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Abstract

Catastrophic forgetting (CF) frequently occurs when
learning with non-stationary data distribution. The CF issue
remains nearly unexplored and is more challenging when
meta-learning on a sequence of domains (datasets), called
sequential domain meta-learning (SDML). In this work, we
propose a simple yet effective learning to learn approach, i.e.,
meta optimizer, to mitigate the CF problem in SDML. We first
apply the proposed meta optimizer to the simplified setting of
SDML, domain-aware meta-learning, where the domain la-
bels and boundaries are known during the learning process.
We propose dynamically freezing the network and incorpo-
rating it with the proposed meta optimizer by considering the
domain nature during meta training. In addition, we extend
the meta optimizer to the more general setting of SDML,
domain-agnostic meta-learning, where domain labels and
boundaries are unknown during the learning process. We
propose a domain shift detection technique to capture latent
domain change and equip the meta optimizer with it to work
in this setting. The proposed meta optimizer is versatile and
can be easily integrated with several existing meta-learning
algorithms. Finally, we construct a challenging and large-
scale benchmark consisting of 10 heterogeneous domains
with a super long task sequence consisting of 100K tasks. We
perform extensive experiments on the proposed benchmark
for both settings and demonstrate the effectiveness of our
proposed method, outperforming current strong baselines by
a large margin.

1. Introduction
Catastrophic forgetting (CF) [47] frequently occurs when

learning with data distribution shift. The CF issue is largely
overlooked in the more challenging problem setting, i.e.,
meta-learning on a sequence of domains, where domain shift
occurs sequentially when the model meta-learns on a large
number of tasks and aims to generalize to the unseen tasks
from previous domains. This has significant implications for
real-world applications, for example:

• Robot learns on many visual recognition tasks, where each
task may consist of only a small number of labeled image
data. It may sequentially go through numerous environ-
ments as illustrated in Fig. 1. When adapting to a new
environment, the skills learned in previous environments
may be easily forgotten.

• For a personalized dialogue/recommendation system [44,
50], where learning the personal model for each user is
viewed as an individual task, the user base may shift over
time, e.g., the system is first deployed for Canadian users,
then the company extends its market to Europe. While
learning about European users, the system may quickly
forget previous Canadian users’ habits.
We generalize and formulate the above problem setting as

sequential domain meta-learning (SDML), where a model is
required to make proper decisions based on only a few train-
ing examples with the underlying environments/domains
constantly changing. Recent work reveals that catastrophic
forgetting often occurs when transferring a meta-learning
model to a new context [55, 79]. We expect that adjustments
to a new environment/domain should not erase the learned
knowledge from old ones. On the other hand, most existing
works of continual learning [58, 61] can only mitigate the
forgetting on a short sequence of (typically less than 50)
tasks. These continual learning methods are infeasible to be
directly applied in SDML with a super long task sequence
consisting of (at least) 100K tasks, which is our main focus.

We propose to learn a meta optimizer to mitigate the
catastrophic forgetting issue during the learning process. In-
tuitively, more important parameters for previous domains
should be updated more slowly to avoid forgetting and less
important parameters could be updated faster for efficient
learning of the current domain. To achieve this goal, we
store a small number of tasks in a memory buffer and cal-
culate the gradient of the meta loss for the memory tasks
with respect to the learnable learning rates at each iteration.

Figure 1. Demonstration of SDML learning scenario
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The gradient corresponds to the degree of catastrophic inter-
ference between current tasks and previous memory tasks.
The meta optimizer dynamically adjusts the learning rates
according to this gradient. Next, we apply the proposed
optimizer to the simplified setting of SDML, domain-aware
meta-learning, where the domain labels and boundaries are
known during the learning process. To incorporate the fact
of heterogeneous domain nature (where different domains
do not share categories) in SDML, we propose to dynami-
cally freeze the network and integrate it with the proposed
meta optimizer during meta training. In addition, we extend
the meta optimizer to the more general setting of SDML,
domain-agnostic meta-learning, where domain labels and
boundaries are unknown during the learning process. We
propose a domain shift detection technique to capture latent
domain change and equip the meta optimizer with it.

Most existing meta-learning benchmarks are designed for
the stationary setting and are not suitable for evaluating the
CF issue in SDML. To evaluate the proposed methods, we
construct a large-scale and challenging dataset consisting
of a sequence of 10 heterogeneous domains for the SDML
setting. We integrate the proposed methods with both rep-
resentative metric-based and gradient-based meta-learning
approaches. Results on both domain-aware and domain-
agnostic meta-learning demonstrate that our method signifi-
cantly outperforms related strong baselines by a large margin.
Our contributions can be summarized as the following:
• To our best knowledge, we are the first to tackle the CF

issue when learning on a super long task sequence of at
least 100K tasks with sequential domain shift.

• We propose a meta optimizer to address the catastrophic
forgetting issue of SDML, a more challenging problem
than existing continual learning methods trying to address.

