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Abstract

Deep learning-based image salient object detection
(SOD) heavily relies on large-scale training data with pixel-
wise labeling. High-quality labels involve intensive labor
and are expensive to acquire. In this paper, we propose a
novel multi-source uncertainty mining method to facilitate
unsupervised deep learning from multiple noisy labels gen-
erated by traditional handcrafted SOD methods. We design
an Uncertainty Mining Network (UMNet) which consists of
multiple Merge-and-Split (MS) modules to recursively ana-
lyze the commonality and difference among multiple noisy
labels and infer pixel-wise uncertainty map for each label.
Meanwhile, we model the noisy labels using Gibbs distri-
bution and propose a weighted uncertainty loss to jointly
train the UMNet with the SOD network. As a consequence,
our UMNet can adaptively select reliable labels for SOD
network learning. Extensive experiments on benchmark
datasets demonstrate that our method not only outperforms
existing unsupervised methods, but also is on par with fully-
supervised state-of-the-art models.

1. Introduction
Image salient object detection (SOD) aims at identifying

and segmenting the most prominent object in a scene. Ex-
isting SOD methods can be mainly divided into two cate-
gories, i.e., convolutional neural network (CNN) based and
traditional handcrafted methods. Both of them have their
unique pros and cons. On the one hand, driven by the strong
model capacity of deep networks, CNN based SOD meth-
ods have achieved remarkable success. However, they heav-
ily rely on large amounts of training data with pixel-wise
annotations, which are labor-intensive and expensive to ac-
quire. On the other hand, handcrafted SOD methods are
more flexible to the data annotations, but they are fragile in
practice due to the limitations of manually designed image
features and priors.

With the above concern, one research topic termed deep
unsupervised SOD [20,38,40,43] has been activated, which
focuses on training the deep SOD networks using the noisy
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(a) Image (b) Four pseudo labels generated by traditional methods

(c) Saliency GT (d) Uncertainty GTs of the above four pseudo labels

(e) Saliency prediction (f) Our predicted uncertainty maps

Figure 1. Motivation. Given an input image (a) and its correspond-
ing four pseudo labels generated by the traditional SOD methods
(b), our UMNet predicts the uncertainty maps (f) of the pseudo
labels, according to which our SODNet is learned under the su-
pervision of the reliable labeling samples and generates promising
saliency result (e). The ground truths of uncertainty maps (d) are
obtained by the computing the difference between each pseudo la-
bel in (b) with the saliency ground truth (c), which are not available
under the unsupervised learning setting.

pseudo labels generated by traditional handcrafted SOD
methods. Directly training networks using the noisy la-
bels is not a wise choice since the deep network can eas-
ily fit to the corrupted labels [37]. One straightforward so-
lution is first performing label refinement and then using
the refined labels for network training [20]. Another pop-
ular line [38, 40, 43] devotes to modeling the noise of the
pseudo labels. For instance, the work of [43] assumes that
the label noise obeys a Gaussian distribution and builds a
noise modeling module to fit such distribution. Zhang et
al. [40] compute a dense confidence map based on the vari-
ance of network predictions among different training iter-
ations. While promising results have been delivered, it is
still an open problem to model the noisy labels and find the
reliable ones in an unsupervised learning manner.

In this paper, we establish a novel deep unsupervised
SOD framework for effectively mining the reliable pixel-
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wise labels from multiple pseudo labels. As shown in Fig-
ure 1 (b), different handcrafted methods perform diversely
for the same input image since they follow different manu-
ally designed principles. Nevertheless, each of the pseudo
labels contains some reliable label samples (cf . the dark
region of Figure 1 (d)). Accurately identifying these reli-
able/certain samples is troublesome when only observing
single pseudo label without any other reference. Alterna-
tively, it becomes much feasible if we simultaneously em-
ploy multiple labels of the same image for cross reference.
Based on this insight, we design a novel Uncertainty Min-
ing Network (UMNet) to densely capture the soft uncer-
tainty from multi-source pseudo labels. It consists of mul-
tiple Merge-and-Split (MS) modules and infers the pixel-
wise uncertainty map for each label by recursively analyz-
ing the commonality and difference among multiple noisy
labels. According to the predicted uncertainty by the UM-
Net, the Salient Object Detection Network (SODNet) can
be learned using the reliable label samples.

