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Abstract

In computer-aided design (CAD) systems, 2D line draw-
ings are commonly used to illustrate 3D object designs.
To reconstruct the 3D models depicted by a single 2D line
drawing, an important key is finding the edge loops in the
line drawing which correspond to the actual faces of the
3D object. In this paper, we approach the classical prob-
lem of face identification from a novel data-driven point
of view. We cast it as a sequence generation problem:
starting from an arbitrary edge, we adopt a variant of the
popular Transformer model to predict the edges associated
with the same face in a natural order. This allows us to
avoid searching the space of all possible edge loops with
various hand-crafted rules and heuristics as most existing
methods do, deal with challenging cases such as curved
surfaces and nested edge loops, and leverage additional
cues such as face types. We further discuss how possi-
bly imperfect predictions can be used for 3D object recon-
struction. The project page is at https://manycore-
research.github.io/faceformer.

1. Introduction
In this paper, we revisit a classical problem in computer-

aided design (CAD), namely the conversion of 2D line
drawings into 3D objects. In a traditional CAD pipeline,
design engineers commonly draw a 2D wireframe1 of the
desired object when creating their ideas and when commu-
nicating their ideas to others. Therefore, there is a strong
need to develop algorithms which can convert 2D line draw-
ings into 3D solid models for analysis, simulation, and man-
ufacturing.

An important step of 3D reconstruction from 2D line
drawings is face identification, that is, finding loops of the
edges which correspond to faces of the 3D object (Figure 1).
If the correct face configuration of an object can be ob-
tained, the number of degrees of freedom in its reconstruc-
tion will be greatly reduced. Many studies have been per-

∗Work done during an internship at Manycore Tech Inc.
1We use the terms “wireframe” and “line drawing” interchangeably.

Figure 1. Given a 2D line drawing, face identification aims to
find edge loops which correspond to actual faces of the 3D object.
First row: A case where several faces (including the one indicated
by a red arrow) are enclosed by two or more loops. Second row:
A case where multiple topologically correct interpretations exist.

formed to achieve this goal, and in certain cases, a satisfac-
tory solution exists. For example, it is well known that there
is a unique planar embedding when the object has genus 0
and the drawing is 3-connected, from which the set of faces
can be determined [24]. However, for a general manifold
object with complex geometry (e.g., curved surfaces) and
topology (e.g., high genus), the task remains difficult.

A close look at current methods reveals two primary
sources of challenges. The first one is the algorithmic com-
plexity. As no analytical solution is available for a general
manifold object, these methods need to search through the
space of all possible face loops, which grows exponentially
with the number of vertices. In order to make the solu-
tion efficient, much effort has been made to design heuristic
search algorithms [7, 18, 19, 27]. The second one is the
inherent ambiguity in reconstructing 3D objects from 2D
projections. For example, it is impossible for a topological
algorithm to tell if two nested cycles (Figure 1, first row)
are coplanar, thus are two loops of the same face. Besides, a
single 2D projection may yield multiple topologically cor-
rect solutions (Figure 1, second row). In such cases, ad-
ditional heuristics (e.g., number of cycles, regularities) or
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human intervention is required to choose the final output.
Nevertheless, humans can effortlessly “see” the real

faces in a typical line drawing, including those in Figure 1.
Rather than performing a tedious search for the face loops,
our ability to quickly identify the faces seems to be at-
tributed to our past experience interacting with 3D objects.
This makes us wonder: Is it possible for a computer to learn
to recognize faces in a data-driven fashion? This work rep-
resents a first attempt to answer the question. We train a
deep neural network to detect faces using a large collec-
tion of 3D objects and their 2D projections. This way, we
are able to avoid exploring a search space of exponential
order. Moreover, by learning from ground truth 3D data,
our method implicitly learns to generate the most plausible
solutions, resolving the inherent ambiguity associated with
the problem.

