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Abstract

Recently, the semantics of scene text has been proven to
be essential in fine-grained image classification. However,
the existing methods mainly exploit the literal meaning of
scene text for fine-grained recognition, which might be irrel-
evant when it is not significantly related to objects/scenes.
We propose an end-to-end trainable network that mines im-
plicit contextual knowledge behind scene text image and en-
hance the semantics and correlation to fine-tune the image
representation. Unlike the existing methods, our model in-
tegrates three modalities: visual feature extraction, text se-
mantics extraction, and correlating background knowledge
to fine-grained image classification. Specifically, we em-
ploy KnowBert to retrieve relevant knowledge for seman-
tic representation and combine it with image features for
fine-grained classification. Experiments on two benchmark
datasets, Con-Text, and Drink Bottle, show that our method
outperforms the state-of-the-art by 3.72% mAP and 5.39%
mAP, respectively. To further validate the effectiveness of
the proposed method, we create a new dataset on crowd ac-
tivity recognition for the evaluation. The source code and
new dataset of this work are available at this repository1.

1. Introduction
The text conveys the information, knowledge, and emo-

tion of human beings as a significant carrier. Texts in natu-
ral scene images contain sophisticated semantic information
that can be used in many vision tasks such as image classifi-
cation, visual search, and image-based question answering.

Several approaches [2,15,22,23,26,39] were proposed to
incorporate semantic cues of scene text for image classifi-
cation or retrieval and achieved significant performance im-
provements. These methods follow a general pipeline that
first spots the text by a scene text reading system, then con-
verts the spotted word into text features to combine it with
image features for the subsequent tasks.

*Authors contribute equally.
†Corresponding author.
1https://github.com/lanfeng4659/KnowledgeMiningWithSceneText

(d): Knowledge in Wikipedia about text from (c)

(b) (c)

Text Entity Description of entity

“party” political party organized group of people who have the 
same ideology

“party” party social event

“Leninade” Leninade Soviet-themed lemonade soda

(a)

Figure 1. The three images belong to the category of “Soda”. (d)
shows the knowledge behind scene text embodied in the image
(c) from knowledge base Wikipedia. Each text instance contains
one or more entities stored in the knowledge base. The associated
descriptions further explain the precise meaning of entity. Only
the entities of two text instances are listed for simplicity.

This paper explores how to dig deeper into background
knowledge and extract context information of scene text
for the fine-grained image classification task. Unlike docu-
ment text, in our observation, the natural scene text is often
sparse, appearing as a few keywords rather than complete
sentences. Moreover, these few keywords may be vague
and give no clue to the classification model when their se-
mantic cues are not directly related to the precise meaning
that the image conveys.

As shown in Fig. 1 (a) and (b), the literal meaning of the
keyword “Soda” explicitly expresses that the bottles in the
two images belong to the category Soda despite their intra-
class visual variance. However, we hardly understand the
object in Fig. 1 (c) by solely fetching the semantic cues of
scene text. To understand the image certainly, getting more
relevant contextual knowledge about the image is crucial.
Therefore, we explore how to dig extra background knowl-
edge and mine the contextual information to enhance the
correlation between scene text and a picture. For example,
the table in Fig. 1 (d) exhibits related information or knowl-
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edge of scene text embodied in (c). The description of the
entity Leninade informs that it is a Soda beverage bottle.
Thus, the knowledge extracted in this manner complements
the literal meaning of the raw text and reduces the semantics
loss caused by using the literal meaning of scene text only.

Specifically, after extracting the text from the image by
a scene text reading system [20, 40], we retrieve relevant
knowledge from databases such as ( e.g., WordNet [25] and
Wikipedia) that store rich human-curated knowledge with
all possible correlation to the target. As shown in Fig. 1 (d),
the possible entities ( e.g., party and political party) can be
extracted for the text instance “party” from the knowledge
databases. However, all the retrieved contextual knowledge
may not necessarily provide helpful semantic cues to un-
derstand the visual contents. In order to filter relevant con-
textual information from irrelevant, we design an attention
module that focuses on very pertinent knowledge for the se-
mantics of objects or scenes.

