
Neural Prior for Trajectory Estimation

Chaoyang Wang1 Xueqian Li2,3 Jhony Kaesemodel Pontes3 Simon Lucey12

1Carnegie Mellon University 2University of Adelaide 3Argo AI

chaoyanw@cs.cmu.edu {xueqian.li, simon.lucey}@adelaide.edu.au jpontes@argo.ai

Abstract

Neural priors are a promising direction to capture low-

level vision statistics without relying on handcrafted regu-

larizers. Recent works have successfully shown the use of

neural architecture biases to implicitly regularize image de-

noising, super-resolution, inpainting, synthesis, scene flow,

among others. They do not rely on large-scale datasets to

capture prior statistics and thus generalize well to out-of-

the-distribution data. Inspired by such advances, we in-

vestigate neural priors for trajectory representation. Tra-

ditionally, trajectories have been represented by a set of

handcrafted bases that have limited expressibility. Here,

we propose a neural trajectory prior to capture continu-

ous spatio-temporal information without the need for offline

data. We demonstrate how our proposed objective is opti-

mized during runtime to estimate trajectories for two impor-

tant tasks: Non-Rigid Structure from Motion (NRSfM) and

lidar scene flow integration for self-driving scenes. Our re-

sults are competitive to many state-of-the-art methods for

both tasks.

1. Introduction

Representing space-time with 3D trajectories provides

longer-term information about the dynamics of a 3D scene

compared to pairwise representations such as scene flow. It

also enables generic priors to solve underconstrained low-

level vision tasks, especially for problems that need to be

agnostic to different objects and scenes. Here we aim to

model a general and dataless prior for estimating 3D trajec-

tories through a neural runtime optimization approach.

Most works studying trajectory priors are from the Non-

Rigid Structure from Motion (NRSfM) field, where they are

handcrafted to solve the ill-posed inverse problem of lift-

ing dynamic 2D points to 3D. The most straightforward

trajectory prior assumes that points move smoothly over

time [56, 57]. However, it does not provide enough con-

straints to disambiguate the camera and point motion. On

the other hand, a collection of trajectories observed from

a scene contain statistics for stronger priors. The seminal

work of Akhter et al. [3] proposed to represent trajectories

𝐩

MLP

Applications

𝑓! 𝑓"

(i) spatial smoothness (iii) compressibility

Neural trajectory prior

𝛗

continuous traj. basis functions

…

(𝑢, 𝑣) or

(𝑥, 𝑦, 𝑧, 𝑡)

∗𝑓#𝐭′ 𝜏! 𝜏" 𝜏#

weight decoder

(𝑥, 𝑦, 𝑧, 𝑡)

𝜏

𝜏(𝑢, 𝑣)

…

(ii) temporal smoothness

(a) NRSfM

(b) scene flow integration

weights

𝜶

∗

Figure 1. Our neural trajectory prior (NTP) regularizes the mo-

tion of a point to be smooth in space by the continuous mapping

of a coordinate MLP fϕ. Trajectories are represented as a linear

combination of overcomplete continuous basis functions τ1, τ2,

..., τK . The linear weights α is regularized to be compressible to

lower dimensional ϕ, and the basis functions are generated by a

temporal coordinate MLP fτ , which implicitly enforces temporal

smoothness. We show the results of applying NTP on NRSfM and

lidar scene flow integration.

by linearly combining a small set of Discrete Cosine Trans-

form (DCT) bases. However, it is well known that such

low-rank linear models are not sufficient to represent com-

plex motions and dense data where the number of trajecto-

ries is far greater than the length of the sequence. Recent

state-of-the-art NRSfM methods [33, 34, 53] combine both

shape and trajectory priors or are tailored towards specific

scenes such as deforming surfaces [31, 42, 44]. In this pa-

per, we revisit the idea of a general trajectory prior. Our

approach differs from current methods in that we use the

architectural regularization properties of neural networks.

We are inspired by the recent innovations of using co-

ordinate MLPs [36, 38, 40, 45] and propose a new general

neural trajectory prior to model continuous spatio-temporal

motions of dynamic scenes (see Fig. 1). We utilize the

smoothness bias of coordinate MLPs to enforce trajectories

to be temporally smooth and encourage nearby positions to

share similar motions. We also introduce a bottleneck layer

to the model, thus effectively constraining the output tra-

jectories to be compressible to low dimensions. MLPs with

bottleneck has previously been used to regularize shapes for

shape-based NRSfM approaches [10, 53, 59, 60], showing

16532

greater expressibility and accuracy compared to low-rank

models on large datasets. To our knowledge, we are the first

to propose such a strategy for modeling trajectories.

Our neural trajectory prior can be easily integrated to

problems outside the NRSfM domain, such as estimating

long-term scene flow from lidar point clouds. Despite the

remarkable progress on scene flow estimation given a pair

of point clouds [21, 30, 37, 47, 62], achieving similar per-

formance over longer sequences has still been challeng-

ing. We are interested in integrating sparse 3D lidar points

across tens of frames back to a single reference frame,

where the scene is dynamic with multiple objects. In ad-

dition, working with lidar point clouds has its unique chal-

lenges due to the sparsity and unstructured nature of the

signals. This makes image-based multi-frame flow meth-

ods [16,26,27,50] non-applicable. We demonstrate that our

proposed neural trajectory prior is sufficient to regularize

scene flow integration both spatially and temporally while

outperforming naive Euler-based integration methods pro-

posed by state-of-the-arts scene flow estimators [30, 36].

Contributions. We propose a general neural trajectory

prior. It uses a bottleneck architecture to regularize trajec-

tories and a coordinate MLPs to regularize spatio-temporal

dependencies when dealing with dense problems. We val-

idate the effectiveness of the bottleneck trajectory prior by

achieving competitive results with NRSfM methods that use

both shape and trajectory priors. Next, we show that it can

be paired with existing neural shape priors to achieve state-

of-the-art results across well-known sparse NRSfM bench-

marks. Also, we show that our method outperforms a re-

cently proposed neural-based method [53] on dense NRSfM

benchmarks while being significantly faster. For lidar scene

flow integration, we show that our approach produces better

trajectories by modeling spatio-temporal information than

if naively integrating pairwise flows from scene flow esti-

mators. We demonstrate the applicability of our scene flow

integration through point cloud densification.

