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Abstract

The reasonable trajectory prediction of surrounding traf-
fic participants is crucial for autonomous driving. Espe-
cially, how to predict multiple plausible trajectories is still
a challenging problem because of the multiple possibilities
of the future. Proposal-based prediction methods address
the multi-modality issues with a two-stage approach, com-
monly using intention classification followed by motion re-
gression. This paper proposes a two-stage proposal-based
motion forecasting method that exploits the sliced lane seg-
ments as fine-grained, shareable, and interpretable propos-
als. We use Graph neural network and Transformer to en-
code the shape and interaction information among the map
sub-graphs and the agents sub-graphs. In addition, we pro-
pose a variance-based non-maximum suppression strategy
to select representative trajectories that ensure the diversity
of the final output. Experiments on the Argoverse dataset
show that the proposed method outperforms state-of-the-
art methods, and the lane segments-based proposals as well
as the variance-based non-maximum suppression strategy
both contribute to the performance improvement. More-
over, we demonstrate that the proposed method can achieve
reliable performance with a lower collision rate and fewer
off-road scenarios in the closed-loop simulation.

1. Introduction

Forecasting possible trajectories of surrounding agents
is a crucial as well as challenging problem for autonomous
driving, especially for multi-mode traffic scenes with uncer-
tain future possibilities.

Early methods [11, 16] only learn a deterministic trajec-
tory, resulting in output averaging in multi-mode scenes,
also called the mode collapse issue. Probabilistic ap-
proaches [2, 4] are proposed to generate multi-modal out-
puts by modeling diverse trajectories with a probability dis-
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tribution (e.g., GMM). However, the predicted trajectories
of these methods are poor in interpretability and depend
heavily on the predefined distribution.

To address the aforementioned multi-modality problem,
proposal-based methods [8, 14, 24] decouple the trajec-
tory prediction problem into classification-based intention
prediction and regression-based motion prediction. Some
works [8, 24] artificially sample target points, unique for
each predictable agent, as proposals, which could not be
reused for other predictable agents. Lapred [10] utilizes en-
tire lanes as proposals, making it hard to model fine-grained
intentions. Therefore, it is crucial to choose proposals that
can (i) model the intention accurately, and (ii) be shared
among all agents.

Furthermore, how to select representative trajectories is
also a vital issue. The proposal-based methods generate a
cluster of candidate trajectories based on the proposals. It
is defective to output top-k trajectories merely ordered by
the probability of the predicted proposals, since some inten-
tions, though slightly lower in probability, are very critical
for safety. Traditional methods utilize the Non-Maximum
Suppression (NMS) algorithm, given a fixed threshold, to
select the trajectories outside the threshold area into the out-
put set greedily and successively. However, a fixed thresh-
old cannot balance accuracy and variety. Therefore, some
methods [7, 8] try to output multiple trajectories through
optimization-based methods, causing complicated work-
flow and increased computation cost.

In this paper, we propose a novel Lane-based Trajectory
Prediction (LTP) method for autonomous driving. We ar-
gue that there is no need for any complicated hand-craft
proposals because the lane segments in the map are suit-
able proposals for intention modeling by nature. There are
three advantages of using lane segments as proposals: (i)
Each lane segment explicitly represents a fine-grained
intention. Lane segments can represent tactical-level in-
tentions, such as “change right for overtaking” or “change
right for parking.” While the method using the entire road
lanes as proposals can only learn the road-level intention
like “change left” or “change right.” [10] (ii) The interac-
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tion between the lane segments and the agents can be
well captured. When learning interaction with the map,
the representation of the lane segments will naturally pass
through the network. Thereby, it will generate a more infor-
mative embedding, unlike the TNT [24] which directly con-
catenates the unlearned point-level proposals to the agents
embedding. (iii) The lane segments-based proposals can
be shared among agents. The lane segments are indepen-
dent of the agents, which means that once learned through
the backbone, the embedding of the lane segments is fixed,
no matter how many agents to predict. Just by concatenat-
ing the embedding of the agents and the lane segments, the
different agents in the same scene can be predicted in par-
allel, unlike the DenseTNT [8] which needs to learn unique
proposals embedding for different agents.

