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Abstract

The success of Generative Adversarial Networks (GANs)
is largely built upon the adversarial training between a
generator (G) and a discriminator (D). They are expected
to reach a certain equilibrium where D cannot distinguish
the generated images from the real ones. However, such an
equilibrium is rarely achieved in practical GAN training,
instead, D almost always surpasses G. We attribute one
of its sources to the information asymmetry between D and
G. We observe that D learns its own visual attention when
determining whether an image is real or fake, but G has no
explicit clue on which regions to focus on for a particular
synthesis. To alleviate the issue of D dominating the
competition in GANs, we aim to raise the spatial awareness
of G. Randomly sampled multi-level heatmaps are encoded
into the intermediate layers of G as an inductive bias. Thus
G can purposefully improve the synthesis of certain image
regions. We further propose to align the spatial awareness
of G with the attention map induced from D. Through this
way we effectively lessen the information gap between D
and G. Extensive results show that our method pushes the
two-player game in GANs closer to the equilibrium, leading
to a better synthesis performance. As a byproduct, the intro-
duced spatial awareness facilitates interactive editing over
the output synthesis. Demo video and code are available at
https://genforce.github.io/eqgan-sa/.

1. Introduction
Generative Adversarial Network (GAN) has made huge

progress toward image synthesis [3, 9, 15, 16, 21]. GAN is
formulated as a two-player game between a generator (G)
and a discriminator (D) [9], where G targets at reproducing
the distribution of observed data through synthesizing new
samples, and D competes with G by distinguishing the
generated images from the real ones. In principle, they are
expected to reach an equilibrium where D cannot tell the
real and fake images apart [1, 9].

In practice, it turns out to be difficult to achieve such
an equilibrium when training modern GAN variants [3,
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Figure 1. Discriminator’s output scores for real and generated
samples during training. A higher number indicates more
realistic. We use StyleGAN2 [16] as the baseline and implement
the proposed method over it on the LSUN Cat dataset. For a clear
comparison, we report the minimum of the scores for real samples
and the maximum for generated samples, which are supposed to
be close to each other. However, the curve for the real is always
above the curve for the generated. Our method can reduce the gap
toward the equilibrium as well as improve the synthesis quality.

14–16], despite their appealing synthesis quality. Taking
StyleGAN2 [16] as an example, D almost always assigns a
higher score to real images than to fake ones throughout the
entire training process, as the blue lines shown in Fig. 1.
It suggests that D can easily beat G in the competition.
Increasing the model capacity of G barely helps mitigate
this issue [3]. From this point of view, we can hold that
G fails to fool D even after the model converges, leaving a
gap between the real and synthesized distributions. Such a
disequilibrium remains much less explored in recent years,
in spite of the rapid development of new GAN models.

To investigate the source of the aforementioned dise-
quilibrium, we analyze the behaviour of D to figure out
its advantage over G. With the help of GradCAM [23]
as a neural network interpretation tool, we visualize the
intermediate feature maps produced by D. As shown in
Fig. 2, given a target image, either real or generated, D
holds its own visual attention, even it is merely learned
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Figure 2. Spatial visual attention at the intermediate layers of
the discriminator, visualized by GradCAM. A bright color indi-
cates a strong contribution to the final score. ‘64 × 64’ indicates
being upsampled from a 64×64 feature map. The samples are the
real images and the images generated by StyleGAN2 [16].

from a bi-classification task (i.e., differentiating the real
and fake domains). In other words, D is aware of which
flawed regions to pay attention to when making the real/fake
decision. Such an attentive property eases its competition
to G because D can simply focus on the regions that are
poorly synthesized by G. On the contrary, to produce an
image, G takes a randomly sampled latent code as the input
and has no explicit clue about which regions to focus on, let
alone knowing the spatial preference of D. Due to such an
information asymmetry, G may omit some important cues
picked by D and hence get defeated in the two-player game.

In this paper, we propose a training method, termed as
EqGAN-SA, to improve the Equilibrium of GAN through
raising Spatial Awareness. Concretely, we strive to lessen
the information asymmetry between G and D by raising the
spatial awareness of G. We design a hierarchical heatmap
sampling strategy to match the coarse-to-fine synthesis
mechanism [15, 25]. The sampled multi-level heatmaps are
integrated into the per-layer feature maps of G. Meanwhile,
to make sure G utilize the input heatmap adequately,
we involve D as a regularizer to spatially supervise the
generation process, through aligning the spatial awareness
of G with the visual attention induced from D.

