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Abstract

Person re-identification aims to retrieve persons in
highly varying settings across different cameras and sce-
narios, in which robust and discriminative representation
learning is crucial. Most research considers learning rep-
resentations from single images, ignoring any potential in-
teractions between them. However, due to the high intra-
identity variations, ignoring such interactions typically
leads to outlier features. To tackle this issue, we propose a
Neighbor Transformer Network, or NFormer, which explic-
itly models interactions across all input images, thus sup-
pressing outlier features and leading to more robust repre-
sentations overall. As modelling interactions between enor-
mous amount of images is a massive task with lots of dis-
tractors, NFormer introduces two novel modules, the Land-
mark Agent Attention, and the Reciprocal Neighbor Soft-
max. Specifically, the Landmark Agent Attention efficiently
models the relation map between images by a low-rank fac-
torization with a few landmarks in feature space. Moreover,
the Reciprocal Neighbor Softmax achieves sparse attention
to relevant -rather than all- neighbors only, which allevi-
ates interference of irrelevant representations and further
relieves the computational burden. In experiments on four
large-scale datasets, NFormer achieves a new state-of-the-
art. The code is released at https://github.com/
haochenheheda/NFormer.

1. Introduction

Image-based person re-identification (Re-ID) aims to re-
trieve a specific person from a large number of images cap-
tured by different cameras and scenarios. Most research
to date has focused on how to obtain more discriminative
feature representations from single images, either by at-
tention modules [17, 26, 32, 34], part representation learn-
ing [6, 14, 28, 41], or GAN generation [20, 23, 46]. How-
ever, one of the main challenges in Re-ID is that any in-
dividual typically undergoes significant variations in their
appearance due to extrinsic factors, like different camera
settings, lighting, viewpoints, occlusions, or intrinsic fac-
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Figure 1. The dots indicate the representation vectors of persons
for retrieval in the feature space. The right top figure illustrates
person representations distribution obtained by learning from sin-
gle input images, which typically leads to outliers (hollow dots)
caused by occlusions, dress changing, viewpoint changing, etc.
The right bottom figure shows the person representations distribu-
tion obtained by NFormer, which explicitly models the relations
(grey lines) between relevant neighbor persons to alleviate the out-
lier features caused by the above-mentioned abnormal conditions
and maintain the most discriminative features for each identity.

tors like dress changing, to name a few examples. As a
result, there are high intra-identity variations in the repre-
sentations corresponding to a specific individual, leading to
unstable matching and sensitivity to outliers, see figure 1.

A possible remedy against high intra-identity variations
is to exploit the knowledge that exists in the different im-
ages from the same identity. Intuitively, one can encour-
age the model to cluster neighbor representations tightly, as
they are likely to correspond to the same individuals. A few
works have proposed to model relations between input im-
ages in Re-ID, either with conditional random fields [3] or
similarity maps from training batches [21]. However, these
works focus on modeling relations between a few images at
training time only, while during the test, they extract repre-
sentations per image independently due to the computation
limitation, which inevitably loses the interactions and leads
to a gap between training and test. Moreover, they only
build relations between a small group of images within each
training batches so that there is limited relevant information
that could be learned from each other. To sum up, we argue

7297



that encouraging lower representation variations per iden-
tity is crucial during both training and test among all the
input images.

Following this train of thought, we propose a Neigh-
bor Transformer Network, or NFormer for short, to effi-
ciently model the relations among all the input images both
at training and test time. As shown in figure 2, NFormer
computes an affinity matrix representing the relations be-
tween the individual representations and then conducts the
representation aggregation process according to the affinity
matrix. The involvement of relation modeling between im-
ages suppresses high intra-identity variations and leads to
more robust features.

Unfortunately, computing an affinity kernel matrix is
typical of quadratic complexity to the number of samples.
Such a computational complexity is prohibitively expensive
in person Re-ID setting, where the number of input images
can easily grow to several thousands during the inference.
To this end, we propose a Landmark Agent Attention mod-
ule (LAA) that reduces the computations in the affinity ma-
trix by the introduction of a handful of landmark agents in
the representation space. The landmark agents map the rep-
resentation vectors from a high-dimensional feature space
into a low-dimensional encoding space, which factorizes
large affinity maps into a multiplication of lower rank matri-
ces. Similarly, the representation aggregation process with
a standard softmax attends to all the input representations,
which tends to be distracting and computation-consuming
caused by a large number of irrelevant representations. We
introduce the Reciprocal Neighbor Softmax function (RNS)
to achieve sparse attention attending to computationally
manageable neighbors only. The Reciprocal Neighbor Soft-
max significantly constrains the noisy interactions between
irrelevant individuals, which makes the representation ag-
gregation process more effective and efficient.