For network training, another concern is encountered.
Considering that the ground truth of uncertainty is not avail-
able under the unsupervised setting, it may lead to a triv-
ial solution for the UMNet optimization, e.g., all the labels
are uncertain. We attack this issue by modeling the noisy
labels using Gibbs distribution under the Bayesian frame-
work and developing an uncertainty weighted loss function
for end-to-end training UMNet with SODNet. As a con-
sequence, our UMNet is able to effectively identify the re-
liable pseudo labels while softly filtering out those of low
qualities. The selected reliable pseudo labels are employed
to provide supervision on SODNet, leading to more supe-
rior performance.

The contributions of this work can be summarized into
three folds as follows.

(1) We develop a novel deep unsupervised SOD
paradigm which automatically learns to mine the reliable
labels from noisy pseudo ones of multiple sources, leading
to more effective unsupervised learning.

(2) We present a Merge-and-Split module that helps the
uncertainty mining network to effectively capture the per-
pixel reliability of the pseudo labels by simultaneously an-
alyzing the commonality and difference of multi-source
noisy labels.

(3) We propose an uncertainty weighted loss function
that models the noisy labels as Gibbs distribution in a princi-
pled way, allowing the whole networks to be jointly trained
in an elegant manner without uncertainty annotations.

Experiments on popular SOD benchmark datasets show
that the proposed method can effectively facilitate the SOD
network learning with noisy labels and achieves the state-
of-the-art performance.

2. Related Works
2.1. Fully-supervised SOD

With the development of deep learning technique and
SOD benchmark datasets [16, 27, 35], it has achieved great
evolution in the SOD research community [23,30,33]. Early
works [11], [26] utilize multi-layer perception (MLP) clas-
sifiers to detect salient regions patch by patch, which fail
to effectively capture spatial information of images and are
also time-consuming. Later on, FCN-based methods such
as [17, 21, 24, 28, 45] are dominant in this field, achieving
more competitive performance in terms of both accuracy
and speed. However, the fully-supervised SOD methods
mainly depend on large-scale pixel-level labeled training
data, which are expensive to obtain in practice.

2.2. Semi-/Weakly- supervised SOD

To relieve the burden of handcrafted labeling, re-
searchers explore to learn the SOD networks by using
some weak supervisions, such as image-level category la-
bels [27], scribbles [41], image captions [36], etc. For in-
stance, Wang et al. [27] design a foreground inference net-
work to capture the potential salient regions by learning the
image-level category prediction task. The work of [41] in-
troduces an auxiliary edge detection task to learn salient ob-
ject detection using scribble annotations, which only costs
no more than 2 seconds to label an image. Li et al. [15]
propose to integrate a new branch with a well-trained con-
tour detection network to estimate saliency score for each
pixel. In [36], a unified framework is developed to train
saliency detection models with both category labels and im-
age captions. Besides, inspired by the self-paced learning
technique, [39] designs an adversarial-paced learning based
framework to learn SOD task using only a few pixel-level
training labels, which can be seen as semi-supervised SOD
task. While promising performance has been achieved,
these works are still reliant to annotations.