We evaluate the proposed method on various datasets.
As the orange lines shown in Fig. 1, we push the competi-
tion between G and D closer to the equilibrium compared
to the baseline method [16]. Consequently, our EqGAN-
SA learns a distribution that is more identical to the real
one, leading to a substantial improvement in the synthesis
performance. For example, with Fréchet Inception Distance
(FID) [10] as the metric, we improve the baseline from 3.66
to 2.96 on FFHQ dataset [15] under 256×256 resolution. In
addition, we can achieve interactive editing over the output
image by altering the spatial heatmaps fed into G.

2. Analyzing GAN Equilibrium
Although GANs [1, 6, 9, 15, 16] are supposed to reach

an equilibrium between G and D, this is barely fulfilled in
practice. Typically, D wins over G most of the time. In
this section, we attempt to investigate the cause of such a
phenomenon. Sec. 2.1 briefly reviews the formulation of
GANs and describes the disequilibrium between G and D.
Sec. 2.2 interprets the visual attention learned by D, which
could be one of the key sources for the disequilibrium.

2.1. Learning Objective of GAN

GAN training [9] is formulated as a two-player game,
where a generator is trained to recover the real distribution
pr over data {x}, while a discriminator is optimized to
differentiate between pr and the generated distribution pg .
The overall objective function is

min
G

max
D

V (D,G) = Ex∼pr
[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))],

(1)

where z is a randomly sampled vector, subject to a prior
distribution, pz . In particular, Goodfellow et al. [9] point
out that the minimax game defined by GAN will reach
an equilibrium point, where G recovers the training data
distribution while D fails to distinguish the real and fake
distributions. In that case, D is supposed to assign same
realness scores to the real and synthesized samples.
Observation of Disequilibrium. We observe that such an
equilibrium is seldom achieved in most GAN variants [3,
15, 16]. It appears that D almost always dominates the G-
D competition, assigning a higher score to real data. An
example of training StyleGAN2 [16] on LSUN Cat [26] is
shown in Fig. 1. We can spot an obvious gap even between
D’s minimum score for real images and the maximum score
for synthesized images. Such a phenomenon implies that
the generated distribution pg is far from the real distribution
pr, affecting the synthesis quality.

2.2. Visual Attention of Discriminator

After observing the disequilibrium in the interplay be-
tween D and G, we would like to investigate the behavior
of D to see how it manages to outperform G. Prior work
on network interpretability, like CAM [28], has found that
a classifier tends to focus on some discriminative regions
to categorize a given image to the proper class. However,
the discriminator in GANs is trained with the relatively
weak supervision, i.e., only having real or fake labels.
Whether it can learn the attentive property from such a bi-
classification task remains unknown. To look under the
hood, we apply GradCAM [23] as an interpretability tool
on the well-trained discriminator of StyleGAN2 [16].

Specifically, for a certain layer and a certain class,
GradCAM calculates the importance weight of each neuron
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Figure 3. Illustration of EqGAN-SA. We conduct spatial encoding in G and align its spatial awareness with D attention maps. Specifically,
we randomly sample spatial heatmaps and encode them into G via the spatial encoding layer (SEL). To implement the alignment during
training, we calculate D attention maps over the generated samples via GradCAM.

by average-pooling the gradients back-propagated from the
final classification score, over the width and height. It then
computes the attention map as a weighted combination of
the importance weight and the forward activation maps,
followed by a ReLU [8] activation. The attention map has
the same spatial shape as the corresponding feature map.
In this work, we report the GradCAM attention maps all
using gradients computed via maximizing the output of D.
It reflects the spatial preference of D in making a ‘real’
decision. In practice we find the attention maps are almost
the same if instead minimizing the output of D, which
indicates the areas that largely contribute to the decision
are the same for a discriminator, no matter positively or
negatively. The region with higher response within the
attention map contributes more to the decision.