We evaluate the performance of our method on two pub-
lic benchmark datasets, Bottles [2] and Con-Text [16]. The
results demonstrate the usage of contextual knowledge be-
hind scene text can significantly promote fine-grained im-
age classification models performances. To further prove
the effectiveness of our method, we developed a new dataset
consisting of 21 categories and 8785 natural images. Fur-
thermore, the dataset mainly focuses on crowd activity,
while most images contain multiple scene text instances.
To the best of our knowledge, the existing crowd activ-
ity datasets do not contain scene text instances. However,
everyday human activities are highly related to scene text
presences, for example, procession, exhibitions, press brief-
ing, and sales campaigns. This dataset will be a valuable
asset for exploring the role of scene text on crowd activity.

In this paper, we propose a method that mines contextual
knowledge behind scene text to improve the performance of
the multi-modality understanding task. To this end, we de-
sign a deep-learning-based architecture that combines three
modality features, including visual contents, scene text, and
knowledge for fine-grained image recognition. Our method
achieves significant improvements and can be applied to
other tasks, such as visual grounding [33] and text-visual
question answering [3] beyond the fine-grained image clas-
sification task. In addition, we propose a new dataset where
each image contains multiple scene text instances, which
promotes the study of multi-modal crowd activity analysis.

2. Related Work

2.1. Fine-Grained Image Classification

The task of fine-grained image classification needs to
distinguish images with subtle visual differences among ob-
ject classes in some domains, such as animal species [12,
18], plant species [24] and man-made objects [19]. Previ-

ous methods [6, 10] classify objects with only visual cues
and aim at finding a discriminative image path. Recently,
some approaches have shown a growing interest in employ-
ing textual cues to combine the visual cues for this task.
Movshovitz et al. [26] first propose to leverage scene text
for the fine-grained image classification task by using the
visual cues of scene text. However, extracting robust visual
cues of scene text is challenging due to blur and occlusion of
text instances. Karaoglu et al. [15] employ the textual cues
of scene text as a discriminative signal and combine the vi-
sual features that are obtained by the GoogLeNet [38] to
distinguish business place. To fully exploit the complemen-
tarity of visual information and textual cues, several meth-
ods [2, 22] propose to fuse features of the two modalities
with an attentional module. Bai et al. [2] propose an at-
tention mechanism to select textual features from word em-
beddings of recognized words. To overcome optical char-
acter recognition errors, Mafla et al. [22] leverage the usage
of the PHOC [1] representation to construct a bag of tex-
tual words along with the fisher vector [29] that models the
morphology of text. Despite the promising progress, the ex-
isting methods exploit the literal meaning of scene text and
overlook the meaningful human-curated knowledge of text.

2.2. Knowledge-aware Language Models

The pre-trained language models such as ELMo [30] and
BERT [8] are optimized to either predict the next word
or some masked words in a given sequence. Petroni et
al. [32] find that the pre-trained language models, such
as BERT, can recall factual and commonsense knowledge.
Such knowledge is stored implicitly in the parameters of the
language model and useful for downstream tasks such as
visual question answering [17]. This knowledge is usually
obtained either from the latent context representations pro-
duced by the pre-trained model or by using the parameters
of the pre-trained model to initialize a task-specific model
for further fine-tuning. To further enhance the language
model awareness of human-curated knowledge better, some
works [31, 34] explicitly integrate the knowledge in knowl-
edge bases into the pre-trained language model. In our
method, we employ both BERT [8] and KnowBert [31] as a
knowledge-aware language model and apply them to extract
knowledge features. Although previous methods [36] ex-
tract knowledge features from sentences on vision-language
tasks, they require the annotation of image-text pairs.

3. Methodology
As shown in Fig. 2, the proposed network accepts as

input an image, a knowledge base, and scene text spotted
by a scene text reading system such as [20, 40]. The part
of extracting features in our framework consists of three
branches, the visual features extraction branch, the knowl-
edge extraction branch for retrieving relevant knowledge,
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Figure 2. The framework of our method. The proposed model combines visual cues and textual cues for classification. The input text
instances are spotted by a scene text reading system. KARC and VKAC mean the knowledge attention and recontextualization component
and the visual-knowledge attention component, respectively.

and the knowledge-enhanced features branch that employs
the retrieved knowledge to enhance the presentations of
scene text. Then, the visual-knowledge attention compo-
nent (VKAC) inputs the visual features and the knowledge-
enhanced text features and outputs the attended features.
Moreover, the concatenation of visual features and attended
features is fed to the subsequent classifier.