2.3. Unsupervised SOD

Traditional SOD works [8], [22], [31], [35] can be classi-
fied as unsupervised learning methods relying on manually
designed image features and data priors. While being free
from data annotations, the generalization ability of these
methods is limited in especially complex situations. Re-
cently, unsupervised SOD has been promoted by employ-
ing deep neural networks, where the SOD network is super-
vised with the noisy labels that are generated by using the
handcrafted methods. The earliest effort is made by [38],
which proposes a “supervision by fusion” (SBF) strategy
that generates reliable supervisory labels by the fusion pro-
cess of handcrafted SOD models in iterative learning stages.
The work of [43] introduces a noise modeling module with
a strong assumption that the label noise obeys a Gaussian
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Figure 2. Overview of the proposed deep unsupervised SOD framework. Given the input image and M noisy pseudo labels, the salient
object detection network (top) predicts the two-channel saliency score map including the salient foreground and background. Meanwhile,
the uncertainty mining network (bottom) containing multiple merge-and-split modules takes M pseudo labels and multi-stage image
features as input, and produces M dense uncertainty maps. The whole networks are jointly trained under the supervision of the uncertainty
weighted loss. In practice, we adopt four handcrafted SOD methods to generate the pseudo labels, i.e. M = 4. At inference, only the
trained SOD network is employed for saliency prediction.

distribution. Zhang et al. [40] propose to select the reliable
labels by computing a dense confidence map, which is used
to reweight the cost function per-pixel. The current leading
method [20] first refines the noisy labels in multiple iter-
ations by using moving average and fully-connected CRF,
and then trains the SOD network directly using all the re-
fined labels. While delivering favorable SOD results, it is
not an optimal solution to use all the refined labels with-
out any selection since there still exists much of noise. Al-
though the prior works [38, 40, 43] have devoted to model-
ing the label noise or computing the label confidence, it in-
volves dedicated assumptions and manual designs. In con-
trast, in this work, we mine the reliable labels via the un-
certainty mining network (UMNet) integrating our merge-
and-split modules, and train the whole networks in the data-
driven manner, which help UMNet to produce more robust
uncertainty predictions and further facilitate the SOD task.

3. Method

This work focuses on learning deep SOD network with-
out the annotated ground truth. One potential way is di-
rectly using the pseudo labels generated by the traditional
handcrafted SOD methods as supervision. However, as
shown in Figure 1 (b), these pseudo labels contain large
amounts of noise with strong inconsistency, which could
inevitably hinder the network learning and degrade the fi-
nal SOD performance. To circumvent this issue, we resort
to evaluate the reliability of each label pixel by learning a
dense uncertainty map for each given label, upon which the

SOD network is supervised.
The proposed framework is depicted in Figure 2, which

consists of a Salient Object Detection Network (SODNet)
and a Multi-source Uncertainty Mining Network (UMNet).
Given an input image I, we first obtain M pseudo labels
{Ym}Mm=1 using M different handcrafted SOD methods.
Inspired by [20], all the pseudo labels are separately refined
using the first stage of method [20] to improve their qual-
ity. SODNet aims to detect the salient object in I and pre-
dicts the saliency mask. Meanwhile, all the refined pseudo
labels as well as the multi-scale image features extracted
by SODNet are fed into UMNet, and the uncertainty maps
{Σm}Mm=1 for the pseudo labels are generated. The whole
networks including SODNet and UMNet are jointly trained
under the supervision of the proposed uncertainty weighted
loss, which helps UMNet to accurately estimate the dense
uncertainty maps of all the pseudo labels and further facili-
tates the SODNet learning under the unsupervised setting.

As shown on the top row of Figure 2, given the input
image I ∈ RH×W×3, SODNet outputs the saliency score
map S ∈ RH×W×Nc of Nc channels which can be further
normalized into the saliency probability map using either
Sigmoid (Nc = 1) or Softmax (Nc = 2) function. The
architecture design for SODNet is not the focus of this pa-
per, and many existing SOD models can be used in our
framework. We adopt the same network architectures used
in [20, 43] for fair comparison. Specifically, it builds upon
the dilated residual network (DRN) [2], which modifies the
original ResNet101 by replacing all the fully connected lay-
ers with convolutional layers and using the atrous convo-
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lutional layers to preserve feature resolutions. The output
resolution of the last convolutional layer is 1/8 of the input
image, which is finally upsampled to the original input res-
olution using the nearest neighbour interpolation. As shown
in Figure 2, SODNet contains eight convolutional residual
stages [2]. We combine the features extracted from the first
three and the sixth stages of SODNet as hierarchical guid-
ance for label uncertainty prediction in UMNet. In the fol-
lowing, we will describe the proposed UMNet (Section 3.1)
and the uncertainty weighted loss (Section 3.2) in detail.