Fig. 2 visualizes some GradCAM results under multiple
feature resolutions. They are obtained from the discrimina-
tors of two StyleGAN2 models, trained on LSUN Cat and
FFHQ respectively. We have following observations: (1) D
learns its own visual attention on both real and generated
images. It suggests that D makes the real/fake decision
by paying more attention to some particular regions. (2)
The visual attention emerging from D shows a hierarchical
property. In the shallow layers (like 64 × 64 and 32 ×
32 resolutions), D is attentive to local structures such
as edge lines in the image. As the layer goes deeper,
D progressively concentrates on the overall location of
discriminative contents, e.g., the face of a cat. (3) The
hierarchical attention maps have fewer ‘local peaks’ at more
abstract feature layers with a lower resolution. For example,
there is only one peak in the 4× 4 attention maps.

3. Improving GAN Equilibrium
As shown in Sec. 2, the discriminator of GANs has its

own visual attention when determining real or fake image.
However, when learning to transform a latent vector into a

realistic image, the generator receives no explicit clue about
which regions to focus on. Specifically, for a particular
synthesis, G has to decode all the needed information
from the input latent code. Furthermore, G has no idea
about the spatial preference of D on making the real/fake
decisions. Such an information asymmetry puts G at a
disadvantage when competing with D. In this section, we
propose to raise the spatial awareness of G to lessen the
information gap between G and D. The overall framework
is illustrated in Fig. 3, which mainly consists of two steps,
(1) explicitly encoding spatial awareness into G with a
hierarchical heatmap sampling strategy and (2) aligning the
spatial awareness of G with the visual attention from D via
a feedback regularizer. Sec. 3.1 and Sec. 3.2 introduce these
two techniques respectively.

3.1. Encoding Spatial Awareness in Generator

Hierarchical Heatmap Sampling. To improve the aware-
ness of G on spatial regions, we propose a hierarchical
heatmap sampling algorithm. This heatmap is responsible
for teaching G which regions to pay more attention to.
Inspired by the visual attention induced from D as in
Sec. 2.2, we abstract our heatmap as a combination of
several sub-regions and a background. Taking the heatmap
at the 4 × 4 resolution as an example (leftest in Fig. 3), it
tells G there is one region to focus on, whose center locates
at the black dot. We formulate each sub-region as a 2D map,
Hi, which is sampled subject to a Gaussian distribution

Hi ∼ N (ci, cov), (2)

where ci and cov denote the mean and the covariance.
According to the definition of 2D Gaussian distribution, ci
just represents the coordinates of the region center. The
final heatmap can be written as the sum of all sub-maps,
H =

∑n
i=1 Hi, where n denotes the total number of local

regions for G to focus on.
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As pointed out in the prior works [15, 25], the generator
in GANs learns image synthesis in a coarse-to-fine manner,
where the early layers provide a rough template and the
latter layers refine the details. To match such a mechanism,
we design a hierarchical heatmap sampling algorithm. Con-
cretely, we first sample a spatial heatmap with Eq. (2) for
the most abstract level (i.e., with the lowest resolution), and
derive the heatmaps for other resolutions based on the initial
one. The number of centers, n, and the covariance, cov,
adapt accordingly to the feature resolution.
Heatmap Encoding. We incorporate the spatial heatmaps
into G to raise its spatial awareness. It generally can
be conducted in two ways, via feature concatenation or
feature normalization [12, 20]. We use a spatial encoding
layer (SEL), respectively trying these two variants, de-
noted as SELconcat and SELnorm. Specifically, inspired by
SPADE [20], the variant SELnorm integrates the hierarchical
heatmaps into the per-layer feature maps of G with normal-
ization and denormalization operations, as

SELnorm(F,H) = ϕσ(H)
F − µ(F )

σ(F )
+ ϕµ(H), (3)

where F denotes an intermediate feature map produced by
G, which is with the same resolution as H . µ(·) and σ(·)
respectively stands for the functions of computing channel-
wise mean and standard deviation. ϕµ(·) and ϕσ(·) are two
learnable functions, whose outputs are point-wise and with
a shape of (h,w, 1). Besides, as shown in Fig. 4, we use
a residual connection to stabilize the intermediate features.
If not particularly specified, this paper adopts the variant
SELnorm since it shows a slightly better performance.

It is worth noting, although we learn the SELnorm archi-
tecture from SPADE [20], these two methods are clearly
different since SPADE targets at synthesizing images based
on a given semantic segmentation mask, whose training re-
quires paired ground-truth data, while our model is trained
with completely unlabeled data. Meanwhile, SELnorm is just
a replaceable component of our approach.