In our method, we employ ViT [9] to extract the global
visual features of the input image. We mainly detail the
knowledge extraction branch, Knowledge-enhanced fea-
tures branch, and the visual-knowledge attention compo-
nent in the following subsections.

3.1. Knowledge extraction branch

The goal of this branch is to extract relevant knowledge
from Wikipedia and embed them into features. Such knowl-
edge is stored via entities in a knowledge base, and rele-
vant entities can be queried by scene text instances in our
method. However, most text instances can map to multiple
entities due to the uncertainty of the meaning of the text.
For example, the text “apple” can denote the entity of either
fruit apple or Apple company. This requires an entity can-
didate selector that takes as input a sentence and returns a
list of C potential entities.

Inspired by [11], we use an entity prior for entity can-
didate selection. The prior means the probability of a text
instance being an entity, which is computed by averaging
hyperlink count statistics from Wikipedia, a large Web cor-
pus [37], and the YAGO dictionary [14]. As depicted in
Fig. 3, first, we combine all scene text instances to sen-
tence according to the spotting order. Then, the tokens of
this sentence are obtained as BERT does. The entity candi-
date selector generates the top C entity candidates of each
text instance based on the prior. Finally, the entity embed-

Text instance Entity Span Priors Description of entity

joint - - - -

party political 

party

[1,1] 0.20 organized group of people who 

have the same ideology

party party [1,1] 0.15 social event

Leninade Leninade [2,2] 1.00 Soviet-themed lemonade soda

“joint party Leninade” 

Entity 

candidate 

selector

Entity 

encoder

candidate 

entities 
embeddings

Wikipedia

Figure 3. The process of knowledge extraction branch. The span
is the [start index, end index] of the token inside the sentence.

dings are obtained via the precomputed entity encoder in
KnowBert. Specifically, the entity encoder adopts a skip-
gram like objective to learn 300-dimensional embeddings
of Wikipedia page titles from Wikipedia descriptions. As
a result, such entity embeddings encode the factual knowl-
edge mined from Wikipedia descriptions.

3.2. Knowledge-enhanced features branch

This branch aims at using the retrieved entity embed-
dings to enhance the representations of text. The archi-
tecture is adapted from KnowBert that incorporates knowl-
edge bases into BERT by inserting a knowledge attention
and recontextualization component (KARC) at a particular
layer. Following KnowBert, we insert Wikipedia into the
10th layer of the encoder of BERT.

The brief pipeline of this branch is given in Fig. 2. For-
mally, a sequence of word piece tokens is fed to the former
10 successive encoder layers of BERT, outputting the con-
textual representations Hi. Then, the KARC takes as inputs
Hi and candidate entity embeddings and outputs knowl-
edge enhanced representations H

′

i . Finally, these enhanced
representations are fed to the remainder of the encoder of
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Figure 4. The architecture of the knowledge attention and recon-
textualization component.

BERT, generating the final knowledge enhanced features.
The module in each encoder layer of BERT is the Trans-
formerBlock formulated as

Hi = TransformerBlock(Hi−1, Hi−1, Hi−1). (1)

This block uses Hi−1 as the query, key, and value to allow
each vector to attend to each other.