Based on these proposals, our method predicts which
lane segment will be the future destination and regresses
the corresponding trajectory. Furthermore, we found that
the variance of the learned lane segments probability scores
represents the uncertainty of the model to the current situa-
tion. Therefore, we propose a variance-based NMS method,
which dynamically adjusts the NMS threshold according to
the variance of the top-k prediction scores and achieves the
balance of accuracy and variety.

The contributions of this paper are summarized as fol-
lows:

• A lane-based trajectory prediction method with ex-
plicit intention modeling is proposed, which uses lane
segments as proposals to predict all agents in one shot.

• A novel variance-based NMS algorithm is proposed,
which achieves the balance of accuracy and diversity
by dynamically adjusting the NMS threshold accord-
ing to the uncertainty of the prediction output.

• We outperform all published methods on the Argov-
erse forecasting benchmark. We also show that the
proposed LTP could achieve reliable performance as
a planner in closed-loop simulation.

2. Related Works
The trajectory prediction problem mainly contains three

sub-tasks: representing the environment, learning interac-
tion, and generating multi-modal outputs. We review some
relevant works in this section.

State representation. Representing states of maps and
agents is crucial for extracting effective features in the mo-
tion prediction task. A typical set of approaches renders
states as multi-channel rasterized images [2, 4] with the
bird-eye view. Convolutional neural network (CNN) [22]
is a common selection, mainly focusing on spatial features.
However, the rasterized representation leads to accuracy

loss and suffers from capturing spatially distant interac-
tions. Recently, the graph architecture has attracted much
attention, such as VectorNet [5] and LaneGCN [13], utiliz-
ing GNNs to encode High Definition (HD) maps and gen-
erate vectorized representation. We draw inspiration from
the two, while the differences lie in that we characterize the
map through connected lane segments. At the same time,
the lane segments can also be used as intention proposals
and shared among agents.

Interaction modeling. The future trajectories are
greatly influenced by the complex but subtle interactions
among relevant agents and the environment. With the de-
velopment of natural language processing, the attention
mechanism [21] is introduced to capture long-term relation-
ships. In the motion forecasting field, various attention-
based methods have been employed to model relationships
in different levels: spatial-level, temporal-level, and entity-
level (e.g., road elements, agents trajectory). VectorNet [5]
introduces a unified self-attention model to directly learn
the interactions between all the sub-graphs in the environ-
ment, but it lacks more detailed modeling of interactions.
Goal-oriented lane attention [15] is proposed to emphasize
the relationship between agents and lanes, while the atten-
tion is applied at road level, which makes it difficult to
model the fine-grained interactions. Further, LaneGCN [13]
models four types of interactions between actors and lanes
with a split-joint attention mechanism, which effectively
captures the complex topology of lane graphs and long-
range dependencies. Inspired by the VectorNet, we also
model the interactions with the attention model. Unlike
VectorNet, we utilize self-attention and cross-attention to
process the information from different domains and intro-
duce multi-layer attentions to fuse the learned embedding.

Multi-modal output. Prediction models should output
multi-modal trajectories to adapt to environmental uncer-
tainty [4, 15, 19]. Relevant works mainly adopt two cate-
gories: implicitly modeling the multi-modes as latent vari-
ables and explicitly generating multiple guiding proposals
with the model or prior knowledge. Specifically, the for-
mer train Gaussian Mixture Models (GMMs) [2] or Mix-
ture Density Networks (MDNs) [17] that generate a dis-
tribution over possible trajectories, then utilize VAEs, or
GANs [2, 9, 12] to sample diverse future modes from la-
tent variables. Drawbacks lie in the interpretability, making
it difficult to guarantee the probability associated with each
explicit intention that humans understand.

The proposal-based methods design diverse proposals to
decouple the prediction problem into intention prediction
and motion prediction. Region-level proposals are proposed
by mmTransformer [14], but these proposals rely on man-
ually predefined regions and the final performance is sensi-
tive to the number of proposals. Some methods [8,24] sam-
ple the proposal points around the centerline of the lane, so
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Figure 1. LTP architecture: (1) The vectorized lane segments and agents trajectories are firstly input to the shape encoder to extract shape
features. (2) The self-attention and cross-attention layers are used to capture the long-term interaction between map information and agent
information. (3) The target agent embedding is concatenated with each lane segment embedding in the map and input to the classification
head and regression head. The classification head predicts which lane segment is more likely to be the destination and the regression head
generates a trajectory for each lane segment. (4) A variance-based NMS algorithm is proposed to select representative trajectories from all
generated trajectories.

that the detailed intentions can be well captured. However,
their sampling relies on artificially designed rules. Differ-
ent agents cannot share proposals, so the algorithm can only
predict each agent serially. LaPred [10] proposes a lane-
aware prediction method, which uses lanes as proposals
to model vehicle intentions. But it directly inputs the en-
tire lane, making it impossible to model fine-grained intent.
Different from the above methods, we use the lane segments
from the map as the proposals, which can clearly describe
the agents’ fine-grained intentions and be shared globally.