To this end, we cast face identification as a sequence gen-
eration problem, leveraging the natural order of co-edges in
a face loop (see Section 3 for details). Given a set of co-
edges in a 2D line drawing, we train a variant of the popular
Transformer model [28] to predict one co-edge index that
forms the face at one timestamp. For each detected face,
we further classify it into different types such as planes and
cylindrical surfaces. On the public ABC dataset [15], our
model achieves 93.8% and 95.9% in precision and recall,
respectively. Finally, with the detected faces, we develop
a simple convex optimization scheme to reconstruct struc-
tured 3D models from a single 2D line drawing.

In summary, the main contributions of this work are
two-fold: (i) We propose a first data-driven approach to
face identification and study its advantages and disadvan-
tages over existing geometry- and topology-based methods.
(ii) We develop a simple scheme to reconstruct a 3D model
from a single 2D line drawing using the face identifica-
tion results. With this work, we discuss new opportuni-
ties for incorporating learning-based approaches into estab-
lished CAD pipelines, such as identifying conflicting face
loops in a geometric constraint system for 3D modeling.

2. Related Work
Face identification and 3D reconstruction. Face identifi-
cation is a long-standing problem in the area of automatic
interpretation of line drawings. Research in this field dates
back to the ’70s and ’80s. Early work [20] proposes a ge-
ometric approach to detecting planar faces in a 3D wire-
frame: it first generates possible planes at a vertex joined
by two non-collinear edges, then searches for other vertices
lying on each such plane and tries to use the vertices to form
cycles. Subsequent work [1, 34] can deal with more gen-
eral curve networks with highly curved faces and complex
topology (i.e., manifolds with high genus). But these meth-
ods rely on 3D coordinates of the wireframe, therefore can-
not be applied to 2D projections.

Another line of work addresses the problem from a
graph-topological point of view. To find the faces of a
vertex-edge graph, Dutton and Brigham [6], Hanrahan [10]
propose to compute the planar embedding of the graph,
where the resulting regions represent the faces. Brewer and
Courter [4], Ganter and Uicker [8] generate an initial cycle
basis from the spanning tree of the graph, then perform a cy-
cle reduction procedure to find the faces. But these methods
are only suitable for genus-0 manifolds. For manifold ob-
jects of a non-zero genus or non-manifold objects, Shpitalni
and Lipson [24] present a method which searches through
the set of all possible sets of face loops and use various ge-
ometric criteria to assess them. The method could be slow
as the number of possible face loops is O(ev) and any topo-
logical algorithm for finding faces of objects of genus > 0
has exponential complexity [2]. To reduce the search com-
plexity, Liu et al. [18] propose a depth-first search that is
primarily guided by topological constraints; Liu and Tang
[19] develop a genetic algorithm which uses 2D geometric
information in its assessment criteria; Varley and Company
[27] use a heuristic search based on the shortest-path and
Dijkstra’s algorithm, and Fang et al. [7] introduce a fast al-
gorithm via edge decomposition.

Given the face topology, several studies [17, 25, 30] re-
construct the 3D object from a single 2D line drawing.
These works solve for the 3D shape in an optimization
framework, using various constraints based on structural
regularities, such as minimum standard deviation of angles
(MSDA), face planarity, line parallelism, and corner orthog-
onality. In this work, we introduce a different method which
uses the predicted face types – information previous meth-
ods do not have access to. Further, we study the impact of
imperfect face detection results on 3D reconstruction.
Deep models. Our technical approach is inspired by the
advance in sequence-to-sequence modeling [3, 28], which
has produced the state-of-the-art results in a wide range of
NLP and vision tasks lately. Specifically, our network de-
sign follows Pointer Net [29], which proposes an autore-
gressive model to generate a distribution on a given input
data set. PolyGen [21] extends this idea to generate 3D
polygon meshes by sequentially predicting the vertices and
faces using a Transformer-based architecture.

