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Abstract

Current few-shot action recognition methods reach im-
pressive performance by learning discriminative features
for each video via episodic training and designing various
temporal alignment strategies. Nevertheless, they are lim-
ited in that (a) learning individual features without consid-
ering the entire task may lose the most relevant informa-
tion in the current episode, and (b) these alignment strate-
gies may fail in misaligned instances. To overcome the
two limitations, we propose a novel Hybrid Relation guided
Set Matching (HyRSM) approach that incorporates two key
components: hybrid relation module and set matching met-
ric. The purpose of the hybrid relation module is to learn
task-specific embeddings by fully exploiting associated re-
lations within and cross videos in an episode. Built upon the
task-specific features, we reformulate distance measure be-
tween query and support videos as a set matching problem
and further design a bidirectional Mean Hausdorff Metric
to improve the resilience to misaligned instances. By this
means, the proposed HyRSM can be highly informative and
flexible to predict query categories under the few-shot set-
tings. We evaluate HyRSM on six challenging benchmarks,
and the experimental results show its superiority over the
state-of-the-art methods by a convincing margin. Project
page: https://hyrsm-cvpr2022.github.io/.

1. Introduction
Action recognition has been witnessing remarkable

progress with the evolution of large-scale datasets [5, 9, 18]
and video models [14, 32, 52]. However, this success heav-
ily relies on a large amount of manually labeled examples,
which are labor-intensive and time-consuming to collect. It
actually limits further applications of this task. Few-shot
action recognition is promising in reducing manual annota-
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Figure 1. (a) The proposed hybrid relation module. We enhance
video representations by extracting relevant discriminative pat-
terns cross videos in an episode, which can adaptively learn task-
specific embeddings. (b) Example of make coffee, the current tem-
poral alignment metrics tend to be strict, resulting in an incorrect
match on misaligned videos. In contrast, the proposed set match-
ing metric is more flexible in finding the best correspondences.

tions and thus has attracted much attention recently [58,63].
It aims at learning to classify unseen action classes with ex-
tremely few annotated examples.

To address the few-shot action recognition problem, cur-
rent attempts [4, 40, 59, 63] mainly adopt a metric-based
meta-learning framework [45] for its simplicity and effec-
tiveness. It first learns a deep embedding space and then
designs an explicit or implicit alignment metric to cal-
culate the distances between the query (test) videos and
support (reference) videos for classification in an episodic
task. For instance, Ordered Temporal Alignment Module
(OTAM) [4] extracts features for each video independently
and tries to find potential query-support frame pairs only
along the ordered temporal alignment path in this feature
space. Despite remarkable performance has been reached,
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these methods still suffer from two drawbacks. First, dis-
criminative interactive clues cross videos in an episode are
ignored when each video is considered independently dur-
ing representation learning. As a result, these methods ac-
tually assume the learned representations are equally ef-
fective on different episodic tasks and maintain a fixed set
of video features for all test-time tasks, i.e., task-agnostic,
which hence might overlook the most discriminative dimen-
sions for the current task. Existing work also shows that
the task-agnostic methods tend to suffer inferior general-
ization in other fields, such as image recognition [29, 56],
NLP [35, 38], and information retrieval [33]. Second, ac-
tions are usually complicated and involve many subactions
with different orders and offsets, which may cause the fail-
ure of existing temporal alignment metrics. For example,
as shown in Figure 1(b), to make coffee, you can pour wa-
ter before pour coffee powder, or in a reverse order, hence
it is hard for recent temporal alignment strategies to find
the right correspondences. Thus a more flexible metric is
required to cope with the misalignment.

Inspired by the above observations, we thus propose a
novel Hybrid Relation guided Set Matching (HyRSM) al-
gorithm that consists of a hybrid relation module and a set
matching metric. In the hybrid relation module, we ar-
gue that the considerable relevant relations within and cross
videos are beneficial to generate a set of customized fea-
tures that are discriminative for a given task. To this end, we
first apply an intra-relation function to strengthen structural
patterns within a video via modeling long-range temporal
dependencies. Then an inter-relation function operates on
different videos to extract rich semantic information to rein-
force the features which are more relevant to query predic-
tions, as shown in Figure 1(a). By this means, we can learn
task-specific embeddings for the few-shot task. On top of
the hybrid relation module, we design a novel bidirectional
Mean Hausdorff Metric to calculate the distances between
query and support videos from the set matching perspec-
tive. Concretely, we treat each video as a set of frames
and alleviate the strictly ordered constraints to acquire bet-
ter query-support correspondences, as shown in Figure 1(b).
In this way, by combining the two components, the pro-
posed HyRSM can sufficiently integrate semantically re-
lational representations within the entire task and provide
flexible video matching in an end-to-end manner. We eval-
uate the proposed HyRSM on six challenging benchmarks
and achieve remarkable improvements again current state-
of-the-art methods.