• We apply the proposed meta optimizer to the domain-
aware and domain-agnostic meta-learning setting of
SDML. The proposed method is versatile and can be eas-
ily integrated into both metric-based and gradient-based
meta-learning approaches.

• To verify the effectiveness of the proposed method, we con-
struct a challenging and large-scale dataset consisting of
10 heterogeneous domains. Comprehensive experiments
demonstrate that our method outperforms related strong
baselines by a large margin.

2. Related Work

2.1. Continual Learning

Continual learning (CL) [3, 9, 14, 33, 43, 47, 58, 78] fo-
cuses on learning a sequence of tasks without forgetting
previous ones. CL merely sequentially learns on a small
number of tasks (typically less than 50 tasks) and aims to
generalize to the testing data from all the previous tasks.
Continual few-shot learning (CFSL) [8] is an application

of CL to few-shot learning, usually within a single domain,
and focuses on remembering previously learned few-shot
tasks when learning on the current one. The purpose of [8]
is to evaluate existing meta-learning methods under the con-
ditions of CFSL. SDML is significantly different from CL
and CFSL due to the high variability underlying a large num-
ber of dynamically formed few-shot tasks (more than 100K
tasks) with domain shift. Thus, it is infeasible for a CL or
CFSL model to remember so large number of tasks during
the learning process. In addition, CL can also be applied
on a sequence of datasets (domains) [63], however, whose
goal is to generalize to the testing data from all the previous
(small number of) tasks. By contrast, in SDML, the goal is
to generalize to the unseen tasks from all the previous do-
mains by training on a large number of tasks with significant
sequential domain shift, which makes our SDML distinct
from existing works.

Task/domain/class incremental learning [69] are three
common scenarios in task-aware CL. Later on, more general
cases of CL, i.e., task-free CL [4, 27, 52], focuses on the
case that task identities and boundaries are both unknown
during both training and testing. These learning scenarios
focus on task-level data distribution shifts, and each class
has a large amount of data. They aim to generalize to seen
task. In contrast, SDML focuses on: 1) task-level data shift;
2) domain-level task distribution shift; 3) few-shot learning
challenges. The goal is to generalize to unseen testing tasks.

Continuous domain adaptation [42] is a recent application
of continual learning to domain adaptation. The difference
discussion compared to SDML is presented in Appendix G.

2.2. Meta Learning

Most existing works of meta-learning [6, 19, 21, 29, 38,
65, 70, 75, 81] focus on stationary task distributions. In con-
trast, SDML focuses on non-stationary task distributions
with sequential domain shifts. Directly applying these meta-
learning methods to SDML would incur significant forget-
ting of previous knowledge without additional mechanisms.
Online meta-learning (OML) [22], assumes tasks arrive se-
quentially and aims to achieve better performance on future
tasks. SDML is fundamentally different from and more chal-
lenging than OML since OML ignores the CF issue during
meta-learning by storing the data from all the previous tasks
in memory in their small-scale problem setting. However,
we consider a more practical setting by storing a small num-
ber of tasks in memory in our large-scale setting. Jerfel et
al. [30] extend MAML and use Dirichlet process mixtures to
group similar training tasks together but cannot scale to our
large-scale setting. MOCA [26] focuses on meta-learning
in online learning, i.e., utilizing more context from previous
data to improve future sequential prediction;they are entirely
different from SDML. CAVIA [82] uses a separate context
vector for fast task adaptation, while SDML focuses on

7983



domain-level task distribution remembering and adaptation.
Continual meta-learning [1, 13, 54, 74] is to apply the

meta-learning techniques for continual learning. They either
depends on context switch [13], fixed-size state-vector [1],
or encoding the recent context by RNN [54]. These would
be highly insufficient to address the CF issue in our very
long task sequence.

Incremental few-shot learning (IFSL) [24, 55, 79] aims
to learn new categories while retaining knowledge on old
categories within a single domain and assumes unlimited
access to the base categories. SDML is substantially different
from IFSL. Detailed discussion is provided in Appendix G.

2.3. Learning Rate Adaptation

Dynamically updating the learning rates in meta-learning
is not new. Meta-SGD [41] learns per parameter learning
rates for MAML to accelerate the training process. Lee
and Choi [39] and flennerhag et al. [23] propose to learn
the gradient update rule for meta-learning. Similar to Meta-
SGD [41], Gupta et al. [25] apply meta-learning for task
parameters adaptation to mitigate forgetting in CL. Different
from these works, which operate on task parameters, our
work operates on domain level meta parameters.

3. Problem Setup
For SDML (Figure 1), we first provide some definitions.

Definition 1. non-stationary heterogeneous domains. A
sequence of domains, D1,D2, . . . ,DJ , arrive sequentially.
Each domain Di is represented as a labeled dataset
{(xk,yk)}Iik=1 with Ii labeled datapoints; where xk are
the datapoints and yk are the labels. All the domains
do not share class labels. D1,D2, . . . ,DJ are called non-
stationary heterogeneous domains.