Several recent papers also apply deep networks to CAD
data [13, 16, 22, 31, 32, 33]. While our method shares
common aspects with these work, such as network de-
sign [22, 31, 33] and the use of co-edges [16], we tackle
a different problem in face identification in this paper.

3. Problem Formulation
In this paper, a 2D wireframe projection is assumed to

be an orthographic projection where all the edges (includ-
ing silhouettes) and vertices of the object are visible. We
make a few assumptions about the input line drawing: First,
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Figure 2. B-rep of an object. Hidden lines are omitted.

the hidden lines and vertices are given. Second, the cross-
ing point of two edges in a line drawing is not a vertex and
cannot be used to form faces. As such, the input line draw-
ing can be represented as an edge-vertex graph G = (V,E),
where each edge (or vertex) of the graph corresponds to ex-
actly one edge (or vertex) of the object. Note that the graph
may contain one or more connected components. In prac-
tice, these graphs may be a result of previous processing of
a rough sketch or a scanned-in drawing [26].

Given the graph G = (V,E), the goal of face identifi-
cation is to find all faces F = {f1, . . . , fM} of the object,
where each face can be written as the set of enclosing edges:
fi = {ei1 , . . . , ein}. Same as prior work [18, 27], we focus
on manifold objects only. A manifold object is defined as
a solid where every point on its surface has a neighborhood
topologically equivalent to an open disk in the 2D Euclidean
space. A key property of manifold objects is that each edge
of a manifold is shared exactly by two faces. This property
is best expressed in terms of co-edges, C = {c1, c2, . . .}, an
important type of topological entities in the B-rep. As illus-
trated in Figure 2, there is a co-edge pointing from vertex
vi to vj if and only if there is an edge connecting vi and vj .
For example, c3 and c12 are two mutually mating co-edges
associated with edge e8.

A face can be conveniently represented as a loop (i.e.,
closed path) of co-edges. For example, in Figure 2, the
loops (c1, c2, c3, c4) and (c5, c6, c7, c8, c9, c10, c11) repre-
sent two faces of the object. We follow the conventional
definition of loop direction: if a loop is viewed along its
direction, with the face normal pointing upwards, then the
face that owns the loop is to the left.

4. Face Identification via Sequence Generation
The natural order of co-edges corresponding to a face

motivates us to treat face identification as a sequence gen-
eration problem. Specifically, a face with n co-edges can
be written as: fi = (ci1 , . . . , cin), where each index it,
t = 1, 2, . . . , n, is an integer between 1 and N , and N is
the total number of co-edges. Thus, starting with an arbi-
trary co-edge ci1 , our goal is to grow it into a sequence of
co-edges (ci1 , . . . , cin) on which ci1 lies, as shown in Fig-

[PLANE]

Faceformer Faceformer FaceformerFaceformer

Co
nd

iti
on

in
g

Pr
ed

ic
tio

n

Figure 3. Our model, Faceformer, takes as input the set of all
co-edges, and current sequence of co-edge indices, and outputs a
distribution over the co-edge indices.

ure 3. To detect all the faces F = {f1, . . . , fM}, we may
use every co-edge in C as the starting co-edge and repeat
the process for N times.

In the following, we describe how to generate a single
face fi given the starting co-edge ci1 .

4.1. Face Identification Model

Since our goal is to select a subset of the input co-
edges to form the output face, we first briefly review Pointer
Net [29], a sequence-to-sequence (seq2seq) model which
uses the attention mechanism to create pointers to input el-
ements. Given the input P , the main idea is to learn the
conditional probability p(I | P ) using a parametric model,
such as LSTM [12] or Transformer [28], to estimate the
terms of the probability chain rule: p(I | P ) =

∏T
t=1 p(it |

i1, . . . , it−1, P ). Here, P = {p1,p2, . . .} is a sequence of
vectors and I = (i1, . . . , iT ) is a sequence of T indices,
each between 1 and |P |.