2. Related works

Non-rigid structure from motion. We focus our discus-

sion on trajectory-based approaches. Readers are referred

to Jensen et al. [28] for a comprehensive survey of NRSfM

methods. The seminal work of Akhter et al. [3] introduced a

pure trajectory-based factorization method, which assumes

that trajectories of different points can be represented as a

linear combination of a small number of DCT bases. Other

methods have explored the convolutional structure of tra-

jectories [11, 65] as well as the assumption that different

trajectories can be clustered into a small number of linear

subspaces [31, 33, 34, 64]. In Sec. 3.1 we give a more de-

tailed discussion of trajectory priors explored in literature.

Lidar scene flow estimation. We review state-of-the-art

methods that estimate scene flow directly from point clouds.

Most deep methods are based on full supervision from

large-scale synthetic data and then fine-tuned on small real-

world datasets [21, 37, 47, 61]. The scarcity of large-scale,

real-world data with lidar scene flow annotations inspired

the proposal of self-supervised methods [30, 39, 55, 62].

However, these methods still rely on large synthetic datasets

to get adequate data prior knowledge. Recently, Pontes et

al. [46] proposed a dataless method to regularize the scene

flow using a graph Laplacian and a simple objective func-

tion that is optimized during runtime. Of particular interest

to our work is the recent Neural Scene Flow Prior work [36]

that proposed the use of a coordinate-based network to reg-

ularize scene flow implicitly during runtime. Such dataless

methods have shown great generalizability and robustness

to different data.

3. Background

3.1. Review of rank­based trajectory priors

Although a 3D trajectory is high-dimensional, a collec-

tion of trajectories from real-world scenes tends to have

simpler structure, thus compressible to lower dimensions.

Prior works have explored statistical trajectory priors by

reasoning about the rank of trajectories. To motivate our

approach, we go through different scene assumptions, and

review several well-known rank-based trajectory priors.

Rigid body. Given a sequence of rigid motions Mt∈R
3×4

and time index t∈[1, F], the position of i-th point of

a rigid body at time t is st,i=Mts̃i, where s̃i∈R
4 de-

notes the homogeneous coordinate at the canonical frame.

The trajectory of i-th point is represented as a vector

τi=[s⊤1,i, . . . , s
⊤
T,i]

⊤∈R3F . The column-wise concatena-

tion of P trajectories gives a matrix T∈R3F×P whose max-

imum rank=4, since T=MS̃, where M∈R3F×4, S̃∈R4×P

are row-wise and column-wise concatenation of Mt’s and

s̃i’s. When the rigid object is planar, rank(T) further re-

duces to 3 due to rank(S̃)=3.

Multi-rigid body. Based on the analysis of single rigid

body, the maximum rank of T for K rigid bodies is 4K [12].

(Multi) non-rigid body. Motivated by the result from

multi-rigid body, Bregler et al. [8] propose to assume T
being low rank for non-rigid objects. However, the low

rank assumption is inadequate when the non-rigid defor-

mation is complex or the scene consists of multiple non-

rigid objects [34]. Instead, a more realistic assumption is

that points with similar motions are clustered into a low-

dimensional subspace, while the whole trajectory space can

still be high-dimensional. In other words, trajectories are

drawn from a union of multiple low-dimensional linear sub-

spaces [34, 64].

Dense non-rigid surface. Deformation of surfaces usu-

ally preserves local differential structure such as isometry

and conformality [6, 44]. To provide extra conditions for

the motion, piece-wise planarity [58] and infinitesimal pla-

26533

narity [43] are assumed for the local geometry of surfaces.

This implies that the trajectory subspaces for neighboring

points on surfaces are low-dimensional, and the subspaces

in neighboring spatial positions should be similar to each

other. Based on this insight, Kumar et al. proposed to view

the trajectory subspaces as points in a Grassmann mani-

fold [22], and measure the similarity using the projection

metric distance [31].

Remark. Prior arts [31, 33] consider the trajectories as dis-

crete variables and requires complex notions to cluster tra-

jectories and enforce spatial dependencies. In this work, we

attempt to utilize the notion of neural simplicity biases to

model a simpler and continuous trajectory prior.

3.2. Simplicity bias of MLP

Low-rank bias of bottleneck MLP. Studies have shown

that deep MLPs are biased towards low rank outputs even

if it is overparameterized [25]. This observation has been

used as evidence to explain the good generalization ability

of neural networks. This low-rank simplicity bias can be

further strengthened by introducing bottleneck layers into

the MLPs. Hence bottleneck auto-encoders and decoders

are the modern choice for learning a compact represen-

tation of high-dimensional data [24, 29]. Recent NRSfM

works used bottleneck MLP to represent and constrain 3D

shapes [53,60]. They showed competitive results compared

to state-of-the-arts methods using complex mathematical

notions such as union-of-subspaces. However, modeling

3D shape space is expensive when the data is dense, as

shapes become extremely high dimensional which blows up

the number of learnable parameters. In this work, we pro-

pose to instead model the trajectory space to take advantage

of the fact that trajectories are lower dimensional compared

to dense 3D shapes, thus more scalable to optimize.

Smoothness biase of coordinate MLP. Many real-world

signals can be viewed as a continuous vector field, e.g., a

2D image can be represented as a continuous mapping from

2D pixel coordinates to RGB values. Recently, multi-layer

perceptron (MLP) has been successfully applied to model

continuous vector fields such as signed distance field [45],

radiance field [38], and scene flow field [40]. Compared to

discrete representations such as voxels, the MLP represen-

tation enables (i) cheaper memory cost for higher dimen-

sional data; (ii) better quality for interpolation; (iii) sim-

pler optimization with gradient descent. Moreover, optimiz-

ing MLPs by gradient descent biases torwards smooth solu-

tions [7, 23, 52]. This enables its success on tasks that tra-

ditionally require handcrafted smoothness priors. In tasks

such as scene flow estimation using lidar point clouds, Li et

al. recently showed that using the inductive bias of MLP

outperforms graph Laplacian-based priors [36]. Therefore,

we choose to represent the trajectories as a vector field pa-

rameterized by MLPs.