Definition 2. non-stationary task sequence. From time 1 to
N1, we randomly sample mini-batch tasks Tt at each time t
from task distribution P (D1); from time N1 + 1 to N2, we
randomly sample mini-batch tasks Tt at each time t from task
distribution P (D2); from time Ni−1+1 to Ni, we randomly
sample mini-batch tasks Tt at each time t from task distribu-
tion P (Di), where P (Di) is the collection of a large number
of tasks in domain Di. This learning procedure continues un-
til domain DJ . The time steps {Ni, i = 1, 2, · · · , J −1} are
the time when domain shift happens. T1, · · · , Tt, · · · , TNJ

are called non-stationary task sequence.

The agent stays within each domain for a long time, i.e.,
|Ni −Ni−1| is a large number, to learn on a super long task
sequence. Each task T is divided into support set S (training
data, consisting of K data examples, {(xk,yk)}Kk=1 and
query set Q (testing data). Our goal is to online meta-learn a
model fθ for each arriving domain while not forgetting all
previous domains, where θ denotes the network parameters.

At the end of meta training, the performance is evaluated
on many unseen tasks sampled from P (D1), · · · , P (DJ),
respectively.

To this end, our framework allows allocating a small
memory buffer M to store a small number of training tasks
from previous domains. We maintain and update the mem-
ory with reservoir sampling (RS) [71], which assigns equal
probability for each incoming task of being stored in M. RS
works by maintaining a reservoir of size V to maintain a
maximal number of V tasks in memory. More details for
maintaining memory buffer is provided in Appendix B.

4. Learning to Mitigate Forgetting in SDML
To address the CF issue in SDML, we present the pro-

posed meta optimizer in section 4.1. In section 4.2, we
apply the meta optimizer to the simplified setting of SDML,
domain-aware meta-learning. In section 4.3, we apply
the meta optimizer to the more general setting of SDML,
domain-agnostic meta-learning.

4.1. Learning meta optimizer for SDML

Standard meta-learning methods, such as Prototypi-
cal Networks (PNet) [65] and MAML [21], are mostly
widely studied in meta-learning literature. Given the task-
specific data Tt = {S,Q}, the task-specific loss function
is Lθ(Tt) = P (Q|θ,S). They update the meta parameters
θ by learning on current task Tt, which we denote as the
update θ′ = θ − λ∂Lθ(Tt)

∂θ , where λ are the learning rates.
In standard meta training on a single domain (dataset)

in a stationary setting, the learning rates λ for the meta
parameters are usually set to be constant and equal for all
parameters during the training process. However, this would
incur significant forgetting of previous knowledge if meta-
learning on a sequence of domains in a non-stationary set-
ting. Therefore, we propose to adaptively and separately
adjust the learning rates for each meta parameter to balance
between remembering previous domains and learning the
current domain. Intuitively, more important parameters for
previous domains should be updated slower to avoid forget-
ting, and less important parameters could be updated faster
for efficient learning of the current domain. We store a small
number of tasks from previous domains in memory M to
meta-learn the importance, which equals the degree of inter-
ference between current tasks and memory tasks M. We first
define the concepts of transfer and catastrophic interference.

We propose a versatile framework that does not depend
on which specific meta-learning algorithm to be used. It
can be integrated into these standard meta-learning methods
to mitigate the CF problem by dynamically adjusting the
learning rates λ for the meta parameters. ∇i

θ = ∂Lθ(Ti)
∂θ

denotes the gradient of Lθ(Ti) with respect to meta parame-
ters. ∇i

θ ·∇
j
θ = ∂Lθ(Ti)

∂θ · ∂Lθ(Tj)
∂θ is the dot product between

a pair of task gradients. For any pair of tasks Ti and Tj ,
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catastrophic interference occurs between tasks Ti and Tj if
∇i

θ · ∇j
θ < 0; transfer occurs between tasks Ti and Tj if

∇i
θ · ∇j

θ > 0. The concepts of catastrophic interference
and transfer are used for explaining why the proposed meta
optimizer can mitigate the CF issue in SDML. Our idea for
mitigating the CF in SDML is to use memory task loss as sig-
nal guidance for learning rate adjustment. The objective for
training the model to avoid catastrophic forgetting becomes

min
θ

[F(θ) = E
T ∈M

Lθ′(T )],whereθ′ = θ − λ
∂Lθ(Tt)

∂θ
,

where θ′ are the updated parameters by standard meta train-
ing on tasks Tt with gradient descent and λ are the learnable
learning rates. F(θ) is the meta loss which optimizes the
generalization on memory tasks M. The derivative of F(θ)
with respect to the learning rates λ (by chain rule) is

∂F(θ)
∂λ

=
∂F(θ)
∂θ′

∂θ′

∂λ
= −∂F(θ)

∂θ′ ·
∂Lθ(Tt)

∂θ
. (1)

Based on above estimated gradient for λ, the learning rates
λ are updated as:

λ = λ− η
∂F(θ)
∂λ

. (2)

Algorithm 1 Meta Optimizer for SDML.