To select representative trajectories from all predicted
trajectories, NMS is widely used in proposal-based meth-
ods. TNT [24] and mmTransformer [14] employ traditional
NMS as a selector after model output. However, it is dif-
ficult to balance accuracy and multi-modal output with a
fixed NMS threshold. Optimization-based approaches are
introduced to select the end-points of the trajectories [7, 8].
DenseTNT [8] further designs a network to learn the result
of optimization. But the prediction system is still compli-
cated and the computation cost is increased. We propose
a variance-based NMS algorithm that can dynamically ad-
just the NMS threshold according to the uncertainty of the
model to the scene, which takes into account both accuracy
and multi-modality.

3. Method
The architecture of our LTP is shown in Fig 1, and we

introduce the details in this section.

3.1. Environment Representation

Inspired by VectorNet [5], we represent the lane seg-
ments and agents history trajectories as vectors connected

end to end. The difference with VectorNet is that our map
consists of sliced lane segments to model the intention pre-
cisely.

Specifically, given an environmental scenario E :
{C,A}, where C = {ci} represents the lane segments in
the scene and A = {ai} represents all agents’ trajecto-
ries. The length of each lane centerline segments ci is
cut to 5m or less if the lane is shorter than 5m and anno-
tated as ci =

{
cji , j ∈ [1, N ]

}
. N controls the resolution

of the map. Each cji describes a section of the 5
N -meters

lane, defined as [sx, sy, ex, ey, th, le, ty], where (sx, sy)
and (ex, ey) are the start and end point of the vector, th and
le represent the heading angle and the length of the vec-
tor, and ty represents the type of map elements, such as
centerlines or sidelines. Similarly, for each agent trajectory
ai =

{
aji , j ∈ [1, T ]

}
, where T represents the total steps

of the trajectory, each aji describes a vector that makes up
the trajectory, defined as [sx, sy, ex, ey, th, le, ty, ts]. The
definitions of the first six dimensions are the same as cji . ty
represents the type of agents, such as vehicles or cyclists.
Further, ts describes the absolute time relative to the cur-
rent frame to overcome noise caused by data acquisition
frequency jitter.

3.2. Embedding Extracting

Shape encoder. Since there are usually a large number
of lanes and agents in a scene, it is necessary to aggregate
the local information of each subgraph first. Here we follow
VectorNet to encode the local shape feature, which draws
on the idea of PointNet [20], encoding all the information
of a lane segment or agent into a fixed-length embedding
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through a fully connected graph neural network.
For each polyline P (i.e. ci or ai above) with its vector

nodes {v1,v2, ...,vP }, each layer of the local shape en-
coder is defined as

v
(l+1)
i = φrel

(
genc(v

(l)
i ), φagg

({
genc(v

(l)
j )

}))
, (1)

where v
(l)
i is the input of the l-th layer and vj are the other

vectors connected with vi in P . We treat each subgraph
as fully-connected. φrel is feature concatenation opera-
tion, genc is a multi-layer perception (MLP) and φagg is the
max-pooling operation. Finally, for the output embedding
{vo

1,v
o
2, ...,v

o
P }, max-pooling is used to further generate

unique embedding that integrates the shape information of
the entire polyline.
Global interaction modeling. Through shape encoder, we
generate an embedding for each lane segment and agent.
After that, a multi-layer attention network is introduced to
capture the global interaction between agents and lane seg-
ments. Given arbitrary feature matrices O, U and theirs
linear projections OQ, OK, OV and UQ, UK and UV , the
SelfAttn(O) and CrossAttn(U ,O) are defined as

SelfAttn(O) =
Softmax(OQOT

K)√
dk

OV , (2)