Our contributions are summarized as follows:

• We propose to explicitly model relations between per-
son representations with a Neighbor Transformer Net-
work, designed to yield robust and discriminative rep-
resentations.

• We design a Landmark Agent Attention module to
reduce the computational cost of the large affinity
matrix by mapping the representations into lower-
dimensional space with a handful of landmark agents.

• We propose a Reciprocal Neighbor Softmax func-
tion to achieve sparse attention attending to neighbors
only, which strengthens the interaction between rele-
vant persons with efficiency.

• We conduct extensive experiments on four person
Re-ID datasets to indicate the general improvements
which NFormer brings. The results show that NFormer
achieves a new state-of-the-art. We further note that

NFormer is easy to plug and play with other state-of-
the-arts and further boosts the performance.

2. Releated Work
In this section, we first briefly review two main families

of Re-ID methods: Feature Representation Learning meth-
ods and Ranking Optimization methods. Then we introduce
the Transformer and related applications.

2.1. Feature Representation Learning Methods

Learning the discriminative feature representations is
crucial for Re-ID. Most of the existing methods [17, 26, 28,
41, 46] focus on how to extract better representation with
single images. Some methods introduce local part features
with automatic human part detection [28, 41] or horizontal
image division [29] to tackle the occlusion and misalign-
ment problems. Some methods design attention modules
within single images to enhance representation learning at
different levels. For instance, method [17] involves pixel-
level attention while methods [32,34] achieve channel-wise
attention for feature re-allocation. Method [27] suppresses
the background region to obtain robust foreground person
representation. Another kind of method focuses on increas-
ing the richness of training data. [13,48] generates adversar-
ially occluded samples to augment the variation of training
data. [20, 46] utilize GAN to generate images as auxiliary
information to help the training. In general, this family of
methods makes full use of information from individual im-
ages to extract discriminative feature representations.

2.2. Ranking Optimization Methods

Ranking optimization is a strategy to improve the re-
trieval performance in the test stage. Given an initial rank-
ing list obtained by the distance matrix between query and
gallery sets, works [19, 22, 37, 38, 49] optimize the ranking
order by the following methods. [38] propose a rank ag-
gregation method by employing similarity and dissimilar-
ity. [19] involves human feedback to optimize the ranking
list. Methods [22, 49] propose the query adaptive retrieval
strategy to improve the performance. [37, 47] also utilize
contextual information from other images. Those methods
are directly conducted on each initial ranking list as post-
processing, instead of conducted on the representation dis-
tribution. Our proposed NFormer is compatible with those
re-ranking methods to further boost the performance.

2.3. Transformer

The Transformer [31] is built upon the idea of Multi-
Head Self-Attention (MHA), which allows the model to
jointly attend to different representation elements. The
transformer is proposed to tackle the sequence problem in
the beginning. Recently, Tranformer is widely used for
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Figure 2. An illustration of NFormer. GAP: Global Average Pooling. LAA: Landmark Agent Attention. RNS: Reciprocal Neighbor
Softmax. FF: Feed-forward Network. Input with N images {xi}Ni=1, a convolutional network followed by GAP is used to get the
representation vectors {zi}Ni=1. {zi}Ni=1 is fed to NFormer, in which LAA is proposed to map the d-dimensional representations into a
l-dimensional encoding space with sampled landmark agents zl and then obtain the approximate affinity matrix Ã more efficiently. Then
the RNS is proposed to get the sparse attention weights s(Ã) and the output representations {ui}Ni=1 are obtained by weighted aggregation
of {zi}Ni=1. Finally, a ranking algorithm is performed on the representation vectors after NFormer for the retrieval process.

many vision tasks because of its powerful ability to obtain
long-distance dependance, such as DETR [1] for object de-
tection, TT [5] for object tracking and ViT [8] for image
classification. We first adopt Transformer architecture to
learn the relations between input persons in the Re-ID task.

3. Neighbor Transformer Network
We first describe the problem setting and the overview

of the proposed method. Then, we describe the Landmark
Agent Attention and the Reciprocal Neighbor Softmax.