1: REQUIRE: A sequence of mini-batch train-
ing tasks {T1, . . . , TN1 ; . . . ; TNi+1, . . . , TNi+1 ;
. . . ; TNJ−1+1, . . . , TNJ }; where {Ni, i = 1, 2, · · · , J − 1}
are the time steps when domain shift happens; Initialize
learning rates λ0 and model parameters θ; η is step size for
updating learning rate.

2: for t = 1 to NJ do
3: update parameters θt by meta training on Tt

θt+1 = θt − λt
∂Lθt

(Tt)

∂θt

4: λt+1 = λt − η ∂F(θt)
∂λt

5: Reservoir sampling to update task memoryM←M∪ Tt
if decided to store the task Tt

6: end for

On the RHS (right hand side) of Eq. (1), ∂F(θ)
∂θ′ is the

meta gradient on memory tasks and ∂Lθ(Tt)
∂θ is current task

gradient. In other words, ∂F(θ)
∂λ reflects the catastrophic in-

terference (or transfer) between current task and memory
tasks. If ∂F(θ)

∂θ′ aligns with ∂Lθ(Tt)
∂θ (dot product is positive,

i.e., transfer occurs), ∂F(θ)
∂λ is then negative and learning

rates are increased in Eq. (2); otherwise, catastrophic in-
terference occurs and learning rates are decreased. Eq. (2)
adaptively mitigate catastrophic forgetting by encouraging
less catastrophic interference between current task and pre-
vious memory tasks. On the other hand, our method can be
interpreted as approximately optimizing the following objec-
tive by adding additional gradient dot product regularization:

min
θ

[
Lθ(Tt)+ E

Tj∼M
Lθ(Tj)−ρ E

Tj∼M
(∇t

θ · ∇j
θ)

]
(3)

where j is the task index in memory buffer M and ρ weighs
the relative importance of the dot product term. Adaptive
learning rate optimizes the third regularization term. Maxi-
mizing this term encourages parameter updates towards di-
rections where task gradient directions align between current
task gradient and memory task gradients. More discussion
of this interpretation is provided in Appendix D.

Below, we apply the proposed meta optimizer to domain-
aware and domain-agnostic settings on the network illus-
trated in Fig. 2(a) and 2(b). We assume all domains share
the same CNN-based structure for feature extraction, while
the model also has the flexibility to expand a small subnet
on top of domain-shared layers for newly arriving domains
as a domain-specific unit. When training on the domain Di,
only the domain-shared layers and subnet i are used for meta
training; other subnets 1, 2, · · · , i− 1 are fixed to avoid for-
getting of previous domain knowledge. The meta optimizer
for mitigating CF in SDML is described in Algorithm 1 and
the testing algorithm is provided in Appendix F.

Remark The proposed dynamic architecture shares some
similarity with existing methods, e.g., PNN [60], DEN [78],
PathNet [20] and PDEN [40]. PNN duplicates the net-
work for each domain and grows the number of parameters
quadratically. DEN expands network in neuron level. Path-
Net needs a pre-defined set of modules to learn the paths.
PDEN uses a similar network as ours but aims to improve
domain generalization. By contrast, ours share and fix a
common backbone across different domains, thus signifi-
cantly reducing the number of parameters and does not need
pre-defined modules.

Gradient dot product information has been applied on
various machine learning problem, including domain gen-
eralization [46, 64], multi-task learning [80] and continual
learning [58]. These methods use gradient product/projec-
tion to adjust parameters for multi-task and domain general-
ization. In contrast, our method uses task gradient instead
of data gradient. We use gradient product to adjust learning
rate to mitigate forgetting in SDML.

4.2. Meta-optimizer for domain-aware setting

In this section, we consider a simplified setting of SDML,
domain-aware meta-learning, where the domain identity as-
sociated with each task is known. Also, the time steps when
domain shift happens {Ni, i = 1, 2, · · · , J − 1} are known
during meta training. Although directly applying the pro-
posed meta optimizer in this setup can mitigate forgetting, it
largely neglects the domain difficulty, which varies across
different domains during meta training. For example, in
SDML, suppose a complex domain comes first, followed by
a simple and very dissimilar domain; much fewer iterations
on the second domain is then sufficient to achieve near-best
performance. The issue is that continuous training on the
second domain could gradually lose the knowledge on previ-
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(a) domain-aware setting model architecture

(b) domain-agnostic setting model architecture

Figure 2. Model Architecture Overview

ous domains since they share a common network structure as
in Fig. 2(a). However, if we freeze the domain-shared part
at some proper time, the knowledge forgetting on previous
domains could be largely mitigated. This mechanism is es-
pecially beneficial when training on long domain sequences.
We propose an online adaptive freeze mechanism on top of
the meta optimizer to ensure a trade-off between obtaining
decent performance on the current domain and preventing
forgetting on previous domains.