4. Neural trajectory prior

The proposed prior is modeled as a continuous trajectory

field, which maps a low-dimensional Euclidean coordinate

to a continuous trajectory:

fNT : p ∈ R
d −→ τ ∈ Fτ , (1)

where Fτ denotes the set of functions spanned by K trajec-

tory basis functions {τk(t) : R → R
3}Kk=1. The dimension

d of the input coordinate p depends on specific tasks. For

lidar point cloud integration, p is 4D space-time position of

a physical point. For dense NRSfM, p is 2D pixel coordi-

nates of the reference image.

As illustrated in Fig. 1, the trajectory field is modeled as,

fNT(p) =
K∑

k=1

(fα ◦ fϕ)k(p) τ
k, (2)

where fϕ:p∈R
d → ϕ∈RL is a vector field which out-

puts a low dimensional representation of trajectories, and

fα:ϕ∈R
L → α∈RK decodes ϕ to a higher-dimensional

weight vector ϕ. Then the output trajectory is the lin-

ear combination of basis τk with weights produced by

(fα ◦ fϕ)(p), where ◦ denotes function composition.

Finally, the trajectory basis functions are modeled with

a single continuous function fτ : t ∈ R → R
3K , which

outputs the concatenation of the positions of each τk at time

t. We explain the details of each functions as follow.

Code field fϕ. We use MLPs with ReLU activation to

model fϕ, which results in a piecewise linear and Lip-

schitz continuous trajectory code field [63]. Recent ad-

vance in coordinate-based MLPs suggests encoding the in-

put coordinates with sinusoidal functions (i.e., positional

encoding) helps improve convergence on high-frequency

details [38, 49, 54]. In our experiments, due to the mo-

tions being naturally of low frequency, an MLP without po-

sitional encoding is enough. Ablation of using positional

encoding is provided in the supplementary. We set the MLP

to have 4 hidden layers, each with 128 hidden units.

Similar to choosing rank or number of subspaces in pre-

vious trajectory reconstruction works, the dimension of the

trajectory codes is a hyperparameter to choose based on the

complexity of the scene. We find that a fixed dimension of

4 is already expressive enough for all experiments in this

work. We follow the practice as in deterministic autoen-

coders [17] which brings ∥ϕ∥22 as a regularization. It is

shown to be effective to achieve similar accuracy as the code

dimension increases.

Trajectory basis functions. The overcomplete trajectory

basis functions {τk(t) : R → R
3}Kk=1 are generated by a

single temporal coordinate MLP fτ . The time input t to

the MLP is embedded by cosine positional encoding. The

36534

frequencies of the encoding is sampled logarithmically be-

tween [1, πF], so as to cover the complete spectrum of a

trajectory if the number of input frames is F . We pick

K = 256, which is greater than the rank of trajectories in

most scenarios.

We also note that the trajectory basis τk produced by fτ
is not defined in the world coordinate as it was in Sec. 3.1,

but shifted so that they start from the origin. Though the

statistical properties analyzed previously still hold. In prac-

tise, we fill the starting positions of trajectories as zero and

do not evaluate fτ when t = 0.

Trajectory weight decoder fα. We use a 128-width MLP

with 4 layers to decode weights from the trajectory codes.

Details are provided in the supplementary. The role of using

a decoder here is different from that in generative modeling.

We utilize the expressiveness of the non-linear representa-

tion of the decoder as well as the constraints brought by the

bottleneck dimension. However, sampling the code space is

not required in our task. Thus enforcing a prior distribution

on the latent code [16, 51] does not affect our performance.

In the next sections, we validate the NT prior in different

applications, i.e., non-rigid structure motion in Sec. 5 and

lidar scene flow integration in Sec. 6.

5. Non-rigid structure from motion

Task. NRSfM takes input from a sequence of 2D keypoint

positions of a deforming object and outputs the 3D keypoint

positions. Formally, denote the input 2D keypoint positions

as a 2D measurement matrix W∈R2F×P , which is a row-

wise concatenation of F number of matrices wt∈R
2×P ,

each storing 2D keypoint positions of the target object at

the t-th view. NRSfM algorithms solve for the 3D keypoint

positions st∈R
3×P and camera projection matrices Mt’s.

The first clue to solve NRSfM is minimizing the 2D re-

construction cost. Assuming camera projection is weak per-

spective, the 2D reconstruction cost is formulated as

C2D recon. = ∥W −MS∥F , (3)

where S∈R3F×P is the row-wise concatenation of un-

known st’s, and W=blockdiag(M1, . . . ,MF). C2D recon.

alone provides fewer number of constraints than the number

of unknowns (i.e., S, W), thus designing extra constraints is

required to solve NRSfM. Finally, we note that NRSfM uses

no object specific knowledge (e.g., kinematic constraints,

shape templates) or supervised training. Thus it is different

to learning-based tasks, e.g., 2D-3D body pose estimation,

which uses offline training on separate data.

5.1. Method

We keep a unified approach to solve both sparse and

dense NRSfM by minimizing the cost

C2D recon. + λ1Csmooth traj. + λ2∥Φ∥22, (4)

{ fz: depth field, fϕ: traj. code field. } → canonical recon.

Figure 2. Illustration of using NT prior for dense NRSfM. We

use coordinate MLPs to model the 2D depth map fz and trajectory

code field fϕ at the canonical frame. In all our dense NRSfM

experiments, we choose the code dimension to be 3, thus we can

directly visualize it in RGB. Right figure shows the reconstructed

mesh colored by the RGB visualization of trajectory codes.