3.1. Problem Setting

Re-ID is typically cast as a retrieval task. We start with
the training set T = {xi, yi}N

T

i=1, where xi corresponds to
the i-th image with identity yi ∈ ST , and ST contains the
identities of all the training images. During training, we
learn a model zi = f(xi) that computes discriminative fea-
ture representations zi per input image [17, 26, 32]. At test
time we have a query set U = {xi}N

U

i=1 with persons-of-
interest. Then, given a gallery set G = {xi}N

G

i=1 for re-
trieval, we retrieve persons with correct identity when com-
paring query images in U against the images in the gallery
set G. The identities of the persons in the query set SU are
disjoint from the identities available during training, that is
SU ∪ ST = ∅.

3.2. Learning NFormer

In the described setting, we place no restrictions on the
form of the function f(·). Typically, f(·) is computed on
single input images, thus ignoring any possible relations
that may arise between the representations of the same indi-
vidual across cameras and scenarios. To explicitly account
for such relations, we introduce a function to get the aggre-
gated representation vector ui:

ui = g(zi, {zj}Nj=1) =
∑
j

wijzj , (1)

where {zj}Nj=1 contains the representation vectors obtained
by the feature extraction function f(·) of all the input
images {xi}Ni=1. During training, {xi}Ni=1 ⊂ T is a
large batch sampled from training set. While during test,
{xi}Ni=1 = U ∪ G contains all the images from query set
and gallery set. wij is learnable weight between zi and
zj , where

∑
j wij = 1. Recently, Transformer [31] has

shown to be particularly apt in modeling relations between
elements in a set. With a Transformer formulation, we have
equation (1) reformed by:

ui =
∑
j

s(A)ijφv(zj), (2)

where A ∈ RN×N is an affinity matrix that contains the
similarities between any two pairs of input representation
vectors zi, zj , s(·) is a softmax function to turn the affinities
into weights, and φv(·) is a linear projection function. For
the affinity matrix A, we have

Aij = K(φq(zi), φk(zj))/
√
d = q⊤

i kj/
√
d, (3)

where φq(·), φk(·) are two linear projections, which map
the input representation vectors z ∈ RN×d to query and key
matrices q,k ∈ RN×d. N is the number of input images
and d is the dimension of the representation vectors. The
K(·, ·) is typically the inner product function.

Unfortunately, considering a conventional transformer
network to model relations between the representations of
persons in Re-ID is computationally prohibitive. First, com-
puting the affinity matrix A in equation (3) has quadratic
O(N2d) complexity with respect to the number of images
N . Thus, the computation of affinity matrix scales poorly
with N , especially when the dimension d of the representa-
tion vector is also large. To this end, we introduce the Land-
mark Agent Attention module to factorize the affinity com-
putation into a multiplication of two lower-dimensional ma-
trices, which relieves the computational burden of the affin-
ity matrix. Second, in equation (2) for the final represen-
tation vector ui we attend to all the zj , j ∈ {1, . . . , N} to

7299



𝒒 𝒌 𝒗

෥𝒒 ෩𝒌

𝒖𝒛𝑙

𝒒𝑙𝒌𝑙

𝒅-dimensional
space

𝒍-dimensional
space

𝒛

෩𝑨

RNS

𝑵 × 𝒅 𝒍 × 𝒅 𝒍 × 𝒅 𝑵 × 𝒅

𝑵× 𝒍 𝑵 × 𝒍

𝑵 × 𝑵

𝑵× 𝒅

𝒍 × 𝒅 𝑵 × 𝒅𝑵 × 𝒅

Figure 3. Pipeline of LAA. The horizontal side of the rectangles
indicates the first dimension of the according matrices, while the
vertical side indicates the second dimension. Input with repre-
sentation vectors z ∈ RN×d, the query, key and value matrices
q,k,v ∈ RN×d are generated by three linear projection functions
respectively. The landmark agents zl ∈ RN×l are sampled from z
to map the q,k of d-dimension to q̃, k̃ of l-dimension. Then the
approximate affinity matrix Ã is obtained by the multiplication of
q̃ and k̃. In this way, the time complexity of obtaining the affin-
ity matrix reduces from O(N2d) to O(N2l), since the l is much
smaller than d in practice. Then, the RNS is applied to Ã and
turns the affinities into sparse attention weights. The final output
u is obtained by weighted aggregation of value matrix v.

compute the weighted aggregation, which also scales poorly
with N . Importantly, the weighted aggregation tends to be
noisy and dispersed, caused by a large number of mostly
irrelevant images. To tackle those problems, we introduce
the Reciprocal Neighbor Softmax function to achieve sparse
attention to neighbors, which reduces the noisy interactions
with irrelevant individuals and makes the representation ag-
gregation more effective and efficient. We illustrate the full
pipeline in figure 2.
3.3. Landmark Agent Attention

Instead of measuring the similarity between high-
dimensional representation vectors, we propose a more ef-
ficient way to obtain an approximate affinity matrix Ã. The
key idea is to map the high-dimensional representation vec-
tors z into a lower-dimensional encoding space, making the
affinity computations in equation (3) considerably more ef-
ficient, as inspired by random Fourier features [24].