Summarily, we make the following three contributions:
1) We propose a novel hybrid relation module to capture the
intra- and inter-relations inside the episodic task, yielding
task-specific representations for different tasks. 2) We fur-
ther reformulate the query-support video pair distance met-
ric as a set matching problem and develop a bidirectional

Mean Hausdorff Metric, which can be robust to complex ac-
tions. 3) We conduct extensive experiments on six challeng-
ing datasets to verify that the proposed HyRSM achieves
superior performance over the state-of-the-art methods.

2. Related Work

The work related to this paper includes: few-shot image
classification, set matching, and few-shot action recogni-
tion. In this section, we will briefly review them separately.
Few-shot Image Classification. Recently, the research
of few-shot learning [13] has proceeded roughly along with
the following directions: data augmentation, optimization-
based, and metric-based. Data augmentation is an intu-
itive method to increase the number of training samples
and improve the diversity of data. Mainstream strategies
include spatial deformation [39, 41] and semantic feature
augmentation [6, 7]. Optimization-based methods learn a
meta-learner model that can quickly adopt to a new task
given a few training examples. These algorithms include
the LSTM-based meta-learner [44], learning efficient model
initialization [15], and learning stochastic gradient descent
optimizer [31]. Metric-based methods attempt to address
the few-shot classification problem by ”learning to com-
pare”. This family of approaches aims to learn a feature
space and compare query and support images through Eu-
clidean distance [45,56], cosine similarity [51,55], or learn-
able non-linear metric [21,29,48]. Our work is more closely
related to the metric-based methods [29, 56] that share
the same spirit of learning task-specific features, whereas
we focus on solving the more challenging few-shot ac-
tion recognition task with diverse spatio-temporal depen-
dencies. In addition, we will further point out the differ-
ences and conduct performance comparisons in the supple-
mentary materials.
Set Matching. The objective of set matching is to ac-
curately measure the similarity of two sets, which have re-
ceived much attention over the years. Set matching tech-
niques can be used to efficiently process complex data struc-
tures [1, 2, 42] and has been applied in many computer vi-
sion fields, including face recognition [37, 53, 54], object
matching [43, 60], etc. Among them, Hausdorff distance is
an important alternative to handle set matching problems.
Hausdorff distance and its variants have been widely used
in the field of image matching and achieved remarkable re-
sults [12, 22, 23, 47, 49, 60]. Inspired by these great suc-
cesses, we introduce set matching into the few-shot action
recognition field for the first time.
Few-shot Action Recognition. The difference between
few-shot action recognition and the previous few-shot learn-
ing approaches is that it deals with more complex higher-
dimensional video data instead of two-dimensional images.
The existing methods mainly focus on metric-based learn-
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Figure 2. Schematic illustration of the proposed Hybrid Relation guided Set Matching (HyRSM) approach on a 3-way 1-shot problem.
Given an episode of video data, a feature embedding network is first employed to extract their feature vectors. A hybrid relation module is
then followed to integrate rich information within each video and cross videos with intra-relation and inter-relation functions. Finally, the
task-specific features are fed forward into a set matching metric for matching score prediction. Best viewed in color.

ing. OSS-Metric Learning [25] adopts OSS-Metric of video
pairs to match videos. TARN [3] learns an attention-based
deep-distance measure from an attribute to a class center for
zero-shot and few-shot action recognition. CMN [63] uti-
lizes a multi-saliency embedding algorithm to encode video
representations. AMeFu-Net [16] uses depth information to
assist learning. OTAM [4] preserves the frame ordering in
video data and estimates distances with ordered temporal
alignment. ARN [58] introduces a self-supervised permuta-
tion invariant strategy. ITANet [59] proposes a frame-wise
implicit temporal alignment strategy to achieve accurate
and robust video matching. TRX [40] matches actions by
matching plentiful tuples of different sub-sequences. Note
that most above approaches focus on learning video em-
bedding independently. Unlike these previous methods,
our HyRSM improves the transferability of embedding by
learning intra- and inter-relational patterns that can better
generalize to unseen classes.