3.1. Uncertainty Mining Network with Merge-and-
Split Modules

The uncertainty mining network (UMNet) is designed to
identify the pixel-wise reliability for each given pseudo la-
bel by observing all the pseudo labels and the input image.
Our key insight is that it is hard for the network to pre-
dict the uncertainty based on only single pseudo label since
there is no additional reference. In comparison, by simulta-
neously considering the diversity of multiple pseudo labels
produced by different SOD methods, it can help the net-
work to more effectively capture the reliable label samples
through analyzing the commonality and difference among
different pseudo labels.

As shown in Figure 2, the proposed UMNet consists
of M branches. Each branch extracts features from one
pseudo label and produces the corresponding uncertainty
map. Features among pseudo labels hierarchically inter-
act with each other via the proposed merge-and-split (MS)
modules, which enhances the features to generate more ro-
bust uncertainty results by gathering and analyzing infor-
mation from all the pseudo labels.

The architecture details of the proposed MS module are
depicted in Figure 3. Given M label features and the im-
age feature generated by a specific stage of SODNet, they
are firstly fed into different residual blocks [7] respectively
as a pre-processing step. Then an information aggregation
operation including the channel-wise concatenation and an
additional residual block is applied to merge the informa-
tion from all the pseudo labels and the input image. Each
label feature is then combined with the merged features via
channel-wise concatenation, followed by a residual block to
produce the output feature. The merge-and-split mechanism
provides the opportunity for each network branch dedicated
to one pseudo label to see more comprehensive information,
and thus empowers the network to predict more robust and
accurate uncertainty maps.

In this work, four MS modules are adopted as the core
components in the UMNet, which receive the image fea-
tures from the 1st, 2nd, 3rd, and 6th residual stages of SOD-
Net, respectively. Besides, the output resolution of the first
three MS modules are downsampled to 1/2 of the input res-
olution through strided convolutional layers. The output M

Figure 3. Illustration of the proposed merge-and-split module.

label features from the last MS module are finally passed
through M decoders comprising a convolutional and a near-
est neighbor upsampling layer, which generate the uncer-
tainty maps for the M pseudo labels, respectively.

3.2. Network Learning with Multi-source Uncer-
tainty Mining

Since the ground truth of uncertainty maps are not avail-
able, training UMNet to generate the desired results is not
trivial issue. Let us denote the pseudo label of pixel i gen-
erated by the m-th handcrafted SOD method as Yi

m = c,
with c = 1 indicating salient foreground and c = 0 other-
wise. The predicted uncertainty and saliency score are rep-
resented by Σi

m and Si, respectively. Inspired by [9,10], we
model the noisy pseudo label as a random variable y subject
to Gibbs distribution under the Bayesian theory. When us-
ing Softmax function to normalize the saliency score, the
probability distribution of y can be computed as:

p(y|Si,Σi
m) = Softmax

(
1

(Σi
m)2

Si

)
. (1)

The magnitude of the learned uncertainty Σi
m determines

the uniform/flat degree of the distribution. Given the ob-
served pseudo label Yi

m = c, the negative log likelihood
can then be derived as follows:

− log p(y = Yi
m|Si,Σi

m)

=− 1

(Σi
m)2

sic + log
∑
c′

exp

(
1

(Σi
m)2

sic′

)
≈ 1

(Σi
m)2

LCE

(
Yi

m,Si
)
+ logΣi

m,

(2)

where LCE(Y
i
m,Si) denotes the cross-entropy loss com-

puted using the pseudo label Yi
m and unnormlaized score

Si (i.e., the logit). Detailed derivation can be found in [10].