The KARC is the key component for integrating the re-
trieved entity embeddings to Hi. Different from the one
in KnowBert, the width of the span is restricted as 1 in
our KARC. Namely, these entities named as more than one
text instance are ignored due to the sparsity of scene text.
The details of KARC are given in Fig. 4, the word piece
representations (Hi) are first projected to Hp

i by a linear
layer. The representations of those word pieces that link to
at least one entity are contextualized into contextual word
representations Se by a TransformerBlock. Meanwhile, the
C candidate entity representations of each token are aver-
aged to form weighted entity embeddings F . Specifically,
as KnowBert does, we disregard all candidate entities with
scores below a fixed threshold, and softmax normalize the
remaining scores to weight the corresponding candidate en-
tity representations. Then, Se are updated by adding en-
tity embeddings F to form word-entity representations S

′e.
The S

′e is employed to recontextualize theHp
i with a Trans-

formerBlock, where we substituteHp
i for the query, and S

′e

for both the key and value:

H
′p
i = TransformerBlock(Hp

i , S
′e, S

′e), (2)

Finally, a residual connection is adapted to fuse theH
′p
i and

Hi, forming the knowledge enhanced representations H
′

i :

H
′

i = g(H
′p
i ) +Hi, (3)

where, g is a linear function. The fully connected layer is
employed in our method.

3.3. Visual-knowledge attention component

Generally, not all knowledge of text in an image must
have semantic relations to the object or scene. Some re-
trieved knowledge may have strong correlations with the
image, others may be not relevant at all. Therefore, we de-
sign an attention component that focuses on very pertinent
knowledge for the semantics of objects or scene. The basic
idea is that we take the global visual feature fv ∈ R1×D as
query and retrieve those knowledge features that are highly
similar to fv from all knowledge features H ∈ RN×D. The
parameter D is the feature dimension.

Formally, given fv and H , we first calculate their simi-
larities, which is defined by:

W = softmax(
θ(fv) · (ϕ(H))T√

D
), (4)

where both θ and ϕ are a single linear function that projects
the features into a feature space, W ∈ R1×N is the out-
putted similarity matrix. Then, W is used for weighting
knowledge features. Finally, the weighted features are fed
to a residual connection block. The implemented process is
defined as follow:

Hatt =W · ψ(H), (5)

Hout = κ(Hatt) +Hatt, (6)

where Hout ∈ R1×D is the attended knowledge features, κ
is a linear function.

3.4. Classifier and loss function

The classifier consisting of a fully connected layer and
a softmax layer performs the classification task, inputting
the concatenation of the global visual features and the
knowledge-enhanced features. The objective function is
formulated as

L = − 1

M

M∑
m=1

1(m = y) log pm, (7)

where M is the number of categories, pm is the probabil-
ity of predicting the sample as the mth category, y is the
associated label.

4. Experiments
First, we introduce the datasets used in our experiments

and the new dataset created by us. Then, the implemen-
tation details are given. Third, we evaluate our method on
our proposed Crowd Activity dataset and make comparisons
with the state-of-the-art approaches. Last, we conduct the
ablation studies. We compare with previous methods under
the metric of mAP as most existing methods do.
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Celebrate Christmas Hold sport meeting Hold concert Birthday party Celebrity speech Teaching Graduation ceremony

Protect environmentPicnic Press briefing Shopping Thanks giving day Protect animals Appeal for peace

Brexit COVID-19 Election Immigrant Respect female Racial equality Mou. Des gilets jau.

Figure 5. Examples of 21 categories from the Crowd Activity dataset.

Method
Activities of daily living Demonstrations

mAP
c.c. h.s. h.c. b.p. c.s. teac. g.c. pic. p.b. shop. t.g. p.a. p.e. a.p. brex. cov. elec. imm. r.f. r.e. m.d.

R152 [13] 59.6 92.5 70.4 71.1 48.4 88.7 89.6 80.5 83.2 86.4 68.8 68.5 62.4 74.3 84.7 50.6 59.6 56.5 68.8 48.2 91.0 71.6

ViT [9] 76.0 98.7 81.1 83.6 57.1 85.3 93.5 84.7 93.0 88.6 73.6 73.6 71.5 78.8 85.7 75.6 74.6 75.8 84.3 60.0 91.0 80.3

fastText [4] 58.3 46.9 55.3 56.0 33.4 46.1 59.6 31.7 52.0 47.9 27.1 87.2 82.7 76.7 78.9 57.6 69.6 69.8 73.0 55.0 75.4 59.1