We approximate the true posterior distribution
P (θ|{Tt,M}) with approximated posterior distribution
q(θ) by minθ KL(q(θ)|P (θ|{Tt,M})). The variational
lower bound (ELBO) can be estimated as:

logP ({Tt,M})≥− E
Tj∈M

Eq(θ)Lθ(Tj)−Eq(θ)Lθ(Tt)+H(q(θ))

= ELBO(θ),

where H(q(θ)) = −Eq(θ) log q(θ) is Shannon entropy of
q(θ). On the RHS, the first term corresponds to the likeli-
hood of memory tasks (measuring the forgetting on previous
domains), the second term corresponds to the likelihood of
current tasks, and H(q(θ)) measures the convergence and
uncertainty of q(θ) on current domain. H(q(θ)) will gener-
ally decrease with gradual convergence. It encourages the
posterior over θ to have wider support and avoids fitting to
current domain too much. H(q(θ)) generally does not have
closed-form, and is approximated with Gaussian mean-field
for simplicity. With mean µ and standard deviation σ, the
entropy of Gaussian is log(σ

√
2πe).

Therefore, this ELBO reflects the trade-off between for-
getting on previous domains and fitting on the current do-
main. argmaxθ ELBO(θ) corresponds to reasonable freeze
point. When combining with the proposed meta optimizer,
the network is frozen when the ELBO does not increase for
a fixed number of iterations. Interestingly, our proposed
method does not need any hold-out validation set, which
is desirable for our setting. Our online ELBO calculation
method within finite time interval is shown in Appendix F.

4.3. Meta-optimizer for domain-agnostic setting

In this section, we extend the proposed meta optimizer to
the more general setting of SDML, domain-agnostic meta-
learning, i.e., the time steps when domain shift happens
{Ni, i = 1, 2, · · · , J−1} are unknown during meta training.
The domain-aware setting is relatively straightforward as we
know when the new domain comes and the domain identity
associated with each task. We thus know when to add the
small subnet for the new arriving domain as shown in Figure
2(a). By contrast, in the domain-agnostic setting, when the
domain shift happens is completely unknown, thus when
to expand the network and add subnet is unknown. Our
idea is that if we equip the meta optimizer with a domain
shift detection component and a domain shift is detected,
a small subnet will be added on top of the domain-shared
layers, as shown in Fig. 2(b). This offers necessary flexibility
in the net with the potential to learn a varying number of
domains instead of fixing the network in advance. However,
domain shift detection is a rather challenging problem due to
(1) the highly volatile nature of few-shot tasks; (2) varying
degrees of similarity across different domains. Thus, simply
setting a threshold on the loss value to detect domain shift
does not work well in our preliminary study. To solve this
problem, we construct a latent space and enable Bayesian
online changepoint detection (BOCPD) [2] to operate on it
for effective domain shift detection.

Latent space. The few-shot task Tt arriving at time t
are converted to a task embedding et = fθt(S), (also
could be fθt(Q)). Suppose S consisting of K data ex-
amples, {(xk,yk)}Kk=1, they are then embedded by et =
fθt

({xk}Kk=1). A series of moving average embedding Et is
computed in the form of Et = αet+(1−α)Et−1 to reduce
the variance across different few-shot tasks, the constant
α is the smoothing factor which weighs the relative impor-
tance of current task embedding and past moving average.
We keep track of the past m steps Et−1,Et−2, · · · ,Et−m

and utilize them to form the distance metric vector dt =
(d(et,Et−1), d(et,Et−2), · · · , d(et,Et−m))), which en-
codes the generalized domain information spanning across
previous tasks. Each element d(et,Et−i) denotes the Eu-
clidean distance from current task embedding et to the mov-
ing average of i steps ago, Et−i.

Domain shift detection. We then use the constructed
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latent space dt for domain shift detection since the latent
space captures the abrupt changes at the time when domain
shift happens. We denote Zt (Z0 = 0) as the latent domain
label at time t and d1:t as all the latent space vector from
t = 1 until time t. BOCPD is originally designed for de-
tecting the abrupt changes (changepoints) in data stream in
online setting. It estimates the posterior distribution over
run lengths lt, which are the number of time steps since the
last time of domain shift. lt = 0 corresponds to the case
that domain shift happens, and lt = τ > 0 indicates the
continuation of current domain and past τ batches (steps) of
tasks all belong to current domain. Our goal is to estimate
the posterior of lt given d1:t, i.e., P (lt|d1:t), which can be
efficiently computed by using the recursive relation of run
length posterior:

P (lt|d1:t) ∝
∑
lt−1

P (lt|lt−1)︸ ︷︷ ︸
prior

P (dt|lt−1,d1:t−1)︸ ︷︷ ︸
UPM

P (lt−1,d1:t−1).