Similar to most seq2seq models, Pointer Net adopts an
encoder-decoder architecture. First, it obtains a contextual
embedding wk for each input using an encoder. At each
decoding time step t, the decoder outputs a pointer vector
ut, which is then compared to the contextual embeddings
via a dot-product. The resulting scores are normalized using
a softmax to form a valid distribution over the input set:

{wk}Nk=1 = Encoder(P ; θ) (1)
ut = Decoder(I<t, P ; θ) (2)

p(it = k | I<t, P ; θ) = softmaxk(u
T
t wk) (3)

Finally, the parameters of the model are learned by maxi-
mizing the conditional probabilities on a training set.
Input sequence and embeddings. In our problem, the in-
put sequence consists of all co-edges C. To further leverage
geometric cues, we propose to classify the faces into differ-
ent types – a benefit of data-driven approaches. In this work
we only consider two special face types, namely planar sur-
face and cylinder surface, but the method can be easily ex-
tended to other types. To this end, we add three special
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tokens, [PLANE], [CYLINDER] and [OTHERS], to in-
dicate different face types. We replace regular stop tokens
with the face type tokens, expecting the network to predict
one of the three tokens immediately after generating all co-
edges of the face.

We jointly embed the special tokens with the co-edges,
to obtain a total of N + 3 input embeddings. We use two
embeddings for each input co-edge, including (i) value em-
bedding, representing the coordinate value of the edge, and
(ii) position embedding, indicating the token location in the
sequence. Due to the varying edge length, we uniformly
sample a fixed number of edge points to represent the co-
edge as in [5]. The points are ordered based on the co-edge
direction. Then, we flatten the edge points and apply two
linear layers to obtain a 512-dimensional embedding.
Output sequence and embeddings. As mentioned above,
we represent each face as a sequence of co-edges fi =
(ci1 , . . . , cin). A face type token is added (i) to predict
the face type and (ii) to indicate the end of the sequence.
When a face consists of multiple loops, special care needs
to be taken to ensure a unique co-edge sequence. In such
cases, except for the loop to which the starting co-edge
belongs, we order the co-edges in each other loop from
lowest to highest first by its x-coordinate, followed by y-
coordinate. Take Figure 2 as an example, if we use c11 as
the starting co-edge, the desired face sequence should be
(c11, c10, c5, c6, c7, c8, c9).

Similar to input embeddings of the encoder, we use
learned position and value embeddings for the inputs to the
decoder. We use the co-edge’s contextual embedding from
the encoder output as its value embedding.
Network architecture. Inspired by recent success of
Transformer-based architectures [28], we adopt it as the ba-
sic block of our face identification model. Given the input
co-edge embeddings, the encoder encodes them into con-
textual embeddings, then the decoder outputs pointers based
on the contextual embeddings and the decoder input. The
model consists of 6 Transformer encoder and decoder lay-
ers, with a feed-forward dimension of 1024 and 8 attention
heads.

4.2. Training and Inference

We implement our model with PyTorch and PyTorch
Lightning. We use Adam optimizer [14] with a learning
rate of 1e-4. The batch size is set to 4. The model is trained
with 400000 iterations, taking about 30 hours to converge
on a single NVIDIA RTX 3090 GPU device.

At inference time, since our parallel model predicts faces
from all co-edges independently, there are many duplicated
faces in the result. We take three post-processing steps to
remove invalid and duplicated predictions. First, because a
face is defined as a closed path of co-edges, we filter out any
unclosed face predictions. Second, we remove predictions

that contain both co-edges associated with the same edge, as
this never happens in real faces. Finally, we identify dupli-
cated predictions by comparing the set of edges generated
in each face prediction. Note that these duplicated predic-
tions may have different face type classifications. We count
the number of times each face type is predicted, and take
the face type of the highest count as its predicted face type.

