

BDGP 28.76±0.61 29.88±0.06 25.25±0.08 31.21±0.06 31.21±0.04 33.69±0.03 30.15±0.10 32.93±0.04 34.29±0.01 35.76±0.06
Caltech101-all 6.02±0.07 9.19±0.41 13.53±0.62 - - 12.80±0.53 10.66±0.52 16.37±0.83 11.96±0.49 15.97±1.13

NUSWIDE 10.95±0.00 - - 8.58±0.19 - - - 7.81±0.08 - 7.70 ± 0.03
MNIST - - - 95.28±0.57 - - - - - 96.29±0.28

YoutubeFace - - - - - - - - - 15.77±0.49

Table 5. Time-consuming comparison of different IMVC algorithms on benchmark datasets (in seconds). ’-’ means out of CPU memory.
Datasets Num BSV MIC MKKM-IK DAIMC APMC UEAF MKKM-IK-MKC EEIMVC FLSD Proposed

NGs 500 0.06 143.83 0.50 42.50 0.18 2.25 1.36 0.14 3.30 1.31
Caltech101-7 1474 0.50 1298.58 14.47 38.05 - 7.22 32.95 1.20 18.39 2.59

Caltech101-20 2386 2.21 2847.34 81.01 69.77 - 26.63 126.15 3.96 54.04 5.28
BDGP 2500 0.92 1146.74 34.53 25.46 18.46 39.76 42.43 1.30 32.41 2.73

Caltech101-all 9144 160.38 30672.67 1961.33 - - 923.26 3507.48 111.25 1216.41 46.40
NUSWIDE 30000 8281.38 - - 1667.67 - - - 1872.44 - 22.43

MNIST 60000 - - - 5588.82 - - - - - 549.08
YoutubeFace 101499 - - - - - - - - - 1168.35

4.3. Experimental Results

Table 4 reports the ACC, NMI, Purity and Fscore com-
parison of the above baseline algorithms. Table 5 presents
the operational time of the aforementioned algorithms.
From these two tables, we have the following observations.

• Our proposed algorithm achieves the best performance
in terms of four metrics against all compared al-
gorithm in most circumstances. Taking the results
on DAIMC for instance, DAIMC has been consid-
ered as the strongest incomplete multi-view algorithm,
our IMVC-CBG further exceeds it by 19.3%, 43.4%,
10.0%, 70.0% and 0.5% increment in terms of ACC
on NGs, Caltech101-7, Caltech101-20, BDGP and
MNIST. Moreover, IMVC-CBG also achieves consid-

erable results over other metrics.
• In comparison with existing subspace-based IMVC

method (BSV, MIC, MKKM-IK, DAIMC, UEAF,
MIKKM-IK-MKC, EEIMVC, FLSD), our bipartite
graph framework shows effectiveness and efficiency
and therefore more applicable on large-scale IMVC
datasets.

• Our IMVC-CBG shows substantially shorter running
time on NGs, Caltech101-7, Caltech101-20, BDGP
and Caltech101-all when compared to other incom-
plete multi-view algorithms, demonstrating its com-
putational efficiency. Moreover, the proposed IMVC-
CBG is capable of handling over 100,000 instances of
large-scale datasets (i.e., YoutubeFace) while all other
compared baselines suffer from out-of-memory errors.
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Figure 3. The clustering results of ACC metric on benchmark datasets with different incomplete ratios. Only ours can run YoutubeFace so
it is omitted. The results of other metrics are provided in supplementary materials due to space limit.
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Figure 4. Variation of the objective function values on three bench-
mark datasets. Others are displayed in supplementary materials.

In summary, IMVC-CBG demonstrates superior clustering
performance over the alternatives on all datasets and can ef-
fectively handle large-scale datasets with more than 100000
samples. We expect that the effectiveness and high effi-
ciency of IMVC-CBG make it a well-suited consideration
for applications in practical clustering.

4.4. Qualitative Study

To further illustrate the effectiveness of IMVC-CBG
handling in incomplete data, we evaluate the curves of the
clustering results on the datasets respecting to various miss-
ing ratio in Figure 3. As can be seen, the performance of
all algorithms drops as missing ratio increases. Compared
to other missing clustering algorithms, our proposed algo-
rithm is able to maintain the best ACC over all datasets even
at high missing ratio. This is a piece of evidence that IMVC-
CBG can efficiently handle incomplete data.

4.5. Sensitivity and Convergence

To analyze the influence of parameters on the efficiency
of the algorithm, we conducted a comparative experiment
on Caltech101-all and MNIST with different settings of λ
and anchors numbers vary. As shown in Figure 5, our algo-
rithm is not greatly affected by λ with fixed anchors num-

(a) Caltech101-all (b) MNIST

Figure 5. Sensitivity analysis of λ and anchors number for our
method over Caltech101-all and MNIST.

ber. According to [1], our algorithm is theoretically guar-
anteed to converge to a local minimum. The examples of
the evolution of the objective value on the experimental re-
sults are shown in Figure 4. From these experiments, we
observe that the objective values of our algorithm monoton-
ically decrease at each iteration. These results clearly verify
our algorithm’s convergence.

5. Conclusion

In this paper, we propose a novel consensus bipartite
graph fusion framework for incomplete multi-view clus-
tering termed IMVC-CBG. Different from existing IMVC
methods, the proposed framework can flexibly and effi-
ciently handle arbitrary view incompleteness for large-scale
IMVC tasks. IMVC-CBG is the first practice to introduce
bipartite graph into IMVC community for large-scale tasks.
In the future, we will explore the influence of various anchor
selection strategies on the clustering quality.
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