(4)

The underlying predictive model (UPM) is modeled as ex-
ponential family. The changepoint prior is defined as:

P (lt|lt−1)=

{
U(lt−1 + 1), lt=0

1− U(lt−1 + 1), lt= lt−1 + 1

where the first case is the probability of domain shift, the
second case corresponds to the probability that domain shift
does not occur, i.e., the current domain continues. U(�) is
constant function.

Plugging the defined prior and UPM into Eq. (4), lt
is inferred from P (lt|d1:t). There are two cases: (1) if
lt = 0, a domain shift happens at time t and a small subnet
is appended to the domain-shared layer; the latent domain
label is updated as Zt+1 = Zt + 1. (2) lt = lt−1 + 1,
there is no domain shift; the latent domain label and network
keep unchanged. We also store the average of all the task
embedding in one domain as Eq, which is used for domain
identity inference during meta testing.

Meta testing. During meta testing, the domain identity
is unknown for each testing task, thus we need to infer the
domain identity to choose which subnet to use for testing.
The domain inference of an unseen task T is performed
by (1) feeding task data T into the domain-shared layers
first, then feeding through each subnet 1, 2. · · · , Z to ob-
tain the task embedding eq, q = 1, 2. · · · , Z, as shown in
Figure 2(b); (2) inferring the domain identity with qo =
argminq∈{1,...,Z} d(eq, Eq); (3) evaluating the performance
on T with the subnet qo.

The meta training algorithm is shown in Algorithm 2
and the testing algorithm is provided in Appendix F. For
Algorithm 2, line 3-4 is the proposed meta optimizer for
mitigating CF, and line 5-15 is used for detecting domain
shift in the task stream. Specifically, line 5-7 is used for
calculating the latent space dt, line 8-9 detect domain shift
in latent space, line 10-14 is for updating the latent domain
label and expand the network with subnet accordingly.

Algorithm 2 Domain-agnostic meta training.

1: REQUIRE: A sequence of mini-batch train-
ing tasks {T1, . . . , TN1 ; . . . ; TNi+1, . . . , TNi+1 ;
. . . ; TNJ−1+1, . . . , TNJ }; the time steps when domain
shift happens {Ni, i = 1, 2, · · · , J − 1} are unknown; initial
learning rates λ; size of moving window m; latent domain
label initialized with Z0 = 0; initialize moving average
E0 = 0; E0 = 0; η is step size for update the learning rate;
weight of moving average α; memory bufferM = {}

2: for t = 1 to NJ do
3: tasks Tt arrive, θt+1 = θt − λt

∂Lθt
(Tt)

∂θt

4: λt+1 = λt − η ∂F(θt)
∂λt

5: calculate the task embedding et of Tt using fθt

6: calculate moving average of et as Et = αet+(1−α)Et−1

7: calculate dt

8: calculate P (lt|d1:t) via Eq. (4)
9: lc = argmax

lt

P (lt|d1:t)

10: if lc = 0 then
11: ELt = Et

12: Zt+1 = Zt + 1
13: add new small subnet to domain-shared part
14: end if
15: update parameters of UPM
16: Reservoir sampling to update task memoryM←M∪ Tj

if decided to store the task
17: end for

5. Experiments

In this section, we evaluate the efficacy of the proposed
meta optimizer by applying it to solve the CF issue in SDML,
in both the domain-aware and domain-agnostic settings. Our
method is versatile and can be seamlessly integrated with
existing meta-learning methods to mitigate the CF issue. For
illustration, we evaluate the meta optimizer on current most
widely used meta-learning models including ANIL [51]
and Prototypical Network (PNet) [65]. The former is a
simplified version of MAML. Below, we construct a new
benchmark to simulate the domain shift in SDML.

Benchmark with 100K tasks construction. We con-
struct a large-scale benchmark and collect 10 datasets with
varying degree of similarity and difficulty, with default do-
main arrival order of Quickdraw [31], AIRCRAFT [45],
CUB [77], Miniimagenet [70], Omniglot [35], Plantae [28],
Electronic from Logo-2K+ [73], CIFARFS [10], Fungi [62],
Necessities from Logo-2K+ [73]. We also provide detailed
analysis by varying the domain order of the 10 datasets, and
results are shown in Appendix C.

Each dataset is divided into meta-training, meta-
validation and meta-testing classes subset. The subsets for
each dataset are disjoint, e.g., the meta-testing classes are
not seen during meta-training. More details about datasets
and split are available in Appendix A. The non-stationary
episodes construction are described in Section 3, the meta
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training episodes are sampled from the meta training classes
of each dataset. The meta testing episodes are sampled from
the meta testing classes to form the unseen testing tasks. We
randomly sample 10K tasks from each dataset, with a total
of 100K training tasks. We can sample more tasks, e.g.,
20K tasks, from each dataset, thus more training iterations
on each dataset; SDML becomes more challenging for 20K
tasks each dataset than 10K tasks each dataset, and there will
be more forgetting but with longer training time. The meta-
learning model is required to sequentially meta-learn on one
sequence of datasets without forgetting previous knowledge.
We compare to different methods on 5-way 1-shot and 5-
shot learning. More implementation details are given in
Appendix B. The dataset and code are available at https:
//github.com/joey-wang123/SDML.git.