4.3. Experiments

4.3.1 Experimental Setup

Dataset. We build a benchmark for this novel task using a
subset of CAD mechanical models from ABC dataset [15].
We use pythonOCC2, a Python 3D development framework
built upon the Open CASCADE Technology, to project
CAD models into 2D line drawings. We first normalize
the shape such that the half diagonal length of the bound-
ing box is equal to 1. Then, the camera is placed at a ran-
dom distance between 1.25 to 1.5 away from the object cen-
ter, pointing towards the object. The viewpoints are ran-
domly sampled on a hemisphere. The dataset consists of
9370/202/504 samples for training/validation/testing.

To eliminate cases that are unnecessarily complicated,
we filter out shapes with more than 42 faces or 37 edges in
a face. Since the ABC dataset has many duplicate shapes,
we also run additional filters based on the shape’s topology
and three orthogonal views to remove duplicates.

Evaluation metrics. To evaluate the performance of face
identification, we compute the precision and recall at the
face level. We treat each face as an unordered set of edges.
For our model, this is the result after the post-processing
step as described in Section 4.2. A prediction f is said
to match a ground truth face f∗ if and only if the two
sets are equal. Then, let F ∗ denote the set of ground
truth faces, and F denote the set of faces detected by any
method, the precision and recall are defined as: precision =
|F

⋂
F ∗|/|F |, recall = |F

⋂
F ∗|/|F ∗|.

For face type classification, we report the classification
rate, which is the percentage of correctly classified faces
among all faces correctly detected by our model.

4.3.2 Experimental Results

Comparison with prior work. We first compare our
method with an existing method, FindingFaces [27]. To the
best of our knowledge, this is the only related work with
public code or implementation3. It assumes that, for each
co-edge, the true face has the least cost (e.g., the shortest
path) among all loops enclosing that co-edge. Then, the Di-
jkstra’s algorithm can be applied to find the least-cost closed

2https://github.com/tpaviot/pythonocc
3http://www.regeo.uji.es/FindingFaces.htm
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method precision recall runtime (s)

FindingFaces [27] 97.3 97.8 0.008
Ours 98.2 97.7 0.119

Table 1. Comparison with prior work (on the subset of polyhedral
objects only). FindingFaces does not work on non-polyhedra.

models precision recall runtime (s)

Seq2seq 77.6 76.8 0.69
Seq2seq + co-edge 94.9 90.5 0.65
Ours 93.8 95.9 0.15

Table 2. Experiment results on network design.

loops. But in practice, not all faces correspond to the short-
est paths, so a more complicated “cost” is proposed in [27].
Besides, the order in which the co-edges are considered also
affects its performance. Thus, much effort is made to de-
velop heuristic rules for edge priorities.

Despite its efficiency, a key limitation of Finding-
Faces [27] is that it is applicable to polyhedral objects only.
Among the 504 randomly sampled objects in our test set,
only 126 (25%) are polyhedra. As shown in Table 1, both
methods achieve high accuracies on this subset. Comparing
to results on the full test set in Table 2, one can infer that
polyhedra are relatively simple cases. Among the mistakes
made by FindingFaces, a notable issue is that it cannot de-
tect faces with more than one loop (i.e., objects with holes)
– a common problem for all topological approaches.

Experiment on network design. In this experiment, we
compare our model with two variants of it to illustrate the
benefits of (i) using co-edges and (ii) face-wise parallel pre-
diction.

The first variant, seq2seq, directly operates on the
edges (instead of co-edges) and generates all faces in a
sequential fashion. In this variant, the input sequence
would be the set of all edges, ordered from lowest to
highest first by its x-coordinate, then by y-coordinate.
For the output sequence, we introduce three additional
special tokens, [SOS], [EOS], and [SEP], to indi-
cate the start and end of sequence, and the separation
between faces, respectively. During training, we order
faces according to the edge indices and then concate-
nate all faces into a single sequence. Take Figure 2
as an example, the desired output sequence would be
(SOS, e1, e3, e4, e8, SEP, e2, e3, e5, e6, e7, e9, e11, SEP, e8,
e9, e10, e12, EOS).