CrossAttn(U ,O) =
Softmax(OQUT

K)√
dk

UV , (3)

where
√
dk is the dimension of the key vectors. We design a

multi-layer cross-attention network to model the interaction
between agents and lane segments. For each layer l, the
agents embedding A(l) and lane segments embedding C(l)

are fused by the SelfAttn and CrossAttn operation,

A(l+1) = SelfAttn(A(l)) + CrossAttn(C(l),A(l)), (4)

C(l+1) = SelfAttn(C(l)) + CrossAttn(A(l), C(l)). (5)

3.3. Multi-Modal Trajectory Prediction

The road lanes are designed to guide vehicles, so they
play a pivotal role in predicting vehicles’ motion. Once the
lane segment is known, it is easy to regress trajectory based
on the target lane segment. Therefore, a two-stage trajec-
tory prediction framework is designed, to classify lane seg-
ments first and then predict directional trajectories based on
different target lane segments.

We concatenate the embedding ai of the target agent
with the embedding cj of all the lane segments in the map,
merged as a tensor ei = {[ai, c0], [ai, c1], ..., [ai, cM ]}.
each element in ei represents a kind of intention of the target

Figure 2. Schematic diagram of our variance-based NMS method.
We dynamically adjust the NMS threshold R according to the un-
certainty of the model prediction.

agent. Then we input ei into classification head to predict
the probability of each intention and regress motion trajec-
tory based on the given intention. Since cj is the indepen-
dent proposal, it is only required to concatenate different
agent embeddings with lane segments together so as to pre-
dict the future trajectories of multiple agents in parallel.
Lane segments classification. We use a three-layer MLP
to score each lane segment and predict whether it is the fu-
ture destination of the agent. Therefore, it becomes a bi-
nary classification problem for each lane segment. Before
the start of training, we design a function f to score the lane
segments so as to generate a reasonable ground truth. It is
designed as

f = α1 ∥oi − li∥+α2 |θoi − θli |+α3 sin |θoi − θli |. (6)

The first item measures the Cartesian distance between the
trajectory end-point oi and the center point of the lane seg-
ment li. The second item measures the angle error between
the agent heading θoi and the direction of the lane segment
θli , and the last item penalizes the case that the trajectory
heading is perpendicular to the lane direction. Lane seg-
ments with scores less than D are marked as ground truth
to provide dense supervision.
Trajectory regression. The regression head is also a three-
layer MLP. For each element of ei, one predicted trajectory
will be generated. Each predicted trajectory is defined as
[x0, y0, x1, y1, ..., xT , yT ], where T is the maximum time
step of the prediction, with 0.1 second intervals.
Loss function. Our loss function consists of three items,
namely classification loss Lclf , regression loss Lreg and di-
versity loss Ldiv . For the classification output of M lane
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Figure 3. (Upper) The predicted trajectories in Argoverse validation set. The shade of purple on the lane segments represents the level
of the classification score, which proves that LTP can give interpretable predictions in challenging scenarios. (Lower) Attention maps
corresponding to the upper scenes. The depth of the color represents the degree of attention paid by the target agent to each lane segment
and surrounding agent. We can see that the surrounding agents with higher interaction with the target agent have received more attention.
The attention to the lane segments shows that the model has learned the correct road topology connection.

segments p0, p1, ..., pM , the classification loss function is
defined as

Lclf = −
M∑
i=1

(yi log σ(pi) + (1− yi) log σ(1− pi)), (7)

where yi is 1 if the i-th lane segment is the ground truth, and
0 otherwise. σ is the sigmoid function. For the regressed
trajectories τ1, τ2, ..., τN generated from the ground truth
lane segments, the regression loss function is defined as

Lreg =
1

N

N∑
i=1

SmoothL1Loss(τi, τgt), (8)

where τgt is the ground truth trajectory, which ensures
the closeness of the predicted trajectory to the provided
lane segment. In addition, to generate diverse tra-
jectories, we design a diversity loss to the trajectories
T = {τ1, τ2, ..., τ6} which are generated from the top-6
highest-scoring lane segments,

Ldiv = min
τ∈T

SmoothL1Loss(τ, τgt). (9)

The final loss function is a weighted addition of the above
three items,

Loss = λ1Lcls + λ2Lreg + λ3Ldiv, (10)

where λ1, λ2, and λ3 are set to 0.5, 1.0 and 1.0 in practice.