As shown in figure 3, following Transformer [31], the
query, key and value matrices q,k,v ∈ RN×d are obtained
by three separate linear projections φq(·), φk(·), φv(·) us-
ing representation vectors z ∈ RN×d as input. Specifically,
we randomly sample l representations zl ∈ Rl×d from z
as landmark agents, and then obtain the ql and kl matrices
with φq(·) and φk(·). Thus we could map the original query
and key matrices q,k ∈ RN×d to a l-dimensional space by
q̃ = qk⊤

l , k̃ = kq⊤
l , where q̃, k̃ ∈ RN×l. q̃ij , k̃ij indicate

the similarity between representation vector i ∈ {1, . . . , N}

and landmark agent j ∈ {1, . . . , l}. Then the equation (3)
could be replaced by:

Ãij = (qk⊤
l )i(kq

⊤
l )

⊤
j /

√
d = q̃ik̃

⊤
j /

√
d. (4)

In this way, we decompose the computation of the large
affinity map A ∈ RN×N into a multiplication of two low-
rank matrices q̃, k̃. Thus, the multiplication complexity for
obtaining the affinity matrix is significantly reduced from
O(N2d) to O(N2l), since l is typically much smaller than
d (l = 5, d ≥ 256 in our experiments). In the Supplemen-
tary Material section A, we further prove that the cosine
similarity of A and Ã is positively correlated with l, with
larger l yielding a cosine similarity close to 1,

cos(vec(A), vec(Ãlb)) ≥ cos(vec(A), vec(Ãla)), (5)

where lb > la. In fact, as we show experimentally in figure
6 (a), even with a small number of landmark agents, the
NFormer is able to perform stably.

3.4. Reciprocal Neighbor Softmax

After obtaining the approximate affinity matrix Ã, a soft-
max function s is typically used in equation (2) to turn
the affinities into attention weights (probabilities). We
can rewrite equation (2) as a sum of two parts, ui =∑

j:Ãij≤ρ s(Ã)ijφv(zj)+
∑

j:Ãij>ρ s(Ã)ijφv(zj), where
ρ is a small threshold. The first part represents the sum
of elements with small attention weights and the sec-
ond part represents the sum of elements with large atten-
tion weights. Although each of the attention weights in∑

j:Ãij≤ρ s(Ã)ijφv(zj) is small, with a growing number
of samples N the total summation will still be large and
comparable to the second term in the summation, as shown
in figure 4 (a). As a result, the final computation of ui will
be negatively impacted by the significant presence of irrele-
vant samples. Besides the negative effect in the output rep-
resentation ui, the computation complexity of the represen-
tation aggregation is O(N2d), which presents a significant
computational burden because of the large input size N .

To mitigate the above problems, we propose the Recip-
rocal Neighbor Softmax (RNS) to enforce sparsity to few
relevant attention weights with a reciprocal neighbor mask.
We assume that if two images are reciprocal neighbors with
each other in feature space, they are likely to be relevant. To
this end, we propose to compute a top-k neighbor mask Mk

from the approximate affinity map Ã, which will attend to
the top-k value of affinities per row:

Mk
ij =

{
1, j ∈ topk(Ãi,:)

0, otherwise.
(6)

We can then obtain a reciprocal neighbor mask M by multi-
plying Mk with its transposition using Hadamard Product.
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Figure 4. Illustration of Reciprocal Neighbor Softmax. (a) indi-
cates the normal softmax, in which the softmax is performed on
all the input representations, thus lots of irrelevant representations
will contribute to the feature aggregation and distract the attention.
(b) indicates the Reciprocal Neighbor Softmax, in which only the
relations between reciprocal neighbors are kept.

Mij = Mk ◦Mk⊤

=

{
1, j ∈ topk(Ãi,:), i ∈ topk(Ã:,j)

0, otherwise.