The second variant, seq2seq + co-edge, also generates
all faces sequentially but uses co-edges. In this variant,
the input sequence would include all the co-edges and
three special tokens [SOS], [EOS], and [SEP]. We or-

input data precision recall cls. rate

Ours 93.8 95.9 97.5
Ours - perspective 93.6 96.2 97.6
Ours - fixed viewpoint 95.9 97.3 97.6

Table 3. Experiment results on input data.

der the faces in the same way as the first variant. Thus,
the desired output sequence for the example in Figure 2 is
(SOS, c1, c2, c3, c4, SEP, c5, c6, c7, c8, c9, c10, c11, SEP, c12,
c13, c14, c15, EOS).

Table 2 shows quantitative results on the full test set. The
seq2seq model using edges performs substantially worse
because (i) unlike co-edges, edges do not encode direc-
tional information, so the model cannot take advantage of
the natural order of face loops; and (ii) an edge is shared
by two faces, so there is ambiguity about which face to pre-
dict given an edge. Comparing the two models using co-
edges, the one with parallel prediction has slightly lower
precision (−1.1%) but higher recall (+5.4%). This is be-
cause it makes a prediction starting from each co-edge, thus
would cover each face several times. In contrast, the model
with sequential prediction only generates each face once.
We also record the average runtime of the models for one
shape in the test set. As one can see in Table 2, the model
with parallel prediction is much faster.

Note that our focus here is on the various ways to detect
face loops, thus we do not perform face type classification
in this experiment. To enable joint face type classification
for the two variants, one can simply replace the [SEP] to-
ken with the corresponding face type tokens. Based on our
experience, enabling face type classification has negligible
impact on the face identification results.

Experiment on input data. In the next experiment, we
study the performance of our model with different types of
input data. First, we replace orthographic projection with
perspective projection when generating the 2D line draw-
ings. As shown in Table 3, this change has very small im-
pact on all the metrics. Second, we fix the camera viewpoint
to generate an isometric drawing for each shape. In CAD,
an isometric view is commonly used to reveal as much in-
formation about the 3D shape as possible, and to avoid situ-
ations where the object’s edges or vertices coincide (or ap-
pear as joined) accidentally. Therefore, such a viewpoint is
considered easier than random viewpoints. By employing
a fixed viewpoint for all objects, our model achieves even
higher accuracies.

Furthermore, our model achieves high (and almost iden-
tical) classification rates with all input data types.

Qualitative results. Figure 4 visualizes all incorrect pre-
dictions made by our model for various objects. Some com-
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Figure 4. Incorrect predictions made by our face identification model. For each case, we show the input line drawing, followed by
predictions with wrong face loops (blue), predictions with wrong face types (green), and missed faces (red).

mon problems are (i) incomplete prediction when a face
consists of multiple nested edge loops, and (ii) grouping
edges or loops which belong to different faces. But as we
will see in the next section, these errors have varying impact
on the reconstruction of the 3D models.

5. 3D Object Reconstruction

We now tackle the problem of 3D reconstruction with the
predicted face loops and types. In the literature, this is of-
ten formulated as recovering the missing depths of the ver-
tices of a line drawing. While knowledge about face topol-
ogy significantly reduces the number of degrees of freedom,
such information itself is not enough to uniquely determine
the 3D geometry. Prior work [17, 25, 30] resort to additional
optimization criteria such as MSDA, face planarity, line par-
allelism, and corner orthogonality. We observe a few prob-
lems with these approaches: (i) the criteria are designed to
emulate the human perception of a 2D line drawing as a
3D object, but it is not uncommon for them to be violated
in practice; (ii) the search for optimal solutions could get
stuck at local minimum; (iii) they do not use information
about face types.

Our primary goal is to build 3D models from the out-
put of a deep face identification model – something never
considered in prior work. Thus, we prefer a solution which
decouples the impact of mistakes made by the network from
that of other constraints or algorithms employed.