3.2. Aligning Spatial Awareness with Discriminator

Encoding heatmaps into G can explicitly raise its spatial
awareness, but it is not enough to make G competitive with
D. The reason is that, D learns its own visual attention
based on the semantically meaningful image contents, but
the heatmaps fed into G are completely arbitrary. Without
further guidance, how G is supposed to utilize the heatmaps
is ambiguous. For example, G has no idea about “whether
to pay more or less attention on the highlighted regions in
the heatmap”. To make the best usage of the introduced
spatial awareness, we propose to involve D as a regularizer
to supervise G, to properly leverage the spatial knowledge.

Specifically, at each optimization step of G, we use D to
generate the visual attention map via GradCAM as a self-
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Figure 4. Spatial Encoding Layer. The left shows how the layer
works over StyleGAN2 at each resolution, and the right describes
the internal of the SELnorm. The symbol ‘S’ represents the style
in StyleGAN2, ‘N’ is the noise, and ‘H’ indicates the spatial
heatmap. Learning from [20], we incorporate the spatial heatmaps
into G via normalization and denormalization.

supervision signal. Besides competing with D, G is further
trained to minimize the distance between the attention map
induced from D and the input heatmap H . The loss function
can be written as

Lalign = || GradCAMD[G(H, z)]− H ||1. (4)

We truncate the Lalign values if smaller than a constant τ ,
since the sampled heatmaps are not expected to perfectly
match the real attention maps shaped by semantics. The
threshold τ is set as 0.25 for all the experiments. Note that
D is not updated in the process above and only used as a
supervision signal to train G. Such a regularization loss
aligns the spatial awareness of G with the spatial preference
of D, narrowing the information gap between them.

4. Experiments
We evaluate the proposed EqGAN-SA on multiple

benchmarks. Sec. 4.1 provides the implementation de-
tails. The main comparison and experimental results are
presented in Sec. 4.2. Our EqGAN-SA could improve the
spatial attentive property in G and mitigates the disequilib-
rium to some extent. Sec. 4.3 includes the comprehensive
ablation studies on the role of each proposed component.

4.1. Implementation Details

Datasets. We conduct the experiments on the LSUN
Cat [26], FFHQ [15], and LSUN Church [26] datasets.
The LSUN Cat dataset contains 1600K real-world images
regarding different cats. Following the setting of [14],
we take 200K image samples from the LSUN Cat dataset
for training. The FFHQ dataset consists of 70K high-
resolution (1024 × 1024) images of human faces, under
Creative Commons BY-NC-SA 4.0 license [24]. Usually,
the images are horizontally flipped to double the size of
training samples. The LSUN Church dataset includes 126K
images with visually complex church scenes. It is worthy
noting that all images are resized to 256× 256 resolution.
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Figure 5. Qualitative results on LSUN Cat dataset and the demonstration of spatial awareness via varying the spatial heatmaps of
the generator. Row (a) shows several generated samples of a model trained through EqGAN-SA. Rows (b) and (c) illustrate the spatial
awareness of G: we keep the latent codes unchanged and move the spatial heatmap at the 4 × 4 level. The arrows indicate the movement
direction, where the cat moves along with the varied heatmap. To further show the hierarchical structure, we move the heatmap at the
finer level in the Row (d). Different from the body movement, the change in 8 × 8 heatmap (two centers) mainly moves the cat eyes, and
the change in 16 × 16 heatmap (four centers) leads to subtle movement of the cat ears. It is worth noting that, as the content is being
manipulated, our G knows to adjust the nearby regions to make everything coherent.

Spatial Heatmap Sampling and Encoding. In practice,
we find the GradCAM maps on the fine resolutions are too
sensitive to semantic cues. Therefore, we only conduct
encoding on the level 0, 1, 2 of G, i.e., resolution 4 × 4,
8 × 8, and 16 × 16. We heuristically generate 1, 2, 4
centers (in other words, sub-heatmaps) on these three levels.
We sample the level 0 heatmap center c00 by a Gaussian
distribution with a mean of (h2 ,

w
2 ), and a standard deviation

of (h3 ,
w
3 ). To keep the heatmaps consistent at various

levels, we sample the level 1, 2 centers over the level 0
center. It indicates the mean of Gaussian distribution c1n
and c2n is the sampled c00. Their standard deviations are
(h6 ,

w
6 ). If we shift the level 0 center, the heatmaps of

other levels will move correspondingly. Following the
coarse-to-fine manner, we decrease each center’s influence

area level by level. Besides, we drop the sampling if the
level 0 center is outside the image. In our observation,
the results of the proposed method are robust to these
hyperparameters for heatmap sampling. Therefore, we use
the same hyperparameters for heatmap sampling on all
the datasets. More implementation details are provided in
Supplementary Material.