KB [31] 62.8 56.3 55.3 59.5 51.4 54.1 70.3 46.1 54.8 45.9 45.8 89.9 79.2 78.5 78.1 72.8 73.8 67.0 77.2 64.2 74.9 64.7

Mafla et al. [22] 60.0 90.9 75.6 76.4 49.4 89.0 86.4 83.5 79.0 94.2 67.1 83.1 76.2 82.4 88.7 65.5 72.4 71.4 74.7 67.7 95.5 77.6

Mafla et al. [23] 72.3 87.5 78.1 80.7 50.3 91.6 86.5 81.1 73.0 89.1 62.6 87.4 79.2 86.5 85.6 75.5 79.1 73.1 80.3 67.9 97.0 79.2

Ours 83.0 98.5 88.8 86.1 60.5 89.4 95.7 89.1 94.0 94.5 78.2 92.4 92.4 89.6 95.4 83.0 82.1 84.7 90.1 73.7 98.1 87.5

Gain 3.9 11.1 7.2

Table 1. Classification performance for baselines and the proposed method on the Crowd Activity dataset. KB denotes KnowBert.

4.1. Datasets

Con-Text dataset is introduced by Karaoglu [16] and is a
subset of ImageNet dataset [7]. This dataset is constructed
by selecting the sub-categories of “building” and “place of
business”, consisting of 24,255 images classified into 28
categories that are visually similar.

Drink Bottle dataset is presented by Bai [2] and con-
sists of various types of drink bottle images contained in
soft drink and alcoholic drink sets in ImageNet dataset [7].
The dataset has 18,488 images divided into 20 categories.

All categories within the existing two datasets are about
products or places of business. The textual cues of those cat-
egories are obvious, and most images can be understood by
the apparent meaning of scene texts rather than the knowl-
edge behind them. Therefore, we create a new dataset
that concentrates on the activities of the crowd for a fine-
grained image classification task, named as Crowd Activ-
ity dataset, as automatically understanding crowd activity
is meaningful for social security. This dataset is newly col-

lected, where the images are mainly searched on the In-
ternet and collected from streets by mobile phones. All
images in this dataset contain at least one text instances.
The categories come from activities of daily living and
demonstrations stimulated by hot events in recent years.
Specifically, this dataset consists of 21 categories and 8785
images in total. As shown in Fig. 5, the 21 categories
broadly fall into two types: activities of daily living( i.e.,
celebrating Christmas, holding sport meeting, holding con-
cert, celebrating birthday party, celebrity speech, teach-
ing, graduation ceremony, picnic, press briefing, shop-
ping, celebrating Thanks giving day) and demonstrations
( i.e., protecting animals, protecting environment, appealing
for peace, Brexit, COVID-19, election, immigrant, respect-
ing female, racial equality, mouvement des gilets jaunes).

4.2. Implementation Details

Before training, we first extract scene text by Google
OCR or E2E-MLT. Then, the model of our method is trained
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Method Vision Text Spotter Embedding Con-Text Bottles Activity
Karao. et al. [16] BOW Custom BoB 39.00 - -
Karao. et al. [15] BOW+GoogLeNet Jaderberg Probs 77.30 - -
Bai et al. [2] GoogLeNet Textboxes GloVe 78.90 - -
Bai† et al. [2] GoogLeNet Google OCR GloVe 80.50 74.50 -
Mafla et al. [22] ResNet-152 E2E-MLT GloVe 77.58 74.91 72.58
Mafla et al. [22] ResNet-152 E2E-MLT fastText 77.77 75.40 73.01
Mafla et al. [22] ResNet-152 SSTR-PHOC PHOC 77.45 75.93 73.84
Mafla et al. [22] ResNet-152 SSTR-PHOC FV 80.21 77.38 77.57
Mafla et al. [23] ResNet-152 E2E-MLT fastText 82.36 78.14 75.31
Mafla et al. [23] ResNet-152 SSTR-PHOC PHOC 82.77 78.27 75.45
Mafla et al. [23] ResNet-152 SSTR-PHOC FV 83.15 77.86 77.54
Mafla et al. [23] ResNet-152 Google OCR fastText 85.81 79.87 79.25
Ours ResNet-152 E2E-MLT KnowBert 84.93 79.32 81.91
Ours ViT E2E-MLT KnowBert 87.28 84.01 85.68
Ours ViT Google OCR KnowBert 89.53 85.26 87.45