11730



Since Sigmoid function is a special case for Softmax func-
tion, the above derivation using Softmax also holds when
using Sigmoid function to normalize the saliency scores.
The first term on the right hand side of (2) shows that the un-
certainty Σi

m with large value will decrease the contribution
of LCE(Y

i
m,Si), whereas with small value will increase

its contribution. Meanwhile, the last term can be seen as a
regularization imposed on Σi

m predicted by UMNet, which
will be penalized if the value of Σi

m is too large.
We extend the above formulation to the whole im-

age with M pseudo labels, and obtain the final loss
L(Θsod,Θσ) as follows:

L(ΘS ,ΘΣ) =−
M∑

m=1

∑
i

log p(y = Yi
m|Si,Σi

m)

=

M∑
m=1

H×W∑
i

1

(Σ
i
m)2

LCE(Y
i
m,Si) + logΣi

m

(3)

where ΘS and ΘΣ are the trainable parameters of SODNet
and UPNet, respectively. H and W are the height and width
of the input image, respectively. We denote (3) as the un-
certainty weighted loss, which allows the whole networks
to be jointly learned in a principled way.

In practice, we made two modifications on (3) to improve
training stability. Instead of directly generating the uncer-
tainty map Σm, our UMNet predicts its logarithmic form,
i.e. Ei

m = log(Σi
m)2. Besides, we adopt the Sigmoid unit

as the output layer of our UMNet and further normalize the
predicted logarithmic uncertainty values to the interval of
[−τ, τ ]. As a consequence, (3) can be rewritten as:

L(ΘS ,ΘΣ) =

M∑
m=1

H×W∑
i

exp(−Ei
m)LCE(Y

i
m,Si) +

1

2
Ei

m.

(4)

3.3. Implement Details

Our training settings mainly follow the recent leading
work [20]. The training data and validation data consist of
2500 and 500 images, respectively, from MSRA-B dataset.
Four traditional SOD methods (i.e. M = 4) are employed
including RBD [46], DSR [14], MC [8], and HS [47] to pro-
duce the pseudo labels for the training images. The pseudo
labels from each handcrafted method are separately refined
by using the first stage of [20] to improve their quality. The
threshhold to binary the pseudo labels is empirically set as
0.5, which works well in practice. All the input images are
resized to the spatial size of 320 × 320. Data augmenta-
tion including random flipping and rotation is adopted for
the training data. Following [20], the parameters of SOD-
Net are initialized by using the pretrained model of [2], and
the learning rate of these parameters is set as 2e − 5. The
parameters of MSNet are randomly initialized by using the

method of [6] with a learning rate of 2e−4. The whole net-
works are jointly trained end-to-end using the ADAM opti-
mizer with the bath size of 16. The whole training process
takes about 200 epoches on the platform with one Geforce
3090 GPUs. At inference, only the learned SODNet is em-
ployed to produce the saliency masks.

4. Experiments
We first compare our model against several related meth-

ods, followed by extensive ablation studies to explore the
contributions of different components.

4.1. Dataset and Evaluation Metrics

We evaluate the proposed model on five public SOD
benchmark datasets, including DUTS test dataset [27],
DUT-OMRON [35], ECSSD [34] and HKU-IS [12]. For
quantitative evaluation, four popular evaluation metrics are
utilized, i.e., Mean Absolute Error (MAE), max F-measure
(Fmax) [1], S-measure (S) [3], and E-measure (E) [4].