To this end, we develop a simple method that relies on
only one type of constraints: line parallelism. As shown
in Figure 5(a), we assume that there are three mutually or-
thogonal directions {l1, l2, l3} in the 3D scene, i.e., lTj lk =

(a) (b)

Figure 5. 3D reconstruction with predicted faces. (a) Illustration
of three dominant directions. (b) Handling curved surfaces.

0,∀j 6= k. While these directions are provided a pri-
ori in this work, techniques for automatic estimation exist:
for orthographic projections, these directions can be found
by grouping parallel lines in a line drawing; for perspec-
tive projections, these directions correspond to the three
dominant vanishing points. Afterward, the 3D directions
{l1, l2, l3} can be obtained via camera calibration [11].

With this assumption, we are able to align the faces to the
dominant directions according to their enclosing edges and
solve for the 3D geometry via convex optimization. Below
we first describe our method for objects with planar faces,
then extend it to curved surfaces.

5.1. 3D Reconstruction of Planar Objects

Suppose we are given an object with M faces F =
{f1, . . . , fM} and L vertices V = {v1, . . . , vL}. For each
vertex, we write vl = [xl, yl, zl]

T , where zl is the unknown
depth of vl in the camera coordinate system.

If the object is planar, then each face fi can be repre-
sented by the plane equation aix + biy + z + ci = 0.
If a vertex vl lies on two or more faces, for each pair of
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faces, say (f1, f2), we have a1xl + b1yl + c1 − a2xl −
b2yl − c2 = 0. For all vertices in V , we can write sim-
ilar constraints for pairs of faces. Rewriting all these lin-
ear equations in matrix form, we have: P1f = 0, where
f = [a1, b1, c1, . . . , aM , bM , cM ]T is a vector consisting of
all the parameters of the faces.

For each dominant direction lj , j = {1, 2, 3}, we can
identify all edges in the line drawing which are parallel to
it, thus also find the faces which align with it. For such a
face, say f1, we have a1ljx + b1l

j
y + ljz = 0. Rewriting all

these linear equations in matrix form, we have: P2f = 0.
Combining the above constraints, we can find f by solv-

ing a convex optimization problem:

min
f

‖Pf‖1,

s.t. zl = −(aixl + biyl + ci) > 0,∀vl on fi.
(4)

Here, the constraints enforce that the 3D vertices lie in front
of the camera.

5.2. Handling Curved Surfaces

To deal with curved surfaces, we follow the approach
proposed in [30]. The main idea is to replace a curve with
straight line segments so that the object becomes a poly-
hedron. Then, methods for planar objects, such as the one
described in Section 5.1, can be applied. Finally, the curved
surface is recovered by fitting general Bézier curves to the
corresponding 3D vertices.

In our case, because the face types are known, the origi-
nal approach can be substantially simplified, as we (i) do not
need to employ an algorithm to distinguish between curved
and planar faces; (ii) can develop face approximation and
fitting methods for each specific face type.

Figure 5(b) shows an example of converting a curved
surface on a cylinder into planar faces. For face
(e2, e3, e5, e6), we find the singular points on curves e2 and
e5 and then replace each curve with two straight lines. Once
the 3D geometry of the polyhedron is reconstructed, the
original curves can be recovered by fitting a 3D circle to
the three vertices (e.g., v1, v2, and v3 in the figure).

5.3. Experiments

Before presenting the 3D reconstruction results based on
the predicted faces, we point out that in rare cases (< 5%)
the reconstruction may not be perfect even with ground
truth faces, due to the simple assumption (i.e., line paral-
lelism) we employ in the pipeline. Figure 6 shows two ex-
amples where major parts of the model do not align with
any dominant direction, making the reconstruction under-
constrained. As a result, the 3D model may appear to be dis-
torted (first row) or partly incorrect (second row). In prac-
tice, these may be addressed by introducing additional con-
straints. But we choose to keep the reconstruction method

Input Reconstructed shape

Figure 6. Two problematic cases of 3D reconstruction with ground
truth faces.

simple so that the impact of errors in face identification can
be better analyzed.