3. Method
In this section, we first formulate the definition of the

few-shot action recognition task. Then we present our Hy-
brid Relation guided Set Matching (HyRSM) method.

3.1. Problem formulation

The objective of few-shot action recognition is to learn
a model that can generalize well to new classes with only
a few labeled video samples. To make training more
faithful to the test environment, we adopt the episodic
training manner [51] for few-shot adaptation as previous
work [4, 40, 51, 59]. In each episodic task, there are two
sets, i.e., a support set S and a query set Q. The support set
S contains N ×K samples from N different action classes,
and each class contains K support videos, termed the N -

way K-shot problem. The goal is to classify the query
videos in Q into N classes with these support videos.

3.2. HyRSM

Pipeline. The overall architecture of HyRSM is illus-
trated in Figure 2. For each input video sequence, we
first divide it into T segments and extract a snippet from
each segment, as in previous methods [4, 52]. This way,
in an episodic task, the support set can be denoted as
S = {s1, s2, ..., sN×K}, where si = {s1i , s2i , ..., sTi }. For
simplicity and convenience, we discuss the process of the
N -way 1-shot problem, i.e., K = 1, and consider that
the query set Q contains a single video q. Then we apply
an embedding model to extract the feature representations
for each video sequence and obtain the support features
Fs = {fs1 , fs2 , ..., fsN } and the query feature fq , where
fsi = {f1i , f2i , ..., fTi } and fq = {f1q , f2q , ..., fTq }. After
that, we input Fs and fq to the hybrid relation module to
learn task-specific features, resulting in F̃s and f̃q . Finally,
the enhanced representations F̃s and f̃q are fed into the set
matching metric to generate matching scores. Based on the
output scores, we can train or test the total framework.

Hybrid relation module. Given the features Fs and fq
output by the embedding network, current approaches, e.g.,
OTAM [4], directly apply a classifier C in this feature space.
They can be formulated as:

yi = C(fsi , fq) (1)

where yi is the matching score between fsi and fq . During
training, yi = 1 if they belong to the same class, otherwise
yi = 0. In the testing phase, yi can be adopted to predict
the query label. From the perspective of probability theory,
it makes decisions based on the priors fsi and fq:

yi = P((fsi , fq)|fsi , fq) (2)
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which is a typical task-agnostic method. However, the task-
agnostic embedding is often vulnerable to overfit irrelevant
representations [21, 29] and may fail to transfer to unseen
classes not yet observed in the training stage.

Unlike the previous methods, we propose to learn task-
specific features for each target task. To achieve this goal,
we introduce a hybrid relation module to generate task-
specific features by capturing rich information from differ-
ent videos in an episode. Specifically, we elaborately design
the hybrid relation module H in the following form:

f̃i = H(fi,G); fi ∈ [Fs, fq],G = [Fs, fq] (3)

That is, we improve the feature fi by aggregating seman-
tic information cross video representations, i.e., G, in an
episodic task, allowing the obtained task-specific feature f̃i
to be more discriminative than the isolated feature. For
efficiency, we further decompose hybrid relation module
into two parts: intra-relation function Ha and inter-relation
function He.

The intra-relation function aims to strengthen structural
patterns within a video by capturing long-range temporal
dependencies. We express this process as:

fai = Ha(fi) (4)

here fai ∈ RT×C is the output of fi through the intra-
relation function and has the same shape as fi. Note that the
intra-relation function has many alternative implements, in-
cluding multi-head self-attention (MSA), Transformer [50],
Bi-LSTM [19], Bi-GRU [8], etc., which is incredibly flexi-
ble and can be any one of them.