4.2. Overall Comparison

We compare the proposed method against four groups
of state-of-the-art SOD works: (1) seven fully-supervised
methods that training deep networks using clean pixel-level
annotations, including DCL [13], Amulet [44], SRM [29],
NLDF [19], PiCANet [18], AFNet [5], and MSNet [32];
(2) four weakly-supervised methods that using some weak
labels, including WSS [27], MWS [36], SODSA [42], and
C2S [15]. (3) seven handcrafted unsupervised SOD meth-
ods including HS [47], RBD [46], SF [22], GS [31], MFR
[35], MC [8], DSR [14]; (4) four deep unsupervised SOD
methods that are most related to ours, including SBF [38],
USD [43], E-BigBiGAN [25], and DeepUSPS [20]. All the
results of the compared methods are provided by the authors
or obtained from public data.

Table 1 reports the evaluation results of all the com-
pared methods. It shows that the proposed method achieves
superior performance among the unsupervised approaches.
Among them, the recent leading method DeepUSPS [20]
can be seen as a baseline of our method, which uses the
same training settings including training data, SOD net-
work, the parameter initialization, etc. The difference be-
tween DeepUSPS and ours is that DeepUSPS directly trains
the final SOD network using all the refined pseudo labels
without any label selection. While DeepUSPS employs
DenseCRF as post-processing at inference, it is still infe-
rior to ours, which verifies the effectiveness of our the un-
certainty mining mechanism for label selection. Different
from USD [43] that learns the noise of multiple pseudo la-
bels by minimizing the KL divergence between the noise
model prediction and the assumed Gaussian distribution,
ours implicitly trains the noisy label model (i.e. Uncertainty
Mining Network) jointly with SODNet using the designed
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Method
DUTS DUT-OMRON ECSSD HKU-IS

MAE↓ Fmax ↑ S↑ E↑ MAE↓ Fmax ↑ S↑ E↑ MAE↓ Fmax ↑ S↑ E↑ MAE↓ Fmax ↑ S↑ E↑

Fully supervised SOD

DCL† [13] 8.78 78.20 79.55 81.71 7.97 75.67 77.04 82.84 6.79 90.07 86.84 90.97 4.8 90.7 87.7 -
Amulet [44] 8.46 77.78 80.39 80.30 9.76 74.29 78.04 78.41 5.89 91.53 89.39 91.21 5.07 89.74 88.56 91.38
NLDF [19] 6.52 81.24 81.55 85.45 7.96 75.32 76.98 81.66 6.26 90.50 87.47 91.19 4.77 90.20 87.83 92.95
SRM [29] 5.87 82.63 83.48 86.73 6.94 76.90 79.70 84.28 5.44 91.73 89.49 92.73 4.59 90.58 88.66 93.79

MSNet [32] 4.55 84.27 84.97 89.83 5.57 79.00 81.75 86.44 3.80 93.24 90.97 94.79 3.37 91.95 90.25 94.95
AFNet [5] 4.58 86.29 86.60 89.49 5.74 79.72 82.53 85.95 4.18 93.50 91.33 94.14 3.58 92.26 90.49 94.75

PiCANet† [18] 4.04 86.66 86.15 91.37 5.43 80.38 82.46 87.35 3.45 94.04 91.57 94.26 3.08 92.68 90.41 95.14

Weakly-supervised SOD

WSS [27] 9.94 73.92 74.90 79.66 10.97 69.08 73.11 76.79 10.35 85.56 81.12 86.89 7.92 85.87 82.17 89.56
MWS [36] 9.12 76.74 75.84 81.57 10.87 71.76 75.58 76.42 9.64 87.77 82.75 88.47 8.43 85.60 81.81 89.57

SODSA [42] 6.22 78.87 80.29 86.89 6.84 75.32 78.43 84.48 5.90 88.80 86.54 91.72 4.70 88.05 86.45 93.22
C2S [15] 6.64 79.02 81.68 84.23 7.90 73.34 77.93 81.76 5.93 89.57 88.17 90.73 4.60 89.87 88.85 92.90