Table 2. Classification performance of state-of-the-art methods on the Con-Text, Drink-Bottle, and Activity datasets. BOW denotes bag of
visual words. BoB denotes Bag of Bigrams. FV denotes Fisher Vector.

in an end-to-end manner. For the data augmentation on im-
ages, we first randomly crop an image patch on the original
image with the scale from 0.05 to 1.0 while keeping the
ratio in a range of [0.75, 1.33]. Next, the image patch is
resized to 224× 224. Finally, we perform normalization on
the image by setting both the mean and the standard devia-
tion as (0.5, 0.5, 0.5). As for training BERT and KnowBert,
no data augmentation is used other than shuffling the order
of scene text before grouping them into a sentence, as both
BERT and KnowBert can overfit quickly when the input text
is not so abundant. We adapt AdamW [21] to optimize the
whole network with an initial learning rate of 3e-5. The
learning rate warmup for 500 iterations and the cosine an-
nealed warm restart strategy are adopted at the same time.
All models are trained on the dataset for 10 epochs.

We conduct all experiments based on PyTorch [27]. The
codes of ResNet-152 [13] and ViT [9] are from [22] and
the timm package [41]. For both ResNet-152 and ViT, the
pre-trained models on ImageNet are used for finetuning.
The implementation of BERT [8] and KnowBert are from
the huggingface transformers [42] and [31]. The Book-
Corpus [43] and English Wikipedia pre-trained model are
loaded on BERT. In addition, we use torchtext, which is
a package from PyTorch for the GloVe [28] and fastText [4].

During testing, the shorter side of the image is resized
to 224. Then a 224 × 224 image patch is cropped from the
image center. As for the spotted scene text, we keep their
original order for BERT and KnowBert.

4.3. Baselines on the crowd activity dataset

We compare our method with several baseline methods,
including visual baseline (ResNet-152 and ViT), textual/-
knowledge baseline (fastText and KnowBert), and multi-

modal baseline ( [22]and [23]) on our proposed crowd ac-
tivity dataset. We conduct two types of experiments using
two different dataset settings. 1) The visual baseline and
multi-modal baseline models are trained on all training im-
ages and tested on all testing images. 2) The textual/knowl-
edge baseline models are trained and tested on the subset
of images consisting of spotted texts. The textual cues used
in [22]and [23] are from fastText.

Tab. 1 displays the quantitative comparisons on the
crowd activity dataset. Among previous methods, ViT
achieves state-of-the-art performances, while our method
outperforms ViT by 7.2% mAP. In particular, the improve-
ments of the subset of demonstrations reach more than
11.0% mAP, which is the highest gain than activities of
daily living. The reason is that the visual cues on those
demonstration activities are incredibly subtle. For example,
most scenarios are that protest marchers hold flags and slo-
gans and walk on the street. Such subtle visual cues require
valuable knowledge for better understanding those scenes.
Thus, the performance improvement confirms the signifi-
cance of scene text instances in datasets such as Crowd Ac-
tivity for the robust classification of fine-grained images.

4.4. Comparisons with state-of-the-art method

Bai et al. [2] take GoogLeNet [38] as visual backbone
while the most recent state-of-the-art methods [22, 23] em-
ploy ResNet-152 [13]. For a fair comparison, we first eval-
uate our method with ResNet-152 and take E2E-MLT [5] as
text spotter. Then, we conduct experiments under the set-
ting of ViT and Google OCR.

As shown in Tab. 2, our model achieves the best per-
formance on the three datasets. The method [23] outper-
forms previous methods by using the features of general
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GT: Protect Env.

P. Env.: 0.9992

GT: A. Peace

A. P.: 0.5422

GT: C. Speech

C. S.: 0.8209

GT: Graduation

Grad.: 0.9947

GT: Barber

Barber: 0.9858

GT: Dry Cleaner

Dry C.: 0.9997

GT: Diner

Diner: 1.0000

GT: Theatre

Theatre: 0.9999

GT: bitter

bitter: 0.9993

GT: guinness

guinness: 0.9972

GT: sauterne

sauterne: 0.9957

GT: chablis

chablis: 0.8962

GT: Press Brief.