(7)

For each element Mij , the value will be set to 1 if i and
j are both top-k neighbors of each other, 0 otherwise. By
adding this mask M to the regular softmax function, we
achieve sparse attention only occurring in neighbors, which
increases the focus on more relevant images. The formula
of RNS is shown as follows:

RNS(A)ij =
Mijexp(−Ãij)∑

k

Mikexp(−Ãik)
, (8)

Since most attention values are set to zero, as shown in fig-
ure 4 (b), the relations are constrained to the relevant neigh-
bors, making the aggregation in equation (2) more focused
and robust. Furthermore, as we do not need to conduct ad-
dition operation for the representations with zero weights,
the time complexity of feature aggregation significantly de-
creases from O(N2d) to O(Nkd).

4. Experiments
We first describe the datasets, the evaluation protocols,

and the implementation details of NFormer. Then, we con-
duct extensive ablation studies to demonstrate the effective-
ness and efficiency brought by each of the proposed mod-
ules. Finally, we compare NFormer with other state-of-the-
art methods on four large-scale Re-ID datasets.

4.1. Datasets and Evaluation Protocols

We conduct experiments on four widely used large-scale
person Re-ID datasets: Market1501 [44], DukeMTMC-
reID [25], MSMT17 [35] and CUHK03 [16] to validate
the effectiveness and efficiency of NFormer. All the above-
mentioned datasets contain multiple images for each iden-
tity collected from different cameras or scenarios. We fol-
low the standard person Re-ID experimental setups. We use

the standard metric in the literature [44] for evaluation: the
cumulative matching characteristic (CMC) curve and mean
Average Precision (mAP). CMC shows the top K accuracy
by counting the true positives among the top K persons in
the ranking list. The mAP metric measures the area un-
der the precision-recall curve, which reflects the overall re-
identification accuracy among the gallery set rather than
only considering the top K persons.

4.2. Implementation

We adopt ResNet-50 [10] pre-trained on ImageNet [7]
as the backbone architecture for our feature extractor. To
preserve spatial information, we change the stride convo-
lutions at the last stage of ResNet with dilated convolu-
tions, which leads to a total downsampling ratio of 16. We
then apply a fully connected layer after the Resnet-50 back-
bone to reduce the dimension of the embedding vector from
2048 to 256 for efficiency. We stack four LAA modules to
build the NFormer. The number of landmark agents l in the
LAA module is set to 5 and the number of neighbors k in
RNS is set to 20 for a good trade-off between computational
cost and performance according to the experimental results.
During the inference, the interactions between the different
query images are eliminated for fair comparison.

For all experiments, the images are resized to a fixed res-
olution of 256×128. Random horizontal flipping is utilized
as data augmentation during training. We combine the iden-
tity loss [45], center loss [36] and triplet loss [11] to form
the total loss function. The three loss functions are weighted
by 1, 1, 0.0005 respectively. We use Stochastic Gradient
Descent (SGD) as the optimizer. The initial learning rate
is set to 3e-4 and momentum is set to 5e-4. We train the
Resnet-50 and NFormer in turn for 160 epochs. The batch
size is set to 128 for training the Resnet-50 feature extractor
and is set to 2048 for training NFormer. We freeze the pa-
rameters of Resnet-50 during the NFormer training iteration
to achieve such a large batch size. All the experiments are
conducted with PyTorch on one GeForce RTX 3090.

4.3. Ablation Study

We conduct comprehensive ablation studies on Market-
1501 and dukeMTMC-reID datasets to analyze the effec-
tiveness of LAA and RNS with different hyper-parameters.
With Res50 we denote the modified ResNet-50 feature ex-
tractor without the NFormer, and use it as the baseline.

NFormer vs. Transformer vs. Res50. Table 1
shows the comparison between NFormer, the regular Trans-
former and Res50 baseline model on Market-1501 and
dukeMTMC-reID datasets. The regular Transformer, with-
out any special design, slightly surpasses the baseline model
by 0.5%/1.6% and 0.5%/1.3% top-1/mAP on Market-1501
and dukeMTMC-reID. With the LAA module and RNS
function, NFormer outperforms the baseline model by a
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(a) (b) (c) (d)
Figure 5. t-SNE visualization of representation vectors. (a)/(b) show several random sampled identities on Market-1501 without/with
NFormer. (c)/(d) show several random sampled identities on dukeMTMC-reID without/with NFormer. In this figure, we can see that after
NFormer, the representation distribution is more gathered and detached. Specifically, if we choose one of the brown points as query person
in figure (a), there will be a lot of cyan points at the top of the ranking list, as shown in the brown circle in (a). On the contrary, the ranking
list of the same query person contains fewer negative persons in (b) because of the more gathered and detached distribution. The blue
circles in (c) and (d) show the same results.
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Figure 6. Figure (a) shows how the cos(vec(A), vec(Ã)) changes
with the number of landmark agents l. Figure (b) shows how the
mAP changes with l, in which the orange and blue dash lines show
the mAP performance without LAA (with normal affinity matrix).
Figure (c) shows how the total GFLOPs changes with input num-
ber N under different l.
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Figure 7. This figure shows how mAP changes with the number of
neighbors k in RNS on Market-1501 and dukeMTMC-reID. RNS-
Mk indicates RNS with top-k neighbor mask Mk instead of re-
ciprocal neighbor mask M. The orange and blue horizontal dash
lines show the mAP performance with normal softmax function.