Handcrafted Unsupervised SOD

HS [47] 24.32 56.99 60.05 69.50 22.74 61.61 63.26 71.29 22.75 72.66 68.52 72.70 21.50 70.76 67.42 76.27
SF [22] 15.23 45.78 50.48 69.47 14.68 49.53 54.13 70.17 21.88 54.79 47.91 67.66 17.44 58.38 51.17 72.36
GS [31] 18.12 53.27 62.15 67.15 17.32 55.59 63.84 67.83 20.58 66.08 66.03 75.11 16.81 67.71 69.08 78.43

MFR [35] 19.36 59.28 62.54 71.21 18.74 61.02 64.51 72.55 18.93 73.57 68.92 77.49 17.82 70.63 66.87 78.47
MC [8] 19.88 61.01 62.46 72.20 18.63 62.73 64.91 72.77 20.24 73.93 69.24 78.74 18.40 72.34 68.38 80.40

RBD [46] 15.31 59.14 64.64 71.09 14.38 63.04 68.14 72.04 17.14 71.62 68.83 78.68 14.28 72.30 70.61 81.18
DSR [14] 14.78 61.59 65.22 71.59 13.87 62.70 67.27 72.16 17.13 73.48 68.51 78.65 14.21 73.51 69.95 80.79

Deep Unsupervised SOD

E-BigBiGAN [25] 19.53 66.86 68.61 71.54 23.20 60.73 64.27 70.29 16.26 82.59 78.96 81.07 15.50 80.41 77.60 83.28
SBF [38] 10.69 69.83 74.27 78.17 10.76 68.49 74.72 76.95 8.80 85.32 83.23 87.61 7.53 83.93 82.91 89.33
USD [43] 7.49 - 81.28 85.25 10.28 - 73.32 71.24 9.02 - 84.56 83.57 6.50 - 86.02 85.79

DeepUSPS† [20] 6.78 78.42 78.67 84.87 6.25 77.31 79.46 84.82 6.32 90.07 86.11 90.39 4.12 90.20 87.60 93.06
Ours 6.67 79.87 80.21 86.28 6.31 78.71 80.40 85.96 6.36 90.29 86.77 90.42 4.12 90.76 88.62 93.94

Table 1. Evaluation results on the popular SOD benchmark datasets measured in % of MAE, Fmax, S, and E metrics. ↑ and ↓ indicate that
the larger and smaller scores are better, respectively. † denotes that dense CRF is adopted for post-processing at inference. Bold numbers
indicate the best performance in each group.

uncertainty weighted loss, and delivers promising perfor-
mance. In addition, our method without any clean train-
ing annotations achieves on par with the supervised meth-
ods [13,19,29,44] and is better than the weakly-supervised
ones [27, 36].

Figure 4 show some visual comparisons. Our method
yields high quality saliency results in various challenging
scenarios and outperforms the compared methods.

4.3. Ablation

To further verify our main contributions, we evaluate dif-
ferent variants of our method on DUTS test dataset and
DUT-OMRON dataset. For fair comparison, all the com-
pared models are trained and tested using the same training
protocols as ours. Results are summarized in Figure 5 mea-
sured in % of Fmax and S metrics.

4.3.1 Oracle and Baselines

We first conduct the “Oracle” experiments, where the SOD-
Net is trained using the ground truth annotations with the
cross-entropy loss for supervision. Besides, two other base-
lines are designed to verify our main idea of uncertainty
learning as well as the proposed uncertainty weighted loss.
The first one is directly mixing all the multi-source pseudo
labels and training SODNet with the cross-entropy loss,
meaning that all the pseudo labels are treated equally with-
out considering their uncertainties. We denote this variant
as “Baseline1”, which is equivalent to the method of Dee-
pUSPS [20]. Nevertheless, for fair comparison, we reimple-
ment this variant and remove the DenseCRF at inference.
In addition, instead of learning the uncertainty via deep net-
work and the proposed loss, we are also interested to see
the performance of using the handcrafted manner to select
the pseudo labels for network training. Therefore, “Base-
line2” is the one that selecting the reliable labels by using
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Image GT Ours MC [8] DSR [14] E-BiBiGAN [25] WSS [27] MWS [36] C2S [15] DeepUSPS [20]