Press B.: 0.9889

GT: COVID-19                                                                                                                    

COVID: 0.9032

GT: C. Speech

Election: 0.9986

GT: Christmas                                                                                                                

Concert: 0.4973 

GT: Motel

Motel: 1.0000

GT: Dry Cleaner                                                                                                              

Diner: 0.7703

GT: Bakery                                                                                                                   

C. Store: 0.9824

GT: gingerale

ginger.: 0.9987

GT: sauterne                                

chablis: 0.9671

GT: coke                                    

rootbeer: 0.8911 

GT:  SteakHouse

Steak H.: 0.9356

GT: pepsi

pepsi: 0.9996

Figure 6. Some examples of classification results. GT denotes Ground Truth. The Top-1 prediction and its probability are shown below
each picture. The names of some categories are abbreviated.

Figure 7. Visualization results. The top two are ResNet-152 grad-
CAM [35] results, and the bottom two are ViT attention maps.

objects within images. However, our model surpasses it, by
5.39% and 3.72% on Drink Bottle and Con-Text datasets,
respectively. The method [22] does not use the informa-
tion of general objects. Consequently, our method achieves
superior performance on the two public datasets over the
method [22]. The consistent outperformance of our pro-
posed model over existing methods demonstrates the sig-
nificance and effectiveness of integrating the knowledge be-
hind scene text for better understanding the objects or scene.
To further validate the significance of introducing knowl-
edge to this task, we compare our method with [22] and [23]
on our Crowd Activity dataset. Specifically, we train the
model with their officially released codes23. As depicted in

2http://github.com/DreadPiratePsyopus/Fine Grained Clf
3https://github.com/AndresPMD/GCN classification

Vision Emb. C.T. Bottles Activity

vis. R152 - 70.96 73.41 71.58
ViT - 79.24 80.81 80.29

vis. +
text

R152 GloVe 73.97 76.67 74.75
R152 fastText 73.66 76.67 74.89
ViT GloVe 79.79 80.56 81.25
ViT fastText 79.82 81.18 80.71

vis. +
text +
know.

R152 BERT 81.59 77.94 81.68
R152 KB 85.42 80.17 83.79
ViT BERT 86.51 82.81 85.34
ViT KB 89.53 85.26 87.45

Table 3. Performances of different vision and embedding mod-
els combinations on three datasets. R152 denotes ResNet-152.
The abbreviated names, vis. and know., mean visual and knowl-
edge. The text + know. means the features containing knowledge
of texts. C.T. means Con-Text. (Metric: mAP)

Tab. 2, our method outperforms the method [23] by 8.20%
mAP, which further illustrates that mining knowledge is vi-
tal to understand the meanings of natural images fully.

As some qualitative results of our method are shown in
Fig. 6, the proposed method can identify these visually alike
images on Drink Bottle and Con-Text datasets. As illus-
trated in Sec. 4.3, the visual cues and the literal meaning of
scene text in images are highly subtle on the crowd activity
dataset. Yet, our method still classifies them very well.

4.5. Ablation study

This section provides detailed ablation studies to vali-
date the effect of different modules included in the proposed
model for mining knowledge. Thus, we present the perfor-
mances on the three datasets under various combinations

4630



KARC VKAC C.T. Bottles Activity
Baseline 86.51 82.81 85.34
model A

√
87.25 83.59 86.16

model B
√ √

89.53 85.26 87.45

Table 4. Ablation studies of KARC and VKAC components. ViT
is applied to extract features from images. C.T. denotes the Con-
Text dataset. (Metric: mAP)

Model Con-Text Bottles Activity
ViT 79.24 80.81 80.29
KnowBert 47.07 53.28 64.66
model A 81.47 82.26 81.79
model B 89.53 85.26 87.45

Table 5. The model A is trained in a separated manner. The model
B is trained in an end-to-end manner. (Metric: mAP)

of visual features and textual features. Then, we discuss the
impact of KARC and VKAC components. Finally, we show
the advantage of jointly optimizing the whole network.