considerably larger margin of 1.5%/7.6% and 3.3%/9.4%
top-1/mAP on Market-1501 and dukeMTMC-reID respec-
tively. Notably, NFormer requires 1.5 orders of magnitude
fewer computations (0.0025 GFLOPs vs 0.088 GFLOPs per
person for the regular Transformer).

We qualitatively demonstrate the effectiveness of
NFormer by visualizing the representation distribution be-

Method Market-1501 DukeMTMC GFLOPs
T-1 mAP T-1 mAP

Res50 93.2 83.5 86.1 74.1

+Transformer [31] 93.7 85.1 86.6 75.4 0.088
+NFormer 94.7 91.1 89.4 83.5 0.0025

Table 1. mAP and GFLOPs comparison between Res50 baseline
model, normal Transformer, and NFormer on Market-1501 and
dukeMTMC-reID datasets. GFLOPs mean the average number of
floating-point operations for processing each input image.

fore and after NFormer on Market-1501 and dukeMTMC-
reID datasets in figure 5. We observe better feature discrim-
inability for the NFormer, while the outliers of each identity
are significantly constrained because the relevant and com-
mon information of neighbors is integrated into each data
point. We conclude that NFormer learns relations between
input persons not only effectively but also efficiently.

Influence of Landmark Agent Attention. We first
study the effect of the number of landmark agents l for
computing the approximate affinity matrix Ã. Figure 6
(a) shows that the cosine similarity cos(vec(A), vec(Ã))
is positive relative with the number of landmark agents l,
and monotonically increasing, approaching 1 even with a
small l. As shown in figure 6 (b), the mAP performance
on Market-1501 and dukeMTMC-reID achieves 91.1% and
83.5% when l = 5, which causes only 0.3% and 0.3% drops
compared with original affinity map without LAA module.
When l gets larger, the cosine similarity and mAP perfor-
mance are saturated while the FLOPs continue to grow, as
shown in figure 6 (c). So we choose l = 5 as a good bal-
ance between effectiveness and efficiency. That is, the LAA
module only needs 1.95% of the computations to obtain an
approximate affinity map Ã, while basically maintaining
the performance compared with the original affinity map A.

Influence of Reciprocal Neighbor Softmax. We show
the effect of the number of reciprocal neighbors k in fig-
ure 7. When k increases, mAP performance of RNS on

7302



Method Market-1501 DukeMTMC

T-1 mAP T-1 mAP

Res50 93.2 83.5 86.1 76.1
+NFormer 94.7 91.1 89.4 83.5
+NFormer+KR [47] 94.6 93.0 89.5 88.2
∗ABDNet [4] 95.4 88.2 88.7 78.6
+NFormer 95.7 93.0 90.6 85.7
+NFormer+KR [47] 95.7 94.1 91.1 89.4

Table 2. Performance of combination of NFormer, ABD-Net and
KR re-ranking method on Market-1501 and DukeMTMC datasets.
∗ represents our reproduced performance.

Market-1501 and dukeMTMC-reID firstly reaches the max-
imum values 91.1% and 83.5% at k = 20. This is because
more neighbors information benefits the aggregation of the
individual representations in the early stage. Then as k con-
tinues to increase, the performance gradually decreases be-
cause of the introduction of irrelevant interactions. There-
fore, we set k to 20 in all the experiments with RNS. As
shown, RNS outperforms normal Softmax function (hori-
zontal dash lines in figure 7) by 7.3% and 8.9% on Market-
1501 and dukeMTMC-reID in terms of mAP, which indi-
cates that attending to relevant reciprocal neighbors only
leads to better feature representations compared with di-
rectly incorporating all the images. Besides, RNS outper-
forms RNS-Mk under the different number of neighbors k
consistently, which shows that the reciprocal neighbor mask
M could provide better prior knowledge of learning rela-
tions between input images.