Training. We implement our EqGAN-SA on the official
implementation of StyleGAN2, such that the state-of-the-
art image generation method StyleGAN2 [16] serves as
our baseline. We follow the default training configuration
of [14] for the convenience of reproducibility, and keep the
hyperparameters unchanged to validate the effectiveness of
our proposed framework. For example, we train all the
models with a batch size of 64 on 8 GPUs and continue
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Figure 6. Qualitative results on the FFHQ dataset (top) and the LSUN Church dataset (bottom). Each row uses the same spatial
heatmap but different latent codes, and each column uses the same latent code. We can see that the spatial heatmap roughly controls the
pose of the face and the viewpoint of the church building, which facilitates the interactive spatial editing of the output image.

the training until 25M images have been shown to the
discriminator. Our method increases the training time by
around 30% compared with the baseline.
Evaluation. We use Fréchet Inception Distance (FID) [10]
between 50K generated samples and all the available real
samples as the image generation quality indicator. We
utilize a specific approximation of Wasserstein distance to
quantify the degree of disequilibrium, i.e., the distance
between (a) the minimum discriminator scores for real
samples and (b) the maximum scores for generated samples.
We term it as Disequilibrium Indicator (DI), where DI =
min(sr) − max(sg). It indicates if D can distinguish
between the hardest real image and most realistic generated
image. To keep the result stable, we compute DI over 128
randomly sampled images (64 real and 64 fake) for 200
times and take the mean value. We also discuss the validity
of DI in Supplementary Material.

4.2. Main Results

Spatial Awareness is Raised in Generator. As discussed
in Sec. 3.1, we propose to encode spatial awareness into
G. Here we provide the qualitative results in Fig. 5 and
Fig. 6 to verify that G indeed learns to focus on the regions
specified by input heatmaps. Specifically, we keep the latent
vector unchanged and move the spatial heatmaps. As we

move the level 0 heatmap of the sample (b) and (c) in
Fig. 5, the cat bodies move under the guidance of heatmap
movement (indicated by red arrows). We can observe the
same phenomenon by watching each column of Fig. 6.
Furthermore, as illustrated by each row of Fig. 6, the human
images generated with the same heatmap will put faces on
the same location. In addition, as desired by our hierarchical
design, moving level 1 and 2 heatmaps would affect local
structures. For example, in the sample (d) of Fig. 5, the
change in level 1 heatmap leads to a movement in cat eyes.
As we slightly push the top two centers of level 2 heatmap
to the right, the cat ears subtly turn right while other parts,
even the cat whiskers, remain unchanged. These verify the
effect of our hierarchical spatial encoding. We also notice
G could adaptively modify the nearby texture and structure
to give a reasonable image. Additionally, we visualize
the generator intermediate features to investigate whether
it has spatial awareness and the effect of our method, as
shown in Supplementary Material. Overall, the moved
contents depict the spatial awareness of G, which shows a
hierarchical style and matches our design target.
Equilibrium is Improved. The quantitative results on
the three datasets are provided in Tab. 1. On all the
datasets, the metric DI shows a drop after encoding spatial
awareness into G, and a further decrease with the help of
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Table 1. Quantitative results on LSUN Cat, FFHQ, and LSUN
Church datasets, all trained with 25M images shown to dis-
criminator. The baseline uses the architecture of StyleGAN2 [15].
We use FID as the metric for image generation quality. We
also formulate a metric Disequilibrium Indicator (DI), a specific
form of Wasserstein distance [1], to quantify the disequilibrium.
DI is calculated as min(sr) − max(sg), where s indicates the
discriminator outputs before the activation. We discuss the validity
of DI and include the results of other metrics in Supplementary
Material. ↓ denotes smaller is better.