Based on the features generated by the intra-relation
function, an inter-relation function is deployed to seman-
tically enhance the features cross different videos:

fei = He
i (f

a
i ,Ga) =

|Ga|∑
j

(κ(ψ(fai ), ψ(f
a
j )) ∗ ψ(faj )) (5)

where Ga = [F a
s , f

a
q ], ψ(·) is a global average pooling

layer, and κ(fai , f
a
j ) is a learnable function that calculates

the semantic correlation between fai and faj . The potential
logic is that if the correlation score between fai and faj is
high, i.e., κ(fai , f

a
j ), it means they tend to have the same

semantic content, hence we can borrow more information
from faj to elevate the representation fai , and vice versa.
In the same way, if the score κ(fai , f

a
i ) is less than 1, it

indicates that some irrelevant information in fai should be
suppressed.

In this way, we can improve the feature discrimination
by taking full advantage of the limited samples in each
episodic task. The inter-relation function also has simi-
lar implements with the intra-relation function but with a

different target. After the inter-relation function, we em-
ploy an Expend-Concatenate-Convolution operation to ag-
gregate information, as shown in Figure 2, where the output
feature f̃i has the same shape as fei . In the form of prior,
our method can be formulated as:

yi = P((f̃si , f̃q)|H(fsi ,G),H(fq,G));G = [Fs, fq] (6)

Intuitively, compared with Equation 2, it can be conducive
to making better decisions because more priors are pro-
vided. In particular, the hybrid relation module is a plug-
and-play unit. In the experiment, we will fully explore dif-
ferent configurations of the hybrid relation module and fur-
ther investigate its insertablility.

Set matching metric. Given the relation-enhanced fea-
tures F̃s and f̃q , we present a novel metric to enable efficient
and flexible matching. In this metric, we treat each video as
a set of T frames and reformulate distance measurement
between videos as a set matching problem, which is robust
to complicated instances, whether they are aligned or not.
Specifically, we achieve this goal by modifying the Haus-
dorff distance, which is a typical set matching approach.
The standard Hausdorff distance D can be formulated as:

d(f̃i, f̃q) = max
f̃a
i ∈f̃i

( min
f̃b
q∈f̃q

∥∥∥f̃ai − f̃ bq

∥∥∥)
d(f̃q, f̃i) = max

f̃b
q∈f̃q

( min
f̃a
i ∈f̃i

∥∥∥f̃ bq − f̃ai

∥∥∥)
D = max(d(f̃i, f̃q), d(f̃q, f̃i))

(7)

where f̃i ∈ RT×C contains T frame features, and
∥∥·∥∥ is a

distance measurement function, which is the cosine distance
in our method.

However, the previous methods [12, 17, 57, 62] pointed
out that Hausdorff distance can be easily affected by noisy
examples, resulting in inaccurate measurements. Hence
they employ a directed modified Hausdorff distance that ro-
bust to noise as follows:

dm(f̃i, f̃q) =
1

Ni

∑
f̃a
i ∈f̃i

( min
f̃b
q∈f̃q

∥∥∥f̃ai − f̃ bq

∥∥∥) (8)

where Ni is the length of f̃i, and equal to T in this paper.
Hausdorff distance and its variants achieve great success in
image matching [12, 22, 49] and face recognition [17, 47].
We thus propose to introduce the set matching strategy into
the few-shot action recognition field and further design a
novel bidirectional Mean Hausdorff Metric (Bi-MHM):

Db =
1

Ni

∑
f̃a
i ∈f̃i

( min
f̃b
q∈f̃q

∥∥∥f̃ai − f̃ bq

∥∥∥) + 1

Nq

∑
f̃b
q∈f̃q

( min
f̃a
i ∈f̃i

∥∥∥f̃ bq − f̃ai

∥∥∥)
(9)

where Ni and Nq are the lengths of the support feature f̃i
and the query feature f̃q respectively.
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Method Reference Dataset 1-shot 2-shot 3-shot 4-shot 5-shot
CMN++ [63] ECCV’18

SSv2-Full

34.4 - - - 43.8
TRN++ [61] ECCV’18 38.6 - - - 48.9
OTAM [4] CVPR’20 42.8 49.1 51.5 52.0 52.3
TTAN [30] ArXiv’21 46.3 52.5 57.3 59.3 60.4
ITANet [4] IJCAI’21 49.2 55.5 59.1 61.0 62.3
TRX (Ω={1}) [40] CVPR’21 38.8 49.7 54.4 58.0 60.6
TRX (Ω={2, 3}) [40] CVPR’21 42.0 53.1 57.6 61.1 64.6
HyRSM - 54.3 (+5.1) 62.2 (+6.7) 65.1 (+6.0) 67.9 (+6.8) 69.0 (+4.4)
MatchingNet [51] NeurIPS’16