Complementarity to third methods. NFormer is easy
to combine with other methods. We showcase this by
choosing a SOTA feature extractor ABD-net [4] for rep-
resentation learning and a re-ranking method RP [47] to
combine with NFormer. As shown in table 2, NFormer
with ABDNet and RP further boosts the performance by
1.0%/3.0% and 1.7%/5.9% top-1/mAP on Market-1501 and
dukeMTMC-reID, which demonstrates the compatibility of
NFormer.

Limitation. NFormer learns information from neigh-
bor persons in the feature space. If the number of images
for each identity in the testset is small, then the individ-
uals will not be able to obtain a lot of useful information
from each other. We conduct an ablation study on Market-
1501 and dukeMTMC-reID datasets to analyze the influ-
ence of the average number of images per identity. Specif-
ically, we sample 4 sub-testsets from the original testsets
of Market-1501 and dukeMTMC-reID respectively. Each
sub-testset has a different average number of images per
identity. We then evaluate NFormer and Res50 baseline
model on each sub-testset. The results are shown in table
3, from which we can see that as the number of images per
identity reduces from 20 to 5, the improvements brought by

Methods
Dataset Market-1501 DukeMTMC-reID

Subset 0 1 2 3 0 1 2 3

n/p 20 15 10 5 20 15 10 5

Res50
mAP

83.7 83.9 84.1 85.5 74.4 74.4 75.2 76.1
+NFormer 91.0 90.6 90.1 87.8 83.6 83.0 81.7 79.9

∆mAP +7.3 +6.7 +6.0 +2.3 +9.2 +8.6 +6.5 +3.8

Table 3. The mAP performance of NFormer and Res50 baseline
model on sampled sub-testsets with different n/p of Market-1501
and dukeMTMC-reID datasets. n/p indicates the average number
of images per identity.

NFormer (∆mAP) drops significantly from 7.3%/9.2% to
2.3%/3.8% on Market-1501 and dukeMTMC-reID datasets.
By contrast, the performance of the Res50 baseline model
barely changes, and even slightly increases. The reason is
that as the number of images decreases, it is easier to search
through the new and smaller test sets. The results confirm,
therefore, that a limitation of the NFormer is that it expects
a large enough number of images of the same person. This
makes NFormer particularly interesting in more complex
and large-scale settings with many cameras and crowds and
less relevant in smaller setups.

4.4. Comparison with SOTA methods

Last, we compare the performance of NFormer with re-
cent state-of-the-art methods on Market1501, DukeMTMC-
reID, MSMT17 and CUHK03 in table 4. Overall, our
proposed NFormer outperforms other state-of-the-arts or
achieves comparable performance.

Results on Market-1501. As shown in table 4, NFormer
achieves the best mAP and comparable top-1 accuracy
among all the state-of-the-art competitors. Specifically,
even with a simple feature extractor Res50, the mAP of
NFormer outperforms the second-best method ISP [51]
(with HRNet-W30 [33] backbone) by a large margin 2.5%.
When combining NFormer with a better feature extrac-
tor from ABDNet [4], the mAP/rank-1 accuracy is fur-
ther boosted by 1.9%/1.0% and outperforms the ISP [51]
by 4.4% in terms of mAP. Notably, NFormer outperforms
methods STF [21] and GCS [3] which build relations inside
each training batch by 8.4% and 9.5% in terms of mAP. This
indicates that the relation modeling among all input images
both during training and test leads to better representations.
The visualization of the ranking lists is shown in the Supple-
mentary Material section B, from which we can see that the
NFormer could help to constrain the outliers and improve
the robustness of the ranking process.

Results on DukeMTMC-reID. The results are pre-
sented in table 4, from which we can see that our method
outperforms other state-of-the-arts significantly. Specifi-
cally, NFormer with Res50 feature extractor gains 3.5%
improvement in terms of mAP over second-best method
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Method Market-1501 duke-reID MSMT17 CUHK03-L CUHK03-D