Method
Cat [26] FFHQ [15] Church [15]

256× 256 256× 256 256× 256
FID ↓ DI ↓ FID ↓ DI ↓ FID ↓ DI ↓

Baseline 8.36 3.64 3.66 1.62 3.73 3.01
+ SEL 7.82 3.12 3.39 1.38 3.55 2.59
+ Lalign 6.81 2.39 2.96 0.73 3.11 2.07

Lalign. For example, DI reduces from 3.64 to 3.12 and
finally 2.39 on the LSUN Cat dataset. This observation
verifies the hypothesis that the aforementioned information
asymmetry is a source of GAN disequilibrium, and our
proposed approach can mitigate the imbalance.

With the improved equilibrium, the image synthesis
quality also becomes better. We observe that there are
consistent improvements over the FID on three datasets,
outperforming the baseline StyleGAN2. We also validate
our idea on the basis of SN-DCGAN (DCGAN [21] with
spectral normalization [18]) on the CIFAR-10 [17] dataset,
as shown in Tab. 2.

4.3. Ablation Study

How Important is the Type of Spatial Heatmap Sam-
pling? Different sampling strategies are applied here to
validate our choice, as provided in Tab. 3. Specifically,
2D Gaussian noise is first considered as a straightforward
baseline experiment since it provides non-structured spatial
information. Accordingly, 2D Gaussian noise introduces
no performance gains. It indicates, merely feeding a
2D heatmap but without any region to be emphasized
is insufficient to raise spatial awareness and mitigate the
disequilibrium.

Besides, we also use multiple-resolution spatial
heatmaps but discard the hierarchical constraint, referred as
Non-Hie in Tab. 3. Namely, spatial heatmaps at different
resolutions are independently sampled. Obviously, the
baseline is improved by this non-hierarchical spatial
heatmap, demonstrating the effectiveness of the spatial
awareness of G. Moreover, when the hierarchical sampling
is adopted, we observe further improvements over the
synthesis quality and equilibrium.
How Important is the Way of Spatial Encoding? In
order to raise the spatial awareness of G, there exist
several alternatives to implement. Therefore, we conduct

Table 2. Quantitative results on the CIFAR-10 dataset over the
baseline SN-DCGAN, with conditional or unconditional image
synthesis.

Method
Unconditional Conditional

FID ↓ DI ↓ FID ↓ DI ↓
SN-DCGAN 23.72 1.85 19.89 1.61

+ Ours 16.93 0.96 13.56 0.78

Table 3. Spatial Heatmap Sampling. With other parts un-
changed, we separately throw random Gaussian noise, spatial
heatmap without hierarchical sampling, and our spatial heatmap
as the input to the spatial encoding layer.

Baseline Gau. Noise Non-Hie Hie
FID ↓ 8.36 8.31 7.29 6.81
DI ↓ 3.64 3.67 2.70 2.39

Table 4. Ablation study on spatial encoding. We flatten the
spatial heatmap and incorporate the vectorized one into latent
code, denoted as ‘Flatten’. It destroys the 2D space structure,
and hence cannot improve over the baseline. Instead, encoding
heatmaps in the spatial domain is beneficial. The two variants of
SEL show a similar result, where SELnorm is slightly better.

Method
Cat [26] FFHQ [15]

FID ↓ DI ↓ FID ↓ DI ↓
Baseline 8.36 3.64 3.66 1.62
Flatten 8.63 3.71 3.78 1.63

SELconcat 7.02 2.47 3.11 0.90
SELnorm 6.81 2.39 2.96 0.73

an ablation study on LSUN Cat and FFHQ datasets to test
various methods. For example, the first way of feeding
the spatial heatmap is to flatten the 2D heatmap as a
vector, and then concatenate it with the original latent
code. This setting aims at validating whether maintaining
2D structure of spatial heatmap is necessary. Besides, we
also use two different SEL modules (i.e., SELconcat and
SELnorm) mentioned in Sec. 3.1. Their details are available
in Supplementary Material. For a fair comparison, all the
ablation studies use Lalign.