5.1. Experiments on domain-aware setting

CL baselines. For domain-aware case, we combine the
above meta-learning base models with related strong CL
baselines, including Elastic Weight Consolidation (EWC)
[33], Hard Attention Mask (HAT) [63]), UCB [18], A-GEM
[14], Experience Replay (Reservoir Sampling (RS)) [15],
Meta Experience Replay (MER) [58], DEGCL [12] and
GPM [61]. These baselines are originally developed for
standard continual learning which operates on a small-scale
task sequence. It is thus infeasible to directly apply these CL
baselines for each task in the large-scale setting of SDML
with a super long task sequence. We then instead extend
these methods to SDML by making these CL baselines op-
erate on the meta parameters. For convenience, we denote
these combination methods by prefixing with PNet- and
ANIL-, such as PNet-EWC, ANIL-EWC, etc. We also in-
clude (i) Joint training, which learns all the domains jointly
in a multi-domain meta-learning setting and provides the per-
formance upper bound; and (ii) Sequential training, which
trains on each domain sequentially without any external
memory and provides the degree of model forgetting.

Figure 3. 5-way 5-shot meta testing performance varies with differ-
ent number of training domains.

Evaluation metrics. ACC (accuracy) is defined as the av-
erage testing accuracy of many unseen episodes sampled

Table 1. Domain-aware SDML results (PNet-based methods)

5-way 5-shot
Algorithm ACC BWT

PNet-Sequential 46.83± 0.10 −22.95± 0.12
PNet-EWC 49.88± 0.15 −14.51± 0.14
PNet-HAT 50.25± 0.26 −16.32± 0.28
PNet-UCB 49.06± 0.22 −15.83± 0.20
PNet-A-GEM 49.21± 0.31 −20.01± 0.39
PNet-RS 49.56± 0.18 −18.87± 0.19
PNet-MER 50.38± 0.24 −15.10± 0.24
PNet-DEGCL 50.79± 0.37 −13.82± 0.45
PNet-GPM 49.73± 0.51 −14.91± 0.58
Ours 55.28± 0.19 −11.15± 0.27

Joint-training 66.32± 0.18 N/A

Table 2. Domain-aware SDML results (ANIL-based methods)

5-way 5-shot
Algorithm ACC BWT

ANIL-Sequential 45.85± 0.46 −23.47± 0.43
ANIL-EWC 45.45± 0.29 −21.99± 0.34
ANIL-HAT 40.58± 0.19 −28.89± 0.24
ANIL-UCB 47.21± 0.28 −20.18± 0.22
ANIL-A-GEM 48.08± 0.33 −20.30± 0.35
ANIL-RS 46.97± 0.27 −21.37± 0.33
ANIL-MER 47.96± 0.52 −19.25± 0.50
ANIL-DEGCL 47.91± 0.45 −18.57± 0.53
ANIL-GPM 47.73± 0.53 −19.76± 0.46
Ours 51.56± 0.21 −16.07± 0.20

Joint-training 68.16± 0.11 N/A

from the meta testing classes of all the datasets. BWT
(backward transfer) measures the amount of positive back-
ward transfer or catastrophic forgetting on all the previous
datasets evaluated at the end of meta training. Formally,
ACC and BWT are defined as ACC = 1

N

∑N
i=1 aN,i and

BWT = 1
N−1

∑N−1
i=1 aN,i − ai,i, respectively; where aj,i

is defined as the average testing accuracy of many unseen
episodes sampled from the meta testing subset of dataset i
after meta training on dataset j. BWT is negative indicates
catastrophic forgetting of the previous domains when meta-
learning on the new domain. BWT is positive indicates that
learning on the new domain will improve the performance
of the previous domains. Thus, the larger, the better.

Comparisons to baselines. Table 1 and 2 show the 5-way
5-shot learning results. Results of 5-way 1-shot classifica-
tion are shown in Appendix C. We observe that our method
significantly outperforms best performing baselines ranging
from 3.2 % to 4.5 % for both PNet-based and ANIL-based
approaches, demonstrating the effectiveness of the proposed
mechanism. This performance improvement is attributed to
two factors: (1) the adaptive meta optimizer to adaptively
mitigate forgetting of previous domains; (2) online adap-
tive freeze mechanism, which properly trade-off between
retraining the knowledge of previous domains and effectively
learning on current domain.