Table 1. Sparse NRSfM results. Results are report with normal-

ized mean 3D error ×100. are state-of-the-art NRSfM methods,

are our baselines, are our proposed methods. Bold and under-

lined numbers denotes the best and second best result.

drink pickup yoga stretch dance shark

#frames 1102 357 307 370 264 240

#points 41 41 41 41 41 91

PTA [3] 2.87 19.39 12.43 10.35 24.26 29.33

CSF2 [20] 2.27 17.91 11.79 11.36 18.77 11.17

PND [35] 0.37 3.72 1.40 1.56 14.54 1.35

BMM [14] 2.66 17.31 11.50 10.34 18.64 23.11

BMM-v2 [32] 1.19 1.98 1.29 1.44 10.60 5.51

PAUL [60] 0.47 2.03 1.71 1.62 10.22 0.37

smooth traj. 1.42 7.87 2.13 2.34 13.11 13.54

low rank (=12) 1.24 2.11 3.87 1.82 10.25 13.19

NTP (=4) 0.34 1.84 2.10 1.51 9.78 9.42

PAUL + NTP 0.28 1.16 1.20 1.32 8.53 0.91

where Csmooth traj.=
∑P

i=1 ∥∇τi∥
2
2+∥∇2τi∥

2
2 encourages the

trajectories to be smooth. τi denotes the trajectory of ith

point. Φ=[ϕi, . . . ,ϕP] concatenates the trajectory codes.

The difference in our approach for handling sparse and

dense sequences is how S is constructed.

Sparse NRSfM. We pick the first view as the canoni-

cal frame, i.e. M1=[I2,0], which means s1=[w⊤
1 , z

⊤]⊤,

where z∈RP is the unknown depth values for points in the

first frame. Then S=1F ⊗ s1+[τ1, . . . , τP], where ⊗ de-

notes Kronecker product. In test time, we minimize the

cost (4) with respect to z, M2, ..., MF , Φ and θα, θτ which

is the network parameters of fα, fτ .

Dense NRSfM. The construction of S is almost identi-

cal to the sparse version, except that we assume elements

of z and ϕi’s are drawn from a continuous depth field fz
and the trajectory code field fϕ (see Fig. 2), rather than

treating them as independent variables to optimize. Both

fz and fϕ are modeled as coordinate-based MLPs. There-

fore, in test time, the variables to optimize are camera ma-

trices M2, ..., MF and network weights θz , θϕ, θα and θτ .

To speedup optimization and reduce memory cost, we per-

form stochastic gradient descent by drawing random set of

points from the continuous fields at each iteration. This is

46535

Table 2. Dense NRSfM results on synthetic face sequences. Our method ranks among the top. In particular, it outperforms a recent

neural-based approach N-NRSfM [53] with significantly less runtime. ∗ denotes results using different hyperparameters per sequence.

Results are reported by the normalized mean 3D error.

TB [4] MP [41] VA [15] DSTA [13] CDF [18] CMDR [19] GM [33] JM [31] SMSR [5] PPTA [2] EM-FEM [1] N-NRSfM [53] NTP(Ours)

traj. A 0.125 0.061 0.035 0.037 0.089 0.032 0.029 0.028 0.030 0.031 0.039 0.045 / 0.032∗ 0.031

traj. B 0.135 0.076 0.038 0.043 0.091 0.037 0.031 0.033 0.032 0.057 0.030 0.049 / 0.039∗ 0.034

fr
am

e
5

0
C

an
o

n
ic

al
 f

ra
m

e

(a) GT (b) w/o 𝑓", 𝑓# (d) full(c) w/o 𝑓"

Norm. error

= 0.097

Norm. error

= 0.034

Norm. error

= 0.032

Figure 3. Ablations with and without the continuous fields

for dense NRSfM. The first column shows the ground-truth 3D

meshes from the 1st and 50th frame of the synthetic face traj. A

sequence. Results with and without fz , fϕ are shown on the rest

of columns. On the top row, meshes are colored to visualize the

recovered trajectory code vectors. The bottom row zooms in to

highlight the geometric difference of the reconstructions. It shows

that without spatial regularization from both fields, both the recon-

struction and trajectory codes are extremely noisy. Only adding fz
without fϕ still exhibits discontinuities in the reconstruction due

to the spatial discontinuities in the trajectory codes. Finally, the

full method produced smooth and more accurate result.

not applicable for the shape-decoder-based approaches, e.g.,

N-NRSfM [53]. See supplementary for details.

5.2. Experiments

Dataset. We report performance on standard benchmarks

used in NRSfM literature: (i) sequences of articulated mo-

tions, drink, pickup, yoga, stretch, dance, shark, each con-

sisting of 41-91 points per frame. (ii) two sequences of syn-

thetic faces with 99 frames and 28,000 points per frame,

captured by different camera trajectories denoted as traj. A

and traj. B. [15]. In addition, we experiment with real world

dense sequences, barn owl, real face and Kinect sequences.

Metrics. We employ normalized mean 3D error which

is the most commonly used metric in NRSfM literature.

To evaluate normalized 3D error, the reconstructed shape

S is first aligned to the 3D ground truth SGT by orthogo-

nal Procrustean analysis. Then the error is calculated as

∥Salign−SGT∥F / ∥SGT∥F .

Sparse NRSfM results. In Tab. 1, we collected several

classic methods, PTA [3], CSF2 [20] and BMM [14], as

well as the current state-of-the arts methods, PND [35],

PAUL [60] and a revised version of BMM by Kumar [32].

Among those, PTA uses low-rank trajectory prior which is

barn owl real face

Kinect paper Kinect Tshirt

Figure 4. Qualitative 3D reconstruction results on real non-

rigid sequences. Meshes are colored to visualize trajectory codes.

the most relevant work to our approach. Our method (de-

noted as NT prior) significantly outperforms PTA and is

comparable to the state-of-the-arts methods except the shark

sequence. In addition, motivated by Kumar’s finding that

low rank priors may be underrated due to insufficient al-

gorithms used in prior works, we implemented a stronger

low-rank baseline using the effective optimization proce-

dure adapted from this work. In addition, we also created a

baseline with simple smoothness prior. The details of these

two baselines are given in the supplementary. Finally, we

found that a simple combination of our method to the neural

shape-based approach PAUL [60], yields the new state-of-

the-art (technical details are in supplementary).

Dense NRSfM results. We performed ablations to our

method by removing fz and fϕ as shown in Fig. 3. We

found that both fz and fϕ helps improve the details of the

reconstruction. See caption of Fig. 3 for more details.