T-1 mAP T-1 mAP T-1 mAP T-1 mAP T-1 mAP

PCB+RPP (ECCV’18) [29] 93.8 81.6 83.3 69.2 68.2 40.4 - - 63.7 57.5
GCS (CVPR’18) [3] 93.5 81.6 84.9 69.5 - - - - - -
MHN (ICCV’19) [2] 95.1 85.0 89.1 77.2 - - 77.2 72.4 71.7 76.5
OSNet (ICCV’19) [50] 94.8 84.9 88.6 73.5 78.7 52.9 - - 72.3 67.8
Pyramid (CVPR’19) [43] 95.7 88.2 89.0 79.0 - - 78.9 76.9 78.9 74.8
IANet (CVPR’19) [12] 94.4 83.1 87.1 73.4 75.5 46.8 - - - -
STF (ICCV’19) [21] 93.4 82.7 86.9 73.2 73.6 47.6 68.2 62.4 - -
BAT-net (ICCV’19) [9] 94.1 85.5 87.7 77.3 79.5 56.8 78.6 76.1 76.2 73.2
PISNet (ECCV’20) [42] 95.6 87.1 88.8 78.7 - - - - - -
CBN (ECCV’20) [52] 94.3 83.6 84.8 70.1 - - - - - -
RGA-SC (CVPR’20) [40] 96.1 88.4 - - 80.3 57.5 81.1 77.4 79.6 74.5
ISP (ECCV’20) [51] 95.3 88.6 89.6 80.0 - - 76.5 74.1 75.2 71.4
CBDB-Net (TCSVT’21) [30] 94.4 85.0 87.7 74.3 - - 77.8 76.6 75.4 72.8
CDNet (CVPR’21) [15] 95.1 86.0 88.6 76.8 78.9 54.7 - - - -
PAT (CVPR’21) [18] 95.4 88.0 88.8 78.2 - - - - - -
C2F (CVPR’21) [39] 94.8 87.7 87.4 74.9 - - 80.6 79.3 81.3 84.1

Res50 93.2 83.5 86.1 76.1 74.9 50.1 74.7 73.8 73.4 71.2
+NFormer 94.7 91.1 89.4 83.5 77.3 59.8 77.2 78.0 77.3 74.7
∗ABDNet(ICCV’19) [4] 95.4 88.2 88.7 78.6 78.4 55.5 78.7 75.8 77.3 73.2
+NFormer 95.7 93.0 90.6 85.7 80.8 62.2 80.6 79.1 79.0 76.4

Table 4. Quantitative results on Market-1501, DukeMTMC-reID, MSMT17 and CUHK03 datasets. T-1 means top-1 accuracy and mAP
means mean average precision. The best performance value in each column is marked by bold and the second-best performance value is
marked by underline. The symbol “-” indicates that the corresponding value is not provided in the corresponding paper. ∗ represents our
reproduced performance.

ISP [51]. NFormer with ABDNet feature extractor outper-
forms ISP [51] by 1.0%/5.7% in terms of top-1/mAP. We
observe that the improvement is more pronounced for the
mAP than for the top-1 metric. The reason is that NFormer
reforms the representation of all the input persons, and in
general impacts positively the overall search, not just the
top retrieval.

Results on MSMT17. As shown in table 4, the NFormer
with Res50 feature extractor outperforms the second best
method RGA-SC [40] (ResNet-50 backbone) by 2.3% in
terms of mAP, while NFormer with ABDNet feature extrac-
tor outperforms RGA-SC [40] by 0.5%/4.7% in terms of
top-1/mAP. The NFormer outperforms the baseline model
significantly by 2.4%/9.7% top-1/mAP, which shows that
NFormer works even better on larger datasets, as there is
rich neighbor information for each person.

Results on CUHK03. We conduct experiments on
both the manually labelled version and the detected ver-
sion of CUHK03 dataset. From table 4, we can see that the
NFormer with ABD-net achieves comparable performance
on both labelled and detected sets. NFormer with Res50
feature extractor outperforms baseline model by 2.5%/4.2%
and 3.9%/3.5% top-1/mAP on Labelled and Detected sets.
We further illustrate the reasons for the fewer improvements

on CUHK03 dataset. We count that the average number of
images per identity in CUHK03 is 9.6, which is much less
than 25.7 in Market-1501, 23.4 in DukeMTMC-reID, and
30.7 in MSMT17. So the NFormer can not learn much rele-
vant information from the neighbors. We provide a detailed
analysis in the limitation part in the ablation study.

5. Conclusion

In this paper, we propose a novel Neighbor Transformer
Network for person re-identification, which interacts be-
tween input images to yield robust and discriminative repre-
sentations. In contrast to most existing methods focusing on
single images or a few images inside a training batch, our
proposed method models the relations between all the input
images. Specifically, we propose a Landmark Agent Atten-
tion to allow for more efficient modeling of the relations be-
tween a large number of inputs, and a Reciprocal Neighbor
Softmax to achieve sparse attention to neighbors. As such,
NFormer scales well with large input and is robust to out-
liers. In extensive ablation studies, we show that NFormer
learns robust, discriminative representations, which are easy
to combine with third methods.
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