Tab. 4 presents the results. Apparently, simply feeding
the spatial heatmap but without the explicit 2D structure
leads to no gains compared to the baseline. It might imply
that it is challenging to use a vector (like the original
latent code) to raise the spatial awareness of the generator.
Instead, the proposed SEL module could introduce the
substantial improvements, demonstrating the effectiveness
of the encoding implementation.
Whether Visual Attention of D is Robust and Con-
sistent? As discussed in Sec. 3.2, the alignment loss
(Lalign) uses the D attention maps to guide G. It assumes
the attention map from D is stable enough to serve as a
supervision signal and valid over the whole training. To
validate the design, we first explore the robustness of D.
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As shown in the left top of Fig. 7, we add random Gaussian
noise to a real image from the LSUN Cat dataset, destroying
its texture. As the noise amplitude increasing, we can
visually see the noise pattern and the local appearance has
been over smoothed. D is still attentive to the original
important regions, e.g., the human and cat faces. We then
test its response to terrible samples generated by a poorly-
trained G, illustrated in the right top of Fig. 7. The samples
contain distorted human, cat and background. That is,
the visual attention of D is sufficiently robust to the noise
perturbation and the generated artifacts. Furthermore, as
indicated in the bottom of Fig. 7, we validate whether the
visual attention is consistent throughout the entire training
process. At a very early stage of training, D has already
localized the discriminative regions. The focus of such
visual attention is consistently maintained till the end of
the training. The robustness and consistency property of
D attention could successfully provide a support for Lalign.

5. Discussion
Related Work. Generative adversarial networks (GANs)
[9] have shown a great success in many generative tasks,
such as synthesising photorealistic images. It aims to
recover the target distribution via a minimax two-player
game, whose global optimum exists as a Nash Equilib-
rium [7,9–11]. Researchers have developed numerous tech-
niques to improve the synthesis quality of GANs, through
a Laplacian pyramid framework [5], an all-convolutional
deep neural network [21], progressive training [13], spectral
normalization [18, 27], and large-sacle GAN training [3, 6].
Recently, the style-based architecture StyleGAN [15] and
StyleGAN2 [16] have become the state-of-the-art method
for image synthesis, by separating high-level attributes.
Besides, some methods also incorporate additional informa-
tion into discriminator or generator, such as pixel-wise rep-
resentation [22], 3D pose [19], or neighboring instances [4].

In the early development stage, some methods study
the equilibrium between G and D to stabilize training
and enhance the synthesis quality [1, 2, 7]. However,
the equilibrium problem seems to be neglected in recent
years, possibly covered up by the great success in other
aspects like the architecture design. Instead, we verify
that improving GAN equilibrium could lead to a substan-
tial performance gain, even on the state-of-the-art method
StyleGAN2.
Limitation. Though simple and effective, our EqGAN-
SA is heuristic and built upon existing techniques. In
addition, we notice the spatial encoding operation would
sometimes lead to a synthesis blurring at the location of
heatmaps boundaries. We consider EqGAN-SA as an
empirical study to show that the asymmetry between the
spatial awareness of G and D is a source of the GAN
disequilibrium. We hope this work can inspire more works

𝑛𝑜𝑖𝑠𝑒
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Figure 7. Robustness and Consistency. We test the response of D
to noisy images and bad generation samples in the top. The bottom
visualizes that the D’s attention is consistent over the training.

of revisiting the GAN equilibrium and develop more novel
methods to improve the image synthesis quality through
maneuvering the GAN equilibrium. We will also conduct
more theoretical investigation on this issue in the future
work.

Ethical Consideration. This paper focuses on studying
the disequilibrium of GANs to improve the image synthesis
quality. Although only using the public datasets for research
and follow their licences, the abuse of our method may
bring negative impacts through deep fake generation. Such
risks would increase as the synthesis results of GANs are
becoming more and more realistic. From the perspective
of academia, these risks may be mitigated by promoting
the research on deep fake detection. It also requires the
management on the models trained with sensitive data.

6. Conclusion

In this paper we explore the problem of GAN equilib-
rium, and identify one of its possible attributing sources is
the information asymmetry between G and D. Specifically,
we notice that D spontaneously learns its visual attention
while G is not aware of which spatial regions to focus on
for a particular synthesis. Therefore, we propose a new
training technique EqGAN-SA to reduce such information
asymmetry, by enabling spatial awareness of G and aligning
it with the attention of D. Qualitative results show that
our method successfully makes G to concentrate on specific
regions. Experiments on various datasets validate that our
method mitigates the disequilibrium in GAN training and
substantially improves the overall image synthesis quality.
The resulting model with spatial awareness also enables the
interactive manipulation of the output image.
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