Kinetics

53.3 64.3 69.2 71.8 74.6
MAML [15] ICML’17 54.2 65.5 70.0 72.1 75.3
Plain CMN [63] ECCV’18 57.3 67.5 72.5 74.7 76.0
CMN-J [64] TPAMI’20 60.5 70.0 75.6 77.3 78.9
TARN [3] BMVC’19 64.8 - - - 78.5
ARN [58] ECCV’20 63.7 - - - 82.4
OTAM [4] CVPR’20 73.0 75.9 78.7 81.9 85.8
ITANet [59] IJCAI’21 73.6 - - - 84.3
TRX (Ω={1}) [40] CVPR’21 63.6 75.4 80.1 82.4 85.2
TRX (Ω={2, 3}) [40] CVPR’21 63.6 76.2 81.8 83.4 85.9
HyRSM - 73.7 (+0.1) 80.0 (+3.8) 83.5 (+1.7) 84.6 (+1.2) 86.1 (+0.2)
OTAM [4] CVPR’20

Epic-kitchens
46.0 50.3 53.9 54.9 56.3

TRX [40] CVPR’21 43.4 50.6 53.5 56.8 58.9
HyRSM - 47.4 (+1.4) 52.9 (+2.3) 56.4 (+2.5) 58.8 (+2.0) 59.8 (+0.9)
ARN [58] ECCV’20

HMDB51

45.5 - - - 60.6
OTAM [4] CVPR’20 54.5 63.5 65.7 67.2 68.0
TTAN [30] ArXiv’21 57.1 - - - 74.0
TRX [40] CVPR’21 53.1 62.5 66.8 70.2 75.6
HyRSM - 60.3 (+3.2) 68.2 (+4.7) 71.7 (+4.9) 75.3 (+5.1) 76.0 (+0.4)

Table 1. Comparison to recent few-shot action recognition methods on the meta-testing set of SSv2-Full, Kinetics, Epic-kitchens and
HMDB51. The experiments are conducted under the 5-way setting, and results are reported as the shot increases from 1 to 5. ”-” means
the result is not available in published works, and the underline indicates the second best result.

The proposed Bi-MHM is a symmetric function, and the
two items are complementary to each other. From Equa-
tion 9, we can find that Db can automatically find the best
correspondencies between two videos, e.g., f̃i and f̃q . Note
that our Bi-MHM is a non-parametric classifier and does not
involve numerous non-parallel calculations, which helps to
improve computing efficiency and transfer ability compared
to the previous complex alignment classifiers [4,40]. More-
over, the hybrid relation module and Bi-MHM can mutu-
ally reinforce each other, consolidating the correlation be-
tween two videos collectively. In the training phase, we
take the negative distance for each class as logit. Then we
utilize the same cross-entropy loss as in [4, 40] and the reg-
ularization loss [28, 34] to train the model. The regulariza-
tion loss refers to the cross-entropy loss on the real action
classes, which is widely used to improve the training sta-
bility and generalization. During inference, we select the
support class closest to the query for classification.

4. Experiments
The experiments are designed to answer the following

key questions: (1) Is HyRSM competitive to other state-of-
the-art methods on challenging few-shot benchmarks? (2)
What are the essential components and factors that make
HyRSM work? (3) Can the hybrid relation module be uti-
lized as a simple plug-and-play component and bring bene-
fits to existing methods? (4) Does the proposed set match-
ing metric have an advantage over other competitors?