Figure 7 shows 3D reconstruction results for various
shapes using the predicted faces. In the first row, we show
two cases in which all faces are correctly identified and
the 3D model is fully reconstructed. As a comparison, we
also train AtlasNet [9], a popular deep learning method for
single-view 3D reconstruction, on our dataset and include
the test results in Figure 7. Unlike our method, most exist-
ing deep learning methods take an image as input and gen-
erate unstructured point cloud or meshes in an end-to-end
fashion. As one can see, such a method struggles to learn
with the wireframe inputs because the features are very
sparse when treated as an image. In contrast, we propose to
detect structures (i.e., face topology) in the wireframe and
use geometric reasoning for 3D inference. Therefore, our
method is able to output clean, structured 3D models.

The second row and third row of Figure 7 show exam-
ples in which our face identification model makes some in-
correct predictions (see Figure 4) but the 3D reconstruction
results are unaffected. For the two cases in the second row,
our model generates edge loops which are not part of the
true face topology, but all included edges fall onto the same
surface (e.g., a plane). For the two cases in the third row, the
incorrect faces are filtered because they align to more than
two dominant directions. Since the number of constraints
created by the faces is typically larger than the number of
unknowns in Eq. (4), the 3D model can be recovered even
if some faces are missed.

The fourth row shows two examples in which incorrectly
predicted faces affect local part of the 3D model. And the
fifth row shows two examples in which 3D reconstruction
completely fails and the recovered shapes appear flat. The
latter typically occurs when our model makes multiple mis-
takes (e.g., grouping edges on the opposite sides of the 3D
shape into one face). Again, we refer readers to Figure 4 for
visualization of the mistakes made by our model.

In the last row of Figure 7, we show two interesting cases
in which even humans have trouble inferring the 3D geom-
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Input Ours AtlasNet Input Ours AtlasNet

Figure 7. 3D reconstruction results. For our method, we show two different views of the reconstructed 3D wireframe, plus the mesh from
the same viewpoint as the input. For AtlasNet, we show the mesh from the same viewpoint as the input.

Figure 8. Histogram of Chamfer distances between our predicted
meshes and the ground-truth meshes on 504 objects in test set.

etry due to the chosen viewpoints. In contrast, our method
does a decent job using the extracted face loops. This sug-
gests that our method is not sensitive to the viewpoints.
Quantitative results. We compute the Chamfer distance
between the predicted meshes and the ground truth in the
test set, and plot the distributions in Figure 8. As one can
see, the structured 3D models obtained by our method tend
to be more accurate. For example, for more than 60% of the
objects, our method achieves a distance of < 10−3.

6. Discussion
Limitations. In this work, we present a data-driven ap-
proach to face identification. We point out that the proposed

method should not be treated as a replacement or competi-
tor to the geometry- and topology-based methods. Instead,
we have found that our method complements existing tech-
niques in several aspects, such as capturing the intent of de-
signers, handling curved surfaces and disjoint components
in the edge-vertex graph. Meanwhile, our model could
make wrong predictions, while geometry- and topology-
based methods are guaranteed to succeed when all assump-
tions are met.

Our method assumes that input 2D wireframe is clean
and noise-free. In a practical system (e.g., SMARTPA-
PER [23]), this may be the outcome of multiple sketch
cleaning and beautification steps. We hypothesize that our
deep model can be made robust to noisy inputs with proper
training (e.g., data augmentation), but a thorough investiga-
tion is beyond the scope of this paper.

Future directions. Our work opens up several directions
for future work. One direction we are particularly inter-
ested in is identifying conflicting constraints (due to incor-
rect predictions made by a deep network) in a geometric
constraint system for 3D reconstruction. In this work, we
treat all predicted faces equally. A better solution will not
only improve the 3D reconstruction results, but may also
generalize to other types of structural constraints in CAD.
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