The impact of visual features As shown in Tab. 3, intro-
ducing textual cues ( i.e., Glove and fastText) to the ResNet-
152 model can significantly improve the performance up
to 3% mAP. However, ViT model performance improve-
ment is not more than 1% mAP. We further compare the
two models with qualitative examples via visualizing the at-
tention map of both models (only trained with image data)
of ResNet-152 and ViT. As depicted in Fig. 7, the ResNet-
152 model mainly focuses on the visual contents. However,
the ViT model captures the visual contents and harvest the
textual cues from the image by self-attention mechanism.
Thus, embedding features provides complementary infor-
mation to boost the performances of ViT instead of solely
exploiting the literal meaning of scene text.

The impact of knowledge-enhanced features As men-
tioned before, a direct way to mine knowledge is to exploit
the BERT encoder output features. As shown in Tab. 3, the
employment of knowledge-enhanced features from BERT
achieves significant improvements than the typical word
embedding features (GloVe/fastText). The ViT+BERT
model surpasses the performance of the ViT+fastText
model by 6.69%, 1.63%, 4.63% on Con-Text, Drink Bottle,
and Crowd Activity. This superior performance proves that
the explicit knowledge in knowledge bases significantly en-
riches the semantics of scene text for understanding objects.
Furthermore, unlike BERT, KnowBert explicitly introduces
knowledge from a knowledge base into the model. The ex-
perimental results show that the KnowBert model consis-
tently outperforms the BERT model. Therefore, introduc-
ing knowledge behind scene text to neural network feature
learning enhances understanding natural images. As shown
in Fig. 8, the employment of knowledge substantially en-
riches the classification accuracy, as the knowledge behind
“PM2.5” tells that the third image is about environment.

GT: Birthday party

ViT: Teaching (0.9136)

ViT + fastText: Birthday party (0.8939)

ViT + KnowBert: Birthday party (0.8141)

GT: Protect environment

ViT: Appeal for peace (0.3469)

ViT + fastText: Racial equality (0.4324)

ViT + KnowBert: Protect environment  (0.8439)

GT: Celebrate Christmas

ViT: Celebrate Christmas (0.9997)

ViT + fastText: Celebrate Christmas (1.0000)

ViT + KnowBert: Celebrate Christmas (0.9998)

Figure 8. The classification results of different models.

The impact of KARC and VKAC components As
shown in Tab. 4 Model B is the default model equipped with
KARC and VKAC, while model A only employed KARC.
The integration of KARC only in model A improves the
performance on all datasets. Moreover, integrating VKAC
on top of KARC in model B increases the recognition per-
formance mAP by 2.28%, 1.67%, and 1.29% on Con-Text,
Bottles, and Crowd Activity datasets, respectively. The ex-
perimental results demonstrate the effectiveness of fusing
multi-modal features for this task.

Joint optimization Integrating the process of mining
knowledge, feature extraction, and classification in a uni-
fied network makes it feasible to optimize them jointly. The
model that is jointly optimized could achieve better perfor-
mance than the one with separated feature extraction and
classifier, as those processes are complementary to each
other. To confirm this assumption, we first train the mod-
els of ViT and KnowBert with image data and scene text,
respectively, at the supervision of the classification task.
Then, the classifier and VKAC are trained, accepting as
input visual features and knowledge-enhanced features ex-
tracted from the pre-trained models. As reported in Tab. 5,
the model trained in an end-to-end manner significantly out-
performs the one trained separately, showing the necessity
of integrating knowledge mining process into the network.

5. Conclusion
In this paper, we have confirmed that the usage of the

knowledge behind scene text can improve the performance
of the fine-grained image classification task. Experiments
on the two benchmark datasets and the proposed Crowd Ac-
tivity dataset have verified the effectiveness and efficiency
of our method for product recognition and crowd activity
analysis. In the future, we will further explore the usage
of knowledge mining of scene text on other tasks of multi-
modal fusion, such as scene text, visual question and an-
swering, and visual grounding.
Acknowledgements This work was supported by the Na-
tional Natural Science Foundation of China 61733007.
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