In Tab. 2 we quantitatively compared our method to

state-of-the-art dense NRSfM methods on synthetic face se-

quences. Our method ranks among the top methods, with

only ∼0.002 behind the top method JM [31]. We formed a

closer comparison to N-NRSfM [53] which also uses a neu-

ral prior but defined on the shape space. N-NRSfM is sen-

sitive to the hyperparameters and needs sequence-specific

tuning to be able to give comparable results to our default

settings. More importantly, thanks to the scalability of mod-

eling in the trajectory space, our model is much smaller

compared to N-NRSfM and runs much faster. It takes ∼15

minutes for our method on a single RTX2080 GPU while

N-NRSfM runs for 3+ hours.

Finally, we show qualitative results on real sequences

in Fig. 4. More details are provided in the supplementary.

56536

6. Lidar scene flow integration

Task. Given a sequence of sparse lidar point clouds cap-

turing dynamic objects, the goal is to estimate the trajectory

for each point across the point clouds. Estimating point tra-

jectories enables practical applications for annotating and

processing lidar data. For example, we could register each

point cloud directly to a specific time frame, thus perform-

ing point cloud densification. A naive solution for this task

is to integrate pairwise scene flows estimated by an off-the-

shelf method. However, such an approach has the following

challenges: (i) because the lidar points are sparse, tracing

scene flow across a long sequence most likely will end up

in empty/sparser regions causing trajectory drifts; (ii) scene

flow integration using pairwise scene flow does not capture

the temporal statistics of the scene—only spatial informa-

tion is used during the integration.

6.1. Method

The trajectory prior fNT is optimized to estimate the

full trajectory for every point in a sequence of lidar in-

put. The input points are represented using 4D coordi-

nates, denoting the spatial position and the frame number

it is captured. Feeding a point p=(x, y, z, t) to fNT yields

a trajectory represented as a sequence of 3D positions, i.e.,

τ=[τ1, τ2, . . . , τF]. We note that the 3D positions τt are

defined in the trajectory space, with an offset to the cam-

era coordinate. Thus the estimated positions for p at an-

other frame t′ is p′=gt′(p)=(τt′−τt+(x, y, z), t′). Since

p′ and p are 4D positions of the same physical point, thus

τ ′=fNT(p
′) should equals to τ . This motivates a cyclic

consistency constraint to reduce drift as

Ccon.(p, t
′) = ∥τ − τ ′∥22. (5)

At runtime, we optimize the pairwise truncated Chamfer

distance with the consistency cost

F∑

t=1

CCD(Pt±1,Pt�t±1) +
∑

p∈Pt, t′∈[1,F]

Ccon.(p, t
′), (6)

where Pt is the set of points at frame t, and

Pt�t′={gt′(p) | p∈Pt} is the points warped from frame

t to t′ according to the trajectories given by fNT. Due to the

rapid change of sparse point clouds, we only evaluate CCD

between neighboring ±1 frames. Longer temporal distance

is too challenging for the truncated Chamfer distance.

6.2. Experiment

Datasets. We used the autonomous driving dataset Argo-

verse [9], which is a large-scale dataset with challenging

dynamic motions of various object categories. We used the

official tracking validation dataset to create our own trajec-

tory dataset. In each scene, we chose the first 25 frames

Table 3. Trajectory reconstruction results on the Argoverse

dataset. We report accuracy, outliers, and Chamfer distance re-

sults for all three methods with different integration strategies. We

evaluated the methods using the entire point cloud scene (full) and

only on dynamic regions (dyn.). Our method are more accurate de-

spite dynamic or rigid motions in the scene. Note that for Acc 0.5,

Acc 1, and Out., we reported for 24 frame intervals. For Cham-

fer distance, we only reported for the full scene due to the number

of points for dynamic regions is not consistent across frames. ↑
means higher is better and ↓ means lower is better.

FlowStep3D [30]
(KNN Int.)

NSFP [36]
(KNN Int.)

NSFP [36]
(Euler Int.)

NTP
(Ours)

full dyn. full dyn. full dyn. full dyn.

Acc 0.5 (%) ↑ 5.25 62.14 45.18 63.54 45.28 63.56 52.28 69.49

Acc 1 (%) ↑ 6.81 62.49 59.86 70.25 59.52 69.70 69.88 73.55

Out. (%) ↓ 87.20 36.19 28.90 23.21 29.33 23.69 20.95 21.77

cd-10 (m) ↓ 4.27 — 5.35 — 4.43 — 2.79 —

cd-24 (m) ↓ 12.68 — 21.30 — 14.09 — 9.77 —

(a) Strict accuracy (b) Relax accuracy

(c) Outliers (d) Chamfer distance

Figure 5. Trajectory accuracy at different frame intervals. Our

method achieved the best accuracy across all frame intervals.

sampled at 10 Hz as a long trajectory. We also used the

ground-truth poses of objects in the scene and the ground-

truth ego motions of the autonomous vehicle (AV) to create

pseudo-ground-truth trajectories.

Metrics. In all experiments, we reported: 1) Chamfer

distance (cd-n) between the deformed point cloud and the

original point cloud as a metric. We chose cd-10, cd-24

to represent the Chamfer distance from 1st frame to 11th

frame, 1st frame to 25th frame, respectively. 2) Strict accu-

racy (Acc 0.5) is the percentage that the error between the

predicted trajectory and the ground truth is below 0.5 me-

ters. 3) Relax accuracy (Acc 1) indicates the percentage

that the error is below 1.0 meter. 4) Outliers (Out.) counts

the percentage that the error is larger than 3.0 meters.

Baselines. We have also implemented the learning-based

scene flow method FlowStep3D [30] and the non-learning-

based method Neural Scene Flow Prior [36] as our base-

lines. 1) FlowStep3D is a learning method which uses the

66537

(a) NTP (Ours) (b) NSFP (Euler Int.) (c) FlowStep3D (KNN Int.)

Figure 6. Visual trajectory reconstructions on the Argoverse dataset. Given a dynamic driving sequence of 25 lidar frames sampled at

10 Hz, we applied our method to estimate the trajectories of each point—the long-term flow of a point from the past (1st) to the current

(25th) frame. The first row shows a scene where the AV is stopped at an intersection waiting for the crossing traffics. The second row shows

the AV making a right turn. We only show the point cloud of the current 25th frame. The gray lines represent the estimated trajectories

for each point. Darker gray represents the most recent motion, and lighter gray represents the older motion. Note how the trajectories

estimated by our method are smooth. The NSFP with Euler integration lost tracks for most dynamic objects (e.g., dynamic cars shown in

the first row). Because FlowStep3D only outputs sparse scene flows, its integration leads to noisy trajectories and drifts over time.