4.1. Datasets and experimental setups
Datasets. We evaluate our method on six few-shot datasets.
For the Kinetics [5], SSv2-Full [18], and SSv2-Small [18]
datasets, we adopt the existing splits proposed by [4, 40,
59, 63], and each dataset consists of 64 and 24 classes as
the meta-training and meta-testing set, respectively. For
UCF101 [46] and HMDB51 [27], we evaluate our method
by using splits from [40, 58]. In addition, we also use the
Epic-kitchens [9,10] dataset to evaluate HyRSM. Please see
the supplementary materials for more details.
Implementation details. Following previous works [4, 40,
59, 63], we utilize ResNet-50 [20] as the backbone which
is initialized with ImageNet [11] pre-trained weights. We
sparsely and uniformly sample 8 (i.e., T = 8) frames per
video, as in previous methods [4, 59]. In the training phase,
we also adopt basic data augmentation such as random crop-
ping and color jitter, and we use Adam [24] optimizer to
train our model. For inference, we conduct few-shot ac-
tion recognition evaluation on 10000 randomly sampled
episodes from the meta-testing set and report the mean ac-
curacy. For many shot classification, e.g., 5-shot, we follow
ProtoNet [45] and calculate the mean features of support
videos in each class as the prototypes, and classify the query
videos according to their distances against the prototypes.

4.2. Comparison with state-of-the-art

We compare the performance of HyRSM with state-of-
the-art methods in this section. As shown in Table 1 and
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UCF101 SSv2-Small

Method Reference 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
MatchingNet [51] NeurIPS’16 - - - 31.3 39.8 45.5
MAML [15] ICML’17 - - - 30.9 38.6 41.9
Plain CMN [63] ECCV’18 - - - 33.4 42.5 46.5
CMN-J [64] TPAMI’20 - - - 36.2 44.6 48.8
ARN [58] ECCV’20 66.3 - 83.1 - - -
OTAM [4] CVPR’20 79.9 87.0 88.9 36.4 45.9 48.0
TTAN [30] ArXiv’21 80.9 - 93.2 - - -
ITANet [59] IJCAI’21 - - - 39.8 49.4 53.7
TRX [40] CVPR’21 78.2 92.4 96.1 36.0 51.9 59.1
HyRSM - 83.9 (+3.0) 93.0 (+0.6) 94.7 (-1.4) 40.6 (+0.8) 52.3 (+0.4) 56.1 (-3.0)

Table 2. Results on 1-shot, 3-shot, and 5-shot few-shot classification on the UCF101 and SSv2-Small datasets. ”-” means the result is not
available in published works, and the underline indicates the second best result.

Figure 3. Comparison between different components in hybrid re-
lation module on 5-way 1-shot few-shot action classification. Ex-
periments are conducted on the SSv2-Full dataset.

Table 2, our proposed HyRSM outperforms other methods
significantly and achieves new state-of-the-art performance.
For instance, HyRSM improves the state-of-the-art perfor-
mance from 49.2% to 54.3% under the 1-shot setting on
SSv2-Full. Specially, compared with the temporal align-
ment methods [4, 59] and complex fusion methods [30, 40],
HyRSM consistently surpasses them under most different
shots, which implies that our approach is considerably flex-
ible and efficient. Note that the SSv2-Full and SSv2-
Small datasets tend to be motion-based and generally fo-
cus on temporal reasoning. While Kinetics and UCF101 are
partly appearance-related datasets, and scene understanding
is usually important. Besides, Epic-kitchens and HMDB51
are relatively complicated and might involve diverse ob-
ject interactions. Excellent performance on these datasets
reveals that our HyRSM has strong robustness and gener-
alization for different scenes. From Table 2, we observe
that HyRSM outperforms current state-of-the-art methods
on UCF101 and SSv2-Small under the 1-shot and 3-shot
settings, which suggests that our HyRSM can learn rich and
effective representations with extremely limited samples.
Of note, our HyRSM achieves 94.7% and 56.1% 5-shot per-
formance on UCF101 and SSv2-Small, respectively, which
is slightly behind TRX. We attribute this to TRX is an en-
semble method specially designed for multiple shots.

Intra-relation Inter-relation Bi-MHM 1-shot 5-shot
35.2 45.3

" 41.2 55.0
" 43.7 55.2

" 44.6 56.0
" " 48.1 60.5

" " 48.3 61.2
" " 51.4 64.6
" " " 54.3 69.0

Table 3. Ablation study under 5-way 1-shot and 5-way 5-shot set-
tings on the SSv2-Full dataset.

Method 1-shot 5-shot
OTAM [4] 42.8 52.3
OTAM [4]+ Intra-relation 48.9 60.4
OTAM [4]+ Inter-relation 46.9 57.8
OTAM [4]+ Intra-relation + Inter-relation 51.7 63.9

Table 4. Generalization of hybrid relation module. We conduct
experiments on SSv2-Full.

