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Abstract

Current instance segmentation methods rely heavily on
pixel-level annotated images. The huge cost to obtain such
fully-annotated images restricts the dataset scale and limits
the performance. In this paper, we formally address semi-
supervised instance segmentation, where unlabeled images
are employed to boost the performance. We construct a
Jframework for semi-supervised instance segmentation by
assigning pixel-level pseudo labels. Under this framework,
we point out that noisy boundaries associated with pseudo
labels are double-edged. We propose to exploit and re-
sist them in a unified manner simultaneously: 1) To com-
bat the negative effects of noisy boundaries, we propose a
noise-tolerant mask head by leveraging low-resolution fea-
tures. 2) To enhance the positive impacts, we introduce
a boundary-preserving map for learning detailed informa-
tion within boundary-relevant regions. We evaluate our ap-
proach by extensive experiments. It behaves extraordinar-
ily, outperforming the supervised baseline by a large mar-
gin, more than 6% on Cityscapes, 7% on COCO and 4.5%
on BDDI00Ok. On Cityscapes, our method achieves com-
parable performance by utilizing only 30% labeled images.

1. Introduction

“When life gives you lemons, make lemonade.”
— Elbert Hubbard

The performance of instance segmentation has been im-
proved significantly with the development of deep learning
[19, 24, 5, 50, 52]. However, current instance segmenta-
tion methods require pixel-level labeled images for fully-
supervised training, which are prohibitively expensive to
annotate. Statistically, segmenting one object instance re-
quires 79s on average [36]. In some cases, annotating a sin-
gle image with high quality even costs more than 1.5h [16].
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Figure 1: Semi-supervised instance segmentation (on the
COCO dataset), which explores to utilize unlabeled images,
is a novel problem that has not been formally defined and
addressed so far. Compared with weakly-supervised and
fully-supervised methods, it excavates existing data suffi-
ciently and seeks to use a large number of unlabeled re-
sources, making instance segmentation more practical.

This severely restricts the scale of datasets and further lim-
its the performance of models. Researches in cognition sci-
ence [18, 31] have demonstrated that human concept learn-
ing involves large amounts of unlabeled experience with-
out feedback. Works in object detection [47, 25, 38] or
semantic segmentation [41, 39, 21] have seeked for semi-
supervised learning to alleviate the huge expense of human
labeling. However, utilizing nearly labor-free unlabeled im-
ages is still unexplored for instance segmentation, partially
because of its intrinsic difficulty. These motivate us to use
unlabeled images to break through the upper bound of fully-
supervised instance segmentation. We call this task semi-
supervised instance segmentation.

The difficulty to collect pixel-level annotated data in in-
stance segmentation has been recognized by many works.
Most of them attempt to deal with this problem by weakly-
supervised instance segmentation [22, 51, 45]. The main
benefit of semi-supervised instance segmentation, com-
pared to fully-supervised and weakly-supervised ones, is
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that it exploits existing resources sufficiently and allows to
pursue larger-scale learning. Pixel-level annotated images
have been provided in several existing datasets [36, 16, 56].
Semi-supervised instance segmentation can utilize these
data, which are necessary for high-quality segmentation
masks. Unlabeled images are enormous, and obtaining
them is easy. As a result, the scale of learning is not re-
stricted by datasets and can be as large as possible. This
endows semi-supervised instance segmentation the poten-
tial to achieve better performance continuously.

Stimulated by the importance of semi-supervised in-
stance segmentation, it is natural to ask: what’s the core is-
sue of semi-supervised instance segmentation? The core is
to excavate information within unlabeled data. Progress in
fully-supervised or weakly-supervised methods cannot be
applied to the semi-supervised task, as supervision clues are
necessary for them. To tackle this issue, we adopt the idea
of pseudo labels and propose a semi-supervised instance
segmentation framework. With this framework, the noise,
especially included in masks from pseudo labels, is essen-
tial for the effective exploitation of unlabeled images. Con-
sidering that a high proportion of pixel-level noise lies in
boundary regions, we focus on noisy boundaries. They pro-
vide incorrect supervision signals, but also contain many
details that contribute to the model performance. This con-
tradiction makes noisy boundaries a challenging problem.