(b) NTP (Ours) (c) NSFP (Euler Int.) (d) FlowStep3D (KNN Int.)(a) Before alignment

cd-24:

13.79

cd-24:

18.96

cd-24:

24.24

Figure 7. Comparison on point cloud warping on the Argoverse dataset. (a) The purple point cloud is the reference frame (25th frame),

and the green point cloud is the source frame (1st frame). We want to warp the source (1st) to the reference (25th) frame using different

methods to estimate the trajectory field. Note that this is a registration of two far-away point clouds where objects drastically move. The

alignment results of different methods are shown in (b, c, d). The Chamfer distance metric (cd-24) is shown on the top right. The red

circles highlight regions where our method achieved significantly better registrations for challenging dynamic objects. The intuition is that

our trajectory field is better constrained and allows for warps between distant frames. The red dashed arrows in (c) show miss alignments.

PointNet++ [48]-based features to iteratively find the non-

rigid motions between a pair of point clouds. We used the

official pre-trained model on the FlyingThings3D dataset

provided by the authors. 2) Neural Scene Flow Prior

(NSFP) is a non-learning-based method that uses an MLP to

directly optimize the scene flow from raw point clouds. We

took the official implementation provided by the authors.

Trajectory reconstruction. We used three different in-

tegration methods to reconstruct the trajectories of a dy-

namic lidar sequence using estimated pairwise scene flows:

1) Our method (Ours) to directly query a trajectory from

the estimated trajectory field of previous frames. 2) Euler

integration (Euler Int.) as used in NSFP. Because NSFP

is a continuous representation, we input the queried point

cloud to the predicted scene flow field to get current mo-

tions, and integrate the long term trajectory across the en-

tire point cloud sequence using Euler integration. 3) KNN

integration (KNN Int.) uses the k-nearest-neighbors algo-

rithm to find the correspondences between two consecutive

frames, and integrates the per-pair flows to a long term tra-

jectory according to these correspondences. More details

are in the supplementary material.

We compared our method with NSFP and FlowStep3D

on the Argoverse dataset and summarized the results

in Fig. 5 and Tab. 3. Note that for NSFP, we did not report

direct trajectory query results, since NSFP can easily over-

fit to a specific scene using direct optimization, which is

unfair to compare to. The deep learning-based FlowStep3D

is a discrete flow prediction that is unable to fit a flow field

and do Euler integration. The metric cd-n only measures

the distance between the deformed point cloud and the ref-

erence point cloud, which is not reliable for measuring the

76538

(b) NTP (Ours) (c) NSFP (Euler Int.) (d) FlowStep3D (KNN Int.)(a) Sparse reference frame

Figure 8. Point cloud densification on the Argoverse dataset. Given 25 point cloud frames of a dynamic driving scene, the task is to

accumulate all frames against a reference frame. In our case, we accumulated the past 24 frames against the current frame (25th). The first

column shows the reference point cloud (bottom) and projection onto a depth map (top). Note how sparse a single lidar frame is. The other

columns show the densification results from different methods. The red rectangles indicate the position of the autonomous vehicle (AV),

and dashed lines show the viewpoint of the depth maps. The red arrows highlight some densified objects. Our method produced denser

point clouds with better geometry. NSFP had noticeable drifts and loss of tracks. FlowStep3D produced noisy results.

3D geometry. For example, we have found that although

FlowStep3D had a low cd-24 in some cases, the predicted

deformed shapes are noisy. We complement these met-

rics with accuracy and outliers to directly compare with the

pseudo-ground-truth labels. Our method (NTP) achieved

comparable—if not much better—results across all metrics.

We also found that our method has impressive results when

handling both rigid regions and non-rigid regions in the

scene.

We show visual comparison results on Argoverse

in Fig. 6. Our method produced reliable, clean trajectories

for all examples across 25 frames. In the first row, the NSFP

barely produced any trajectories for the dynamic cars. And

in the second row, the NSFP misrepresented the trajecto-

ries for turning vehicles. While for the deep learning-based

FlowStep3D, the predicted trajectories were messy and dis-

torted for either rigid motions or non-rigid motions. Fig. 6

clearly shows the advantage of using a continuous trajectory

prior over a continuous scene flow prior or a discrete flow

estimation, especially when dealing with long term trajec-

tories with a lot of dynamic objects and large rotations.

Point cloud densification. To densify point clouds

through a long term sequence, we used the same strategies

(i.e., direct trajectory query for our method, Euler integra-

tion for NSFP, and KNN integration for FlowStep3D) to

first generate trajectories between the query frame and the

reference frame pairs. For example, we generated trajectory

from 1st frame to 25th frame, 2nd frame to 25th frame, 3rd

frame to 25th frame, etc. After generating all trajectories

for point cloud pairs, we can easily get all deformed point

clouds before the 25th frame and integrate all points to get

the final densified point cloud at the 25th frame.

We show a detailed registration result of the 1st frame

to the 25th frame in Fig. 7. The registration result is con-

sistent with our findings that our method outperformed in

the challenging scene, but NSFP was inferior dealing with

large motions, FlowStep3D only captured scarce and noisy

3D points. An example of dense depth and dense point

clouds of an Argoverse dynamic scene is shown in Fig. 8.

Our method gave clean depth with rigid background as well

as non-rigid moving objects in detail without large noise.

The results of NSFP are worse than ours, and FlowStep3D

completely failed the task. This indicates that one useful

application of our method is reliable point cloud densifica-

tion through a long trajectory. The application can extend

to generating dense depths or dense lidar HD maps.

7. Limitations

The limitations of our work are: (i) it requires runtime

optimization using GPUs, thus not yet applicable to real-

time applications; (ii) despite our method performs well on

tested NRSfM benchmarks, we note that it is still an ex-

tremely challenging problem. Our method may fail for se-

quences with strong ambiguities between camera and object

motions; (iii) like other NRSfM methods, we require long-

term 2D correspondences provided as input, which may be

difficult to reliably acquire in real world. Combining trajec-

tory reconstruction with multi-frame 2D flows is a potential

future work based on our current result; See supplementary

for examples of failure cases. (iv) for lidar scene flow inte-

gration, we experimented with scenes with up to 25 frames.