3.4. Variance-based Non-Maximum Suppression

As shown in Fig 2, the probability value will be averag-
ing when the model is unsure about its prediction. While
when the agent’s future trajectory is determined, the vari-
ance of the top-6 classification will be large. Based on this
observation, we design an adaptive threshold function, writ-
ten as

thr = max(min(
k

var(p)
, γ1), γ2), (11)

where var(p) is the variance of the top-6 probabilities, γ1
and γ2 are the upper and lower bounds of the threshold, and
k is a constant coefficient. With the calculated threshold, we
greedily select trajectory from the generated trajectory clus-
ters in descending order of probability. When a trajectory
is selected, other trajectories within thr from its endpoint
will be discarded. Through this low-cost design, the den-
sity of the output trajectory will depend on the uncertainty
of the model, so that both accuracy and diversity are taken
into account.

4. Experiments
4.1. Experimental Settings

Dataset. We evaluate our method on Argoverse dataset and
our internal dataset. Argoverse Motion Forecasting dataset
provides a commonly used benchmark for trajectory predic-
tion, consisting of 205, 942 trajectories for the training set,
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Figure 4. The prediction results on our internal dataset. The orange vehicle is a self-driving vehicle (SDV) for data acquisition. The
black curve represents the history trajectory of the surrounding agents, and the red curve is its ground truth trajectory. The blue, cyan, and
green curves are the predicted future trajectories of pedestrians, cyclists, and vehicles, respectively. For simplicity, we only show the top-1
trajectory. Note that with the unified lane segments as map representation, the prediction for all surrounding agents can work in parallel.

b-min
FDE6

minFDEk minADEk

k=1 k=6 k=1 k=6
Vnet [5] \ 4.01 \ 1.81 \

Lapred (v) [10] \ 3.29 1.44 1.48 0.71
TNT [24] 2.14 4.95 1.45 2.17 0.91

LGCN [13] 2.05 3.78 1.36 1.70 0.87
mmTrans [14] 2.03 4.00 1.34 1.77 0.84

DTNT [8] 1.98 3.63 1.28 1.68 0.88
SceneTrans [18] 1.89 4.05 1.23 1.81 0.80

Gohome [6] 1.86 3.68 1.29 1.70 0.89
ours 1.856 3.55 1.29 1.62 0.83

Table 1. Comparisons with SOTA in Argoverse Leader board. The
results of Lapred are from the validation set.

39, 472 trajectories for the validation set, and 78, 143 tra-
jectories for the test set. Each trajectory is divided into two
parts, past 2 seconds as input and future 3 seconds as the
label. The dataset was collected on public roads in Miami
and Pittsburgh, and only vehicles need to be predicted.

We collect an internal dataset from the campus roads
to further evaluate our method, consisting of 7, 897, 558
trajectories, including 1, 331, 862 vehicles, 1, 962, 140 cy-
clists, and 4, 603, 556 pedestrians. Our map format and
trajectory duration are consistent with Argoverse dataset.
The difference is that our internal dataset mainly focuses
on campus roads and crowded traffic. In the experiments,
the data and models of the two datasets are not mixed in
any form.
Metrics. We follow the metrics that the Argoverse bench-
mark used in CVPR-2021 competition. For 2021 com-
petition, the leaderboard is sorted by brier minimum Fi-
nal Displacement Error (b-minFDE6), which is defined as
(1.0−p)2+minFDE6, where p corresponds to the proba-
bility of the best-forecasted trajectory and minFDE6 is the
L2 distance between the end-point of the best-forecasted
trajectory of 6 candidate trajectories and the ground truth.

We also report the metrics minFDE6, minADE6, FDE1,
ADE1 in test set, corresponding to the final point displace-
ment error and average displacement error of top-6 and top-
1 trajectories.

4.2. Results

Argoverse dataset. We compare LTP with several state-of-
the-art (SOTA) methods published recently on Argoverse
test set, and report results in Table 1. LTP outperforms all
methods published recently on the main official metrics b-
minFDE6. In addition, our model achieves comparable
results on other metrics terms. Compared with the recent
proposal-based SOTA methods [8, 10, 14, 24], our method
achieves the lead in almost all indicators. Note that Lapred
[10]’s results are from the Argoverse validation set, but our
method still surpasses it on minFDE6, demonstrating the
superiority of our LTP.