Figure 4. Some visual examples of the saliency detection results obtained by our approach and other state-of-the-art methods.

the majority voting strategy. It means that given the multi-
source pseudo labels, each label value is deemed to be real
if its value is equivalent to the labels from at least two other
sources. Compared with the “Oracle” model, the perfor-
mance drop of our method is acceptable under the unsuper-
vised learning setting (see Figure 5). From the comparison
with “Baseline1”, it can be observed that under the super-
vision of the proposed loss, ours can effectively provide the
reliable label samples for SODNet and thus facilitate the fi-
nal SOD performance. In addition, the superiority of the
our learned uncertainty method is non-negligible compared

to the handcrafted selection strategy (Ours vs. Baseline2).

4.3.2 Merge-and-Split Module

Merge-and-Split (MS) module is the core component of the
proposed UMNet. To demonstrate its effectiveness, we de-
sign two following variants of UMNet: (1) “UMNet v1”,
where the feature concatenation among multi-source labels
are removed so that each branch in UMNet is independently
trained without any interaction. (2) “UMNet v2”, which
contains single branch with the comparable parameters of
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Figure 5. Results of ablation studies investigating the effectiveness of our main ingredients.

the proposed UMNet. The multi-source pseudo labels are
first concatenated along channels and then fed into UM-
Net v2. The superiority of our method compared to the
two variants demonstrate the effectiveness of our merge and
split strategy for uncertainty prediction.

4.3.3 Impact of Multi-source Labels

To further investigate the impact of using multi-source
pseudo labels under the proposed framework, we conduct
experiments using only single-source labels. Therefore, the
UMNet only contains single branch with comparable model
capacities with our multiple branch counterpart, and the
MS module is replaced with residual blocks. We denote
these variants as “RBD UMN”,“DSR UMN”,”MC UMN”,
and “HS UMN” to distinguish them from the original ones.
All the variants are trained using the proposed uncertainty
weighted loss. We observe a significant performance drop
when using single-source labels, which may attribute to the
inaccurate uncertainty prediction. This also verifies our in-
tuitive idea that evaluating the uncertainty of one label sam-
ple by simultaneously analyzing multi-source labels is more
robust under the unsupervised setting.

4.4. Limitations

As shown in Figure 6, when all the pseudo labels reach
an agreement but with wrong label values, our UMNet fails
to capture such noise and makes wrong estimation, hin-
dering the SODNet learning. Such issue is challenging to
circumvent without any other reference under the unsuper-
vised setting. Exploring more sophisticated prior knowl-
edge or learning mechanisms may be a promising solution,
which we would like to leave as our future work.

5. Conclusion
This paper presents a novel multi-source uncertainty

mining approach for deep unsupervised SOD, which aims to
learn to select the reliable label samples from noisy pseudo

(a) Image (b) Four pseudo labels adopted in our experiments

(c) Saliency GT (d) Uncertainty GTs of the above four pseudo labels

(e) Saliency prediction (f) Our predicted uncertainty maps

Figure 6. Limitations of the proposed method. For the foreground
region that denoted by the red ellipses, all the pseudo labels (b) be-
lieve it belongs to the background, which misleads UPNet to trust
the noisy label samples and hinders the final saliency prediction.

labels generated by handcrafted SOD methods. To obtain
the robust dense uncertainty maps of the noisy pseudo la-
bels, a Merge-and-Split (MS) module is designed to simul-
taneously analyse the commonalities and diversities among
multi-source pseudo labels, which enables the uncertainty
mining network (UMNet) to effectively capture the reliable
label samples to supervise the SODNet. In addition, an un-
certainty weighted loss is further developed by modeling
the noise labels using Gibbs distribution and effectively fa-
cilitates network learning without any human annotations.
Extensive experiments demonstrate the effectiveness of the
proposed method as well as the main contributions.
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