Longer sequences might cause trajectory drifts. (vi) lim-

ited by the Chamfer distance cost, our method might suffer

when using extremely sparse point clouds.

8. Conclusion

We presented a neural trajectory prior for solving under-

constrained low-level vision tasks, e.g., NRSfM and lidar

scene flow integration. Our results are promising and com-

petitive to many state-of-the-art methods for NRSfM and

lidar scene flow integration problems. Our simple formula-

tion can be potentially extended to self-supervised learning

for depth estimation and motion prediction.

86539

References

[1] Antonio Agudo, JMM Montiel, Lourdes Agapito, and

Begoña Calvo. Online dense non-rigid 3D shape and cam-

era motion recovery. In Proceedings of the British Machine

Vision Conference (BMVC), 2014. 5

[2] Antonio Agudo and Francesc Moreno-Noguer. A scalable,

efficient, and accurate solution to non-rigid structure from

motion. Computer Vision and Image Understanding (CVIU),

167:121–133, 2018. 5

[3] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade.

Nonrigid structure from motion in trajectory space. In Neu-

ral Information Processing Systems (NeurIPS), pages 41–48,

2009. 1, 2, 4, 5

[4] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade.

Trajectory space: A dual representation for nonrigid struc-

ture from motion. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 33(7):1442–1456, 2010.

5

[5] Mohammad Dawud Ansari, Vladislav Golyanik, and Didier

Stricker. Scalable dense monocular surface reconstruction.

pages 78–87. IEEE, 2017. 5

[6] Adrien Bartoli, Yan Gérard, Franccois Chadebecq, and Toby

Collins. On template-based reconstruction from a single

view: Analytical solutions and proofs of well-posedness for

developable, isometric and conformal surfaces. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2026–2033. IEEE, 2012. 2

[7] Alberto Bietti and Julien Mairal. On the inductive bias of

neural tangent kernels. Neural Information Processing Sys-

tems (NeurIPS), 2019. 3

[8] Christoph Bregler. Recovering non-rigid 3D shape from im-

age streams. Citeseer. 2

[9] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Pe-

ter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse:

3D tracking and forecasting with rich maps. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 8748–8757, 2019. 6

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5939–5948, 2019. 1

[11] Nathaniel Chodosh and Simon Lucey. When to use convo-

lutional neural networks for inverse problems. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2

[12] Joao Paulo Costeira and Takeo Kanade. A multibody fac-

torization method for independently moving objects. Inter-

national Journal of Computer Vision (IJCV), 29(3):159–179,

1998. 2

[13] Yuchao Dai, Huizhong Deng, and Mingyi He. Dense non-

rigid structure-from-motion made easy—a spatial-temporal

smoothness based solution. In Proceedings of the IEEE In-

ternational Conference on Image Processing (ICIP), pages

4532–4536. IEEE, 2017. 5

[14] Yuchao Dai, Hongdong Li, and Mingyi He. A simple

prior-free method for non-rigid structure-from-motion fac-

torization. International Journal of Computer Vision (IJCV),

107(2):101–122, 2014. 4, 5

[15] Ravi Garg, Anastasios Roussos, and Lourdes Agapito. Dense

variational reconstruction of non-rigid surfaces from monoc-

ular video. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 1272–

1279, 2013. 5

[16] Ravi Garg, Anastasios Roussos, and Lourdes Agapito. A

variational approach to video registration with subspace con-

straints. International Journal of Computer Vision (IJCV),

104(3):286–314, 2013. 2, 4

[17] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. J. Black, and B.

Schölkopf. From variational to deterministic autoencoders.

In Proceedings of the International Conference on Learning

Representations (ICLR), Apr. 2020. 3

[18] Vladislav Golyanik, Torben Fetzer, and Didier Stricker. In-

troduction to coherent depth fields for dense monocular sur-

face recovery. In Proceedings of the British Machine Vision

Conference (BMVC), 2017. 5

[19] Vladislav Golyanik, André Jonas, and Didier Stricker. Con-

solidating segmentwise non-rigid structure from motion. In

Journal of Machine Vision and Applications, pages 1–6.

IEEE, 2019. 5

[20] Paulo FU Gotardo and Aleix M Martinez. Non-rigid struc-

ture from motion with complementary rank-3 spaces. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3065–3072. IEEE, 2011.

4, 5

[21] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. HPLFlownet: Hierarchical permutohedral lat-

tice flownet for scene flow estimation on large-scale point

clouds. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3254–3263,

2019. 2

[22] Jihun Hamm and Daniel D Lee. Grassmann discriminant

analysis: a unifying view on subspace-based learning. In

Proceedings of the International Conference on Machine

Learning (ICML), pages 376–383, 2008. 3

[23] Reinhard Heckel and Mahdi Soltanolkotabi. Compressive

sensing with un-trained neural networks: Gradient descent

finds a smooth approximation. In Proceedings of the In-

ternational Conference on Machine Learning (ICML), pages

4149–4158. PMLR, 2020. 3

[24] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing

the dimensionality of data with neural networks. Science,

313(5786):504–507, 2006. 3

[25] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian

Cheung, Pulkit Agrawal, and Phillip Isola. The low-

rank simplicity bias in deep networks. arXiv preprint

arXiv:2103.10427, 2021. 3

[26] Junhwa Hur and Stefan Roth. Self-supervised multi-frame

monocular scene flow. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 2684–2694, 2021. 2

[27] Michal Irani. Multi-frame optical flow estimation using sub-

space constraints. In Proceedings of the International Con-

ference on Computer Vision (ICCV), volume 1, pages 626–

633. IEEE, 1999. 2

96540

[28] Sebastian Hoppe Nesgaard Jensen, Mads Emil Brix Doest,

Henrik Aanæs, and Alessio Del Bue. A benchmark and

evaluation of non-rigid structure from motion. International

Journal of Computer Vision (IJCV), 129(4):882–899, 2021.