In a word, noisy boundaries are double-edged (both
“lemon” and “lemonade”), including useful and harmful in-
formation together. How to learn from noisy boundaries for
semi-supervised instance segmentation? We need to exploit
and combat them jointly. Specifically, we propose a noise-
tolerant mask head (NTM) and a boundary-preserving map
(BPM). Our NTM introduces a mask prediction branch for
low-resolution segmentation output. With a low-resolution
ground-truth for supervision, the details from boundaries
are eliminated, where most of the noise exists. This con-
tributes to noise-resistant learning. Meanwhile, our pro-
posed BPM facilitates boundary learning. Different from
previous approaches which preserve boundaries at the cost
of enlarging pixel-level noise, our BPM strongly corre-
sponds with the boundary regions but is irrelevant to noise.
This leads to more precise results. With the help of our
NTM and BPM, our method benefits from valuable features
within noisy boundaries and discards the detrimental ones,
thus mining unlabeled information more effectively.

Our main contributions can be summarized as follows:

* We formally address the semi-supervised instance seg-
mentation task and construct a framework to exploit
unlabeled data, which empowers us ability to break
through the fully-supervised upper bound.

* We demonstrate the negative correlation between mask
resolution and pixel-level noise, then propose a noise-
tolerant head by interweaving low and high resolution

features, which can resist noise in boundary regions.

* We propose a boundary-preserving map, which en-
riches boundary-relevant regions and suppresses nar-
row noise-excessive regions simultaneously. This pro-
duces more accurate segmentation boundaries.

Extensive experiments on Cityscapes [16], COCO [36]
and BDDI100OK [56] demonstrate the effectiveness of our
method. It obtains comparable results with only 30%
amount of labeled images and surpasses its fully-supervised
counterpart with only 40% labeled data. The performance is
even better than approaches using human-annotated coarse
labels or extra box-level annotations. We provide a simple
and effective framework, which we believe will facilitate
future research towards this direction.

2. Related Work

Instance Segmentation. Most of instance segmenta-
tion methods can be categorized into detection-based meth-
ods. Mask RCNN [19] extends Faster RCNN [44] to in-
stance segmentation by adding an FCN based mask predic-
tion branch. PANet [37] introduces bottom-up path aug-
mentation for better feature learning. Cascade Mask RCNN
[7] extends Cascade RCNN [6] to instance segmentation.
HTC [9] further interweaves feature learning and adopts se-
mantic knowledge to facilitate instance segmentation learn-
ing. Following works [24, 28, 15, 58] continue to improve
the performance of instance segmentation. Recently, one-
stage methods [5, 50, 52, 8, 53] also develop rapidly and
achieve satisfying results with faster speed. They aim to
predict masks directly, instead of generating proposals first.
However, all of these methods require pixel-level annotated
images, which are expensive to obtain.

Instance Segmentation with Incomplete Supervision.
Considering the difficulty of obtaining pixel-level annotated
images, some recent works aim to use incomplete annota-
tions for instance segmentation. Weakly-supervised meth-
ods perform instance segmentation using either box-level
labels [22, 51, 33] or image-level tags [45, 17]. However,
they do not utilize existing pixel-level annotations, thus hard
to obtain satisfying results compared to fully-supervised
ones. Partially supervised approaches [23, 29, 59] adopt
the setting where a small number of categories are pixel-
level annotated and others have only box-level annotations.
They aim to utilize box labels to expand the number of cat-
egories. Different from them, our target is to improve the
performance of fully-supervised networks by using extra
unlabeled data.

Semi-supervised Learning. Training models with both
labeled and unlabeled images as semi-supervised learning
has been widely used in image classification to boost the
performance of fully-supervised learning. The prevailing
methods include consistency regularization [30, 40, 49],
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Figure 2: Framework for semi-supervised instance segmentation. A teacher model is trained with labeled images, then
extracts pseudo labels for unlabeled images. After data aug., these images serve for training the student model. Our noise-
tolerant mask head (NTM head) and boundary-preserving map (BPM) helps the student better learn from noisy boundaries.

pseudo labeling [32, 4, 3, 46], data augmentation [55, 4, 46],
or label propagation [60, 2]. Recent works have extended
semi-supervised learning to object detection and seman-
tic segmentation. For example, [25, 41, 26] adopts the
idea of consistency regularization and [39, 38, 48, 54, 21]
utilizes pseudo labels. Recently, self-supervised learning
[11, 12, 13] also utilizes unlabeled images. The differ-
ence is that self-supervised learning trains pretext tasks and
is agnostic from downstream tasks, while semi-supervised
learning targets at the specific task. In this work, we adopt
pseudo labels to solve semi-supervised learning for instance
segmentation, a naturally more difficult task.

3. Method
3.1. Semi-supervised Instance