4.3. Ablation study

For ease of comparison, we use a baseline method Pro-
toNet [45] that applies global-average pooling to backbone
representations to obtain a prototype for each class.

Design choices of relation modeling. As shown in Fig-
ure 3, we vary the components in the hybrid relation mod-
ule and systematically evaluate the effect of different vari-
ants. The experiments are performed on SSv2-Full under
the 5-way 1-shot setting. We can observe that different
combinations have quite distinct properties, e.g., multi-head
self-attention (MSA) and Transformer are more effective
to model intra-class relations than Bi-LSTM and Bi-GRU.
Nevertheless, compared with other recent methods [40,59],
the performance of each combination can still be improved,
which benefits from the effectiveness of structure design
for learning task-specific features. For simplicity, we adopt
the same structure to model intra-relation and inter-relation,
and we choose multi-head self-attention in the experiments.

Analysis of the proposed components. Table 3 summa-
rizes the effects of each module in HyRSM. We take Pro-
toNet [45] as our baseline method. From the results, we ob-
serve that each component is highly effective. In particular,
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Figure 4. N-way 1-shot performance trends of our HyRSM and
other state-of-the-art methods with different N on SSv2-Full. The
comparison results prove the superiority of our HyRSM
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Figure 5. (a) Performance on SSv2-Full using a different number
of frames under the 5-way 1-shot setting. (b) The effect of the
number of heads on SSv2-Full.

compared to baseline, intra-relation modeling can respec-
tively bring 6% and 9.7% performance gain on 1-shot and
5-shot, and inter-relation function boosts the performance
by 8.5% and 9.9% on 1-shot and 5-shot. In addition, the
proposed set matching metric improves on 1-shot and 5-shot
by 9.4% and 10.7%, respectively, which indicates the ability
to find better corresponding frames in the video pair. More-
over, stacking modules can further improve performance,
indicating the complementarity between components.
Pluggability of hybrid relation module. In Table 4, we
experimentally show that the hybrid relation module gen-
eralizes well to other methods by inserting it into the re-
cent OTAM [4]. In this study, OTAM with our hybrid re-
lation module benefits from relational information and fi-
nally achieves 8.9% and 11.6% gains on 1-shot and 5-shot.
This fully evidences that mining the rich information among
videos to learn task-specific features is especially valuable.
N-way few-shot classification. In the previous experi-
ments, all of our comparative evaluation experiments were
carried out under the 5-way setting. In order to further ex-
plore the influence of different N, in Figure 4, we compare
N-way (N ≥ 5) 1-shot results on SSv2-Full and Kinetics.
Results show that as N increases, the difficulty becomes
higher, and the performance decreases. Nevertheless, the
performance of our HyRSM is still consistently ahead of
the recent state-of-the-art OTAM [4] and TRX [40], which
shows the feasibility of our method to boost performance
by introducing rich relations among videos and the power
of the set matching metric.
Varying the number of frames. To demonstrate the scal-
ability of HyRSM, we also explore the impact of different
video frame numbers on performance. Of note, previous

Metric Bi-direction 1-shot 5-shot
Diagonal - 38.3 48.7
Plain DTW [36] - 39.6 49.0
OTAM [4] % 39.3 47.7
OTAM [4] " 42.8 52.3
Bi-MHM (ours) " 44.6 56.0

Table 5. Comparison with recent temporal alignment methods on
the SSv2-Full dataset under the 5-way 1-shot and 5-way 5-shot
settings. Diagonal means matching frame by frame.

Metric Bi-direction 1-shot 5-shot

Hausdorff distance % 32.4 38.2
Hausdorff distance " 34.5 39.1
Modified Hausdorff distance % 44.2 50.0
Bi-MHM (ours) " 44.6 56.0

Table 6. Comparison of different set matching strategies on the
SSv2-Full dataset.
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Figure 6. Comparison of the backbone with different depths.

comparisons are performed under 8 frames of input. Results
in Figure 5(a) show that as the number of frames increases,
the performance improves. HyRSM gradually tends to be
saturated when more than 8 frames.

Influence of head number. Previous analyses have shown
that multi-head self-attention can focus on different patterns
and is critical to capturing diverse features [26]. We inves-
tigate the effect of varying the number of heads in multi-
head self-attention on performance in Figure 5(b). Results
indicate that the effect of multi-head is significant, and the
performance starts to saturate beyond a particular point.