2

[29] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. STAT, 1050:1, 2014. 3

[30] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-

Step3D: Model unrolling for self-supervised scene flow esti-

mation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4114–4123,

2021. 2, 6

[31] Suryansh Kumar. Jumping manifolds: Geometry aware

dense non-rigid structure from motion. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5346–5355, 2019. 1, 2, 3, 5

[32] Suryansh Kumar. Non-rigid structure from motion: Prior-

free factorization method revisited. In Proceedings of

the IEEE Workshop on Applications of Computer Vision

(WACV), 2020. 4, 5

[33] Suryansh Kumar, Anoop Cherian, Yuchao Dai, and Hong-

dong Li. Scalable dense non-rigid structure-from-motion:

A grassmannian perspective. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 254–263, 2018. 1, 2, 3, 5

[34] Suryansh Kumar, Yuchao Dai, and Hongdong Li. Multi-

body non-rigid structure-from-motion. In Proceedings of the

International Conference on 3D Vision (3DV), pages 148–

156. IEEE, 2016. 1, 2

[35] Minsik Lee, Jungchan Cho, Chong-Ho Choi, and Songh-

wai Oh. Procrustean normal distribution for non-rigid struc-

ture from motion. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1280–1287, 2013. 4, 5

[36] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.

Neural scene flow prior. In Neural Information Processing

Systems (NeurIPS), 2021. 1, 2, 3, 6

[37] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.

FlowNet3D: Learning scene flow in 3D point clouds. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 529–537, 2019. 2

[38] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 405–421. Springer, 2020. 1, 3

[39] Himangi Mittal, Brian Okorn, and David Held. Just go with

the flow: Self-supervised scene flow estimation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 11177–11185, 2020. 2

[40] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Occupancy flow: 4D reconstruction by

learning particle dynamics. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5379–5389, 2019. 1, 3

[41] Marco Paladini, Alessio Del Bue, João Xavier, Lourdes

Agapito, Marko Stošić, and Marija Dodig. Optimal metric

projections for deformable and articulated structure-from-

motion. International Journal of Computer Vision (IJCV),

96(2):252–276, 2012. 5

[42] Shaifali Parashar, Daniel Pizarro, and Adrien Bartoli. Robust

isometric non-rigidstructure-from-motion. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (PAMI).

1

[43] Shaifali Parashar, Daniel Pizarro, and Adrien Bartoli. Iso-

metric non-rigid shape-from-motion in linear time. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016. 3

[44] Shaifali Parashar, Mathieu Salzmann, and Pascal Fua. Local

non-rigid structure-from-motion from diffeomorphic map-

pings. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020. 1, 2

[45] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 165–174,

2019. 1, 3

[46] Jhony Kaesemodel Pontes, James Hays, and Simon Lucey.

Scene flow from point clouds with or without learning. In

Proceedings of the International Conference on 3D Vision

(3DV). IEEE, 2020. 2

[47] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:

Scene Flow on Point Clouds Guided by Optimal Transport.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), 2020. 2

[48] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

Net++: Deep hierarchical feature learning on point sets in

a metric space. In Neural Information Processing Systems

(NeurIPS), pages 5105–5114, 2017. 7

[49] Sameera Ramasinghe and Simon Lucey. Beyond periodicity:

Towards a unifying framework for activations in coordinate-

mlps. 3

[50] Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang,

Erik B Sudderth, and Jan Kautz. A fusion approach for

multi-frame optical flow estimation. In Proceedings of

the IEEE Workshop on Applications of Computer Vision

(WACV), pages 2077–2086. IEEE, 2019. 2

[51] Danilo Rezende and Shakir Mohamed. Variational inference

with normalizing flows. In International conference on ma-

chine learning, pages 1530–1538. PMLR, 2015. 4

[52] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritch-

man. The convergence rate of neural networks for learned

functions of different frequencies. Neural Information Pro-

cessing Systems (NeurIPS), 32:4761–4771, 2019. 3

[53] Vikramjit Sidhu, Edgar Tretschk, Vladislav Golyanik, Anto-

nio Agudo, and Christian Theobalt. Neural dense non-rigid

structure from motion with latent space constraints. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), 2020. 1, 2, 3, 5

[54] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. arXiv preprint arXiv:2006.10739, 2020. 3

106541

[55] Ivan Tishchenko, Sandro Lombardi, Martin Oswald, and

Marc Pollefeys. Self-supervised learning of non-rigid resid-

ual flow and ego-motion. In Proceedings of the International

Conference on 3D Vision (3DV), 2020. 2

[56] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler.

Nonrigid structure-from-motion: Estimating shape and mo-

tion with hierarchical priors. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 30(5):878–892,

2008. 1

[57] Jack Valmadre and Simon Lucey. General trajectory prior for

non-rigid reconstruction. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1394–1401. IEEE, 2012. 1

[58] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-

wise rigid scene flow. In Proceedings of the International

Conference on Computer Vision (ICCV), pages 1377–1384,

2013. 2

[59] Chaoyang Wang, Chen-Hsuan Lin, and Simon Lucey. Deep

nrsfm++: Towards unsupervised 2d-3d lifting in the wild. In

2020 International Conference on 3D Vision (3DV), pages

12–22, 2020. 1

[60] Chaoyang Wang and Simon Lucey. PAUL: Procrustean au-

toencoder for unsupervised lifting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 434–443, 2021. 1, 3, 4, 5

[61] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor

Prisacariu, and Min Chen. FlowNet3D++: Geometric losses

for deep scene flow estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 91–98, 2020. 2

[62] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and

Li Fuxin. PointPWC-Net: Cost volume on point clouds

for (self-) supervised scene flow estimation. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 88–107. Springer, 2020. 2

[63] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J.

Smola. Dive into deep learning. CoRR, abs/2106.11342,

2021. 3

[64] Yingying Zhu, Dong Huang, Fernando De La Torre, and Si-

mon Lucey. Complex non-rigid motion 3D reconstruction by

union of subspaces. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1542–1549, 2014. 2

[65] Yingying Zhu and Simon Lucey. Convolutional sparse cod-

ing for trajectory reconstruction. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI), 37(3):529–

540, 2013. 2

116542