Fig 3 shows the qualitative results generated by LTP on
the Argoverse validation set. Results show that LTP can
yield multiple reasonable trajectories in multi-mode scenes.
The model can predict trajectories with different intentions
in the slow-moving scenes, such as slowing down to wait or
accelerating to overtake. In addition, LTP predicts accurate
and diverse trajectories in challenging scenes, such as driv-
ing out of the lane and sudden speeding-up. The visualiza-
tion of attention scores further shows that the model learns
topological relationships of the map and interactions among
agents. When following a slow vehicle, the model will pay
close attention to the vehicle in front, the distant overtaking
lane segments, and the front following lane segments, for
example, the overtaking scene shown in Fig 3.
Internal dataset. Table 2 shows the results on our internal
dataset, which demonstrate that our model can achieve ac-
curate predictions for different types of agents. Fig 4 shows
that LTP can generate reasonable trajectories for various
kinds of agents around autonomous vehicles with a gen-
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Type
Top-1 (m) Top-6 (m)

FDE ADE FDE ADE

agent-
centric

Ped 0.64 0.32 0.38 0.20
Cyc 1.63 0.73 0.86 0.39
Veh 2.19 0.99 1.15 0.52

ego-
centric

Ped 0.66 0.33 0.40 0.21
Cyc 1.68 0.75 0.89 0.41
Veh 2.27 1.02 1.18 0.54

Table 2. The prediction results of LTP for pedestrians (Ped), cy-
clists (Cyc) and Vehicles (Veh) in agent-centric and ego-centric
coordinate system on our internal dataset.

eral model. Note that the origin of the coordinate system
in our internal dataset is the current position of our ego self-
driving vehicle. The prediction process can work in paral-
lel with a shared encoder backbone, which significantly im-
proves the prediction efficiency. The experiments show that
the prediction accuracy in the ego-centric coordinate system
is comparable with the agent-centric coordinate system.
Model size and computational time. The model size and
computational time comparisons are shown in Table 3. We
select scenes with multiple predictable agents from the Ar-
goverse validation set for experiments and compare the re-
lationship between the inference time and the number of
predictable agents. Considering that the time consumption
of the GNN-based method is related to the complexity of
the scene, we carry out the test in 100 scenes and take the
average value as the result.

Experiments show that LaneGCN has the largest model
and time consumption. The time consumption of VectorNet
and TNT is smaller when agents number is 1 but larger than
LTP (Para) when agents number is 8. LTP is at a moderate
level in terms of model size, but it is better than other meth-
ods on FDE and minFDE6 results. At the same time,
with the ego-centric coordinate system, LTP (Para) can pre-
dict for surrounding agents in parallel, which makes it scale
well as the number of agents to be predicted increases.

4.3. Ablation Study

To demonstrate how each module in LTP contributes to
the final result, we conduct the ablation study as shown in
Table 4. All ablation experiments are performed on the Ar-
goverse validation set, and we mainly verify the role of lane
segments length, the attention modules, and the NMS algo-
rithm.
Impact of lane segments length. In order to verify the in-
fluence of lane segments length, we compare the result of
splitting the lane into 10m, 5m, 2m, and no split. The ex-
periment results show that not splitting lanes is worse than
splitting. Splitting with 5m intervals performs best, which
takes into account the fine-grained intention while keeps the
number of proposals from being too numerous.

Method Params
FDEk (m)

Inference Time
(ms)

k=1 k=6 n=1 n=4 n=8
LGCN 3.7M 2.96 1.08 43.0 179.1 356.2
Vnet 179K 3.30 - 3.6 15.0 29.4
TNT 269K 3.95 1.29 4.5 16.8 33.5
LTP
(Seq)

1.1M 2.81 1.07 11.4 45.2 92.0

LTP
(Para)

1.1M 2.91 1.11 11.4 11.9 12.6

Table 3. Model parameters and time consumption comparisons
with SOTA methods. LTP (Seq) stands for LTP with agent-centric
coordinate system and predicting each agent in sequence. LTP
(Para) stands for LTP with ego-centric coordinate system and pre-
dicting all agents in the scene in parallel. n stands for the number
of agents to be predicted in the same scene. The Vnet and TNT are
implemented by ourselves. The time data is tested with a GeForce
RTX 3080 graphics card with 10G memory.