How the performance changes with different number
of training domains. Figure 3 shows how the average meta

7988



testing accuracy changes with a different number of training
domains for 5-way 5-shot learning. The accuracy is eval-
uated at the end of training on each dataset in the dataset
sequence. We find that the proposed method outperforms
comparison baselines in most cases, especially when the
domain sequence becomes longer.

5.2. Experiments on domain-agnostic setting

Since adapting most of the above CL methods to the
domain-agnostic setting needs the domain identity associ-
ated with each task during meta training and testing. In con-
trast, for the domain-agnostic setting, the domain identity is
unavailable during both training and testing. Thus, the com-
pared baselines include: (1) Experience Replay (reservoir
sampling (RS)) [15]; (2) A-GEM [14]; (3) Gradient-based
Sample Selection (GSS) [5]. Note that GSS is originally
developed for online continual learning to promote the diver-
sity of stored examples. We adapt it to SDML by replacing
data gradient with task gradient to encourage the diversity of
stored tasks in memory. Results for domain-agnostic setting
are shown in Table 3 and 4. Our method achieves substantial
improvement ranging from 3.0 % to 5.1% compared to other
models for PNet and ANIL-based methods.

Table 3. Domain-agnostic SDML results (PNet-based methods)

5-way 5-shot
Algorithm ACC BWT

PNet-Sequential 46.83± 0.10 −22.95± 0.12
PNet-RS 49.56± 0.18 −18.87± 0.19
PNet-A-GEM 49.21± 0.31 −20.01± 0.39
PNet-GSS 49.64± 0.27 −18.29± 0.31
Ours 54.67± 0.20 −11.67± 0.28

Joint-training 66.32± 0.18 N/A

Table 4. Domain-agnostic SDML results (ANIL-based methods)

5-way 5-shot
Algorithm ACC BWT

ANIL-Sequential 45.85± 0.46 −23.47± 0.43
ANIL-RS 46.97± 0.27 −21.37± 0.33
ANIL-A-GEM 48.08± 0.33 −20.30± 0.35
ANIL-GSS 47.96± 0.42 −20.91± 0.42
Ours 51.18± 0.31 −16.85± 0.29

Joint-training 68.16± 0.11 N/A

Latent space independence analysis for BOCPD. Since
BOCPD assumes the data before and after the changepoints
are independent, we analyze and evaluate the correlation (in-
dependence) before and after the domain shift with maximal
information coefficient (MIC) [56] and total information co-
efficient (TIC) [57]. These two metrics are based on mutual
information and can test the nonlinear dependency between
two random variables. We put the evaluation results in Ap-
pendix C.3 and further verify that the contexts before and
after the domain shift are more independent with our pro-
posed latent space dt than the raw task embedding et.

Domain shift detection accuracy. We perform analysis
for performance of domain shift detection in Appendix C,
and the method can accurately detect the domain shift.

5.3. More results

Compared with continual meta-learning [1, 13, 54].
The goal of continual meta-learning [1, 13, 54] is to mitigate
catastrophic forgetting during meta training. Althogh [1,
13, 54] do not target for SDML, to show the effectiveness
of our method, we compare to the state-of-art continual
meta-learning methods, including Continual-MAML [13],
MOML [1] and CPM [54]. The results are shown in Table 5.

Our method substantially outperforms these baselines.
We believe that CPM uses the most recent context by RNN to
remember some past knowledge. The RNN can only handle
short-term remembering but cannot handle the forgetting
issue in a very long-term context in SDML. MOML only
focuses on a small number of tasks within a single domain
by encoding previous task instances with a fixed-size state
vector. However, this vector is insufficient for remembering
past knowledge in SDML with a much larger number of
tasks and sequential domain shift. Thus, these baselines do
not perform well in SDML.

Table 5. comparisons to continual meta-learning

5-Way 1-Shot 5-Way 5-Shot
Algorithm ACC ACC

MOML 34.57± 1.16 47.29± 0.73
CPM 33.41± 1.05 48.72± 0.81
Continual-MAML 36.36± 1.12 49.81± 0.89
Ours 40.23± 0.32 55.28± 0.19

Ablation study and analysis. These include: 1) effec-
tiveness of each component; 2) effect of different domain
order; 3) effect of different hyperparameters, etc. Due to
limited space, detailed results are placed in Appendix C.

Limitations Discussion. Our current memory buffer
update only relies on random sampling without considering
the informativeness of each incoming task. Future work
includes online selecting the most informative coreset [49]
from the online task stream.

6. Conclusion
In this work, we perform extensive studies on the chal-

lenging problem of SDML. We propose a meta optimizer
to dynamically adjust the learning rate to avoid forgetting
during the learning process in SDML. We adapt the meta
optimizer to both domain-aware setting and domain-agnostic
setting. Experiments on real-word datasets show that our
proposed method significantly outperforms related strong
baselines by integrating the proposed methods with PNet
and MAML. Future work includes designing methods for
mitigating the CF issues in SDML without memory buffer.
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