Varying depth of the backbone. The previous methods all
utilize ResNet-50 as backbone by default for a fair compar-
ison, and the impact of backbone’s depth on performance is
still under-explored. As presented in Figure 6, we attempt to
answer this question by adopting ResNet-18 and ResNet-34
pre-trained on ImageNet as alternative backbones. Results
demonstrate that the deeper network clearly benefits from
greater learning capacity and results in better performance.
In addition, we notice that our proposed HyRSM consis-
tently outperforms the competitors (i.e., OTAM and TRX),
which indicates that our HyRSM is a general framework.
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Figure 7. Similarity visualization of how query videos (rows)
match to support videos (columns). The boxes of different col-
ors correspond to: correct match and incorrect match.

4.4. Comparison with other matching approaches

Our proposed set matching metric Bi-MHM aims to ac-
curately find the corresponding video frames between video
pairs by relaxing the strict temporal ordering constraints.
The following comparative experiments in Table 5 are car-
ried out under the identical experimental setups, i.e., replace
the OTAM directly with our Bi-MHM while keeping other
settings unchanged. Results show that our Bi-MHM per-
forms well and outperforms other temporal alignment meth-
ods (e.g., OTAM). We further analyze different set matching
approaches in Table 6, and the results indicate Hausdorff
distance is susceptible to noise interference, resulting in the
mismatch and relatively poor performance. However, our
Bi-MHM shows stability to noise and obtains better perfor-
mance. Furthermore, compared with the single directional
metric, our proposed bidirectional metric is more compre-
hensive to reflect the actual distances between videos and
achieves better performance on few-shot tasks.

4.5. Visualization results

To qualitatively show the discriminative capability of the
learned task-specific features in our proposed method, we
visualize the similarities between query and support videos
with and without the hybrid relation module. As depicted in
Figure 7, by adding the hybrid relation module, the discrim-
ination of features is significantly improved, contributing to
predicting more accurately. Additionally, the matching re-
sults of the set matching metric are visualized in Figure 8,
and we can observe that our Bi-MHM is considerably flex-
ible in dealing with alignment and misalignment.

4.6. Limitations

In order to further understand HyRSM, Table 7 illus-
trates its differences with OTAM and TRX in terms of pa-

Support

Query

(a) SSv2-Full: ”pretending to open something without actually opening it”

(b) SSv2-Full: ”showing that something is empty”

Support

Query

Support

Query

(c) Kinetics: ”cutting watermelon”

Figure 8. Visualization of matching results with the proposed set
matching metric on SSv2-Full and Kinetics.

Method Backbone Param FLOPs Latency Acc
HyRSM ResNet-18 13.8M 3.64G 36.5ms 46.6
HyRSM ResNet-34 23.9M 7.34G 67.5ms 50.0
OTAM [4] ResNet-50 23.5M 8.17G 116.6ms 42.8
TRX [40] ResNet-50 47.1M 8.22G 94.6ms 42.0
HyRSM ResNet-50 65.6M 8.36G 83.5ms 54.3

Table 7. Complexity analysis for 5-way 1-shot SSv2-Full evalua-
tion. The experiments are carried out on one Nvidia V100 GPU.

rameters, computation, and runtime. Notably, HyRSM in-
troduces extra parameters (i.e., hybrid relation module), re-
sulting in increased GPU memory and computational con-
sumption. Nevertheless, without complex non-parallel clas-
sifier heads, the whole inference speed of HyRSM is faster
than OTAM and TRX. We will further investigate how to re-
duce complexity with no loss of performance in the future.

5. Conclusion
In this work, we have proposed a hybrid relation guided

set matching (HyRSM) approach for few-shot action recog-
nition. Firstly, we design a hybrid relation module to model
the rich semantic relevance within one video and cross dif-
ferent videos in an episodic task to generate task-specific
features. Secondly, built upon the representative task-
specific features, an efficient set matching metric is pro-
posed to be resilient to misalignment and match videos ac-
curately. Experimental results demonstrate that our HyRSM
achieves the state-of-the-art performance on the six stan-
dard benchmarks, including Kinetics, SSv2-Full, SSv2-
Small, HMDB51, UCF101, and Epic-kitchens.
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