Lane Attn NMS
Top-1 (m) Top-6 (m)

FDE ADE FDE ADE

entire

C-4 No

3.71 1.66 1.61 0.96
10m 3.03 1.38 1.30 0.87
5m 2.81 1.29 1.23 0.85
2m 2.91 1.34 1.25 0.86

5m
No

No
3.66 1.68 1.40 0.90

C-1 3.07 1.40 1.34 0.86
C-4 2.81 1.29 1.23 0.85

5m C-4
Fix 2.81 1.29 1.14 0.80

Adap 2.81 1.29 1.07 0.78

Table 4. Ablation on lane segments length, attention methods and
NMS policy. C-N stands for Cross-attention with N layers.

Impact of attention modules. Experiments show that
thanks to the concatenation of the lane segments embed-
ding and the agent embedding, the model can learn well
prediction results even without attention, especially in top-
6 metrics. It can also be seen that deeper attention layers
show greater potential, which demonstrates that the model
can learn more implicit interactions between the agents and
the map with a deeper network.
Impact of NMS policy. We compare the impact on top-6
results of the three methods of not using NMS, using a fixed
radius for NMS, and using our adaptive NMS. For the lat-
ter two methods, we manually adjust the thresholds and re-
port the best results. The results demonstrate that variance-
based NMS selects more representative trajectories from the
candidate trajectories cluster and significantly improves the
minFDE6 result.

4.4. Closed-loop Simulation

Vanilla Closed-loop inference. The trajectory prediction
problem is similar to the behavior cloning in imitation learn-
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Figure 5. Comparisons of LTP (upper) and VectorNet (lower) in closed-loop experiment. The leftmost figure is the test map, which is a part
of the Miami map. The red path is the path traversed by two methods from a global perspective. Brighter color represents higher speed.
The right figures show scenes where LTP can generate high-quality trajectories while VectorNet keeps entering the non-drivable area.

ing. A natural idea is whether the prediction model can
be used for trajectory planning. However, the distribution
drift [3] problem in imitation learning will cause the pre-
dicted trajectory to deviate from the lane self-reinforcingly.
Therefore, to complete a closed-loop map roaming, it is
necessary to have a deep understanding of the map instead
of simply following past trajectory trends.

To test the closed-loop planning ability of LTP, we give
a 2s initial trajectory from a random start point on the Mi-
ami map of Argoverse and let the LTP continuously predict
the next 3s utilizing its own predicted trajectory as input.
Fig 5 shows the comparisons of planning results from our
method and VectorNet in the future 300 seconds. In the ex-
periments, LTP can complete the closed-loop wandering in
the map with high quality, while the trajectories from Vec-
torNet keep entering the non-drivable area.
Cost volume optimization. We employ a cost volume opti-
mization method to further reduce the collision rate in dense
traffic. From the experiments in vanilla closed-loop infer-
ence, we find that LTP can complete safe roaming in empty
maps but has a weak awareness of avoiding obstacles. In-
spired by the previous works [1, 23], we accumulate the
multi-model predictions of the other vehicles into a cost vol-
ume. We also predict multi-model trajectories for the ego
vehicle as candidates and search for the best ego-vehicle
trajectory with the lowest cost in the cost volume.

We test the model in 1000 pieces of challenging driv-
ing logs logged from our internal dataset and compare the
collision rate for single frame and entire trip. The entire trip
consists of about 40 frames, and only the trip with all frames
that do not collide is a safe trip. The comparison results are
shown in Table 5 and the qualitative results are shown in
Fig 6. We can see that the cost volume generated from our
multi-model prediction greatly improves the obstacle avoid-
ance ability, which shows that LTP has great potential to be
applied to the simulation and closed-loop navigation.

SDV: 0s
Cost volume

3sPlanned trajectory:

Figure 6. Closed-loop simulation with cost volume in dense traffic.

Frame Collision
Rate (%)

Trip Collision
Rate (%)

Without cost volume 5.2 65.0
With cost volume 0.7 17.2

Table 5. Frame collision rate and trip collision rate of LTP.

5. Conclusions

We propose a lane-based trajectory prediction method
called LTP for multi-modal prediction. The proposed
method utilizes sliced lane segments to achieve accurate, in-
terpretable, and efficient trajectory prediction. We demon-
strate the effectiveness of the proposed LTP with experi-
ments on the Argoverse motion benchmark and our internal
dataset. In addition, we demonstrate the closed-loop plan-
ning capability of the proposed LTP, with reliable perfor-
mance in closed-loop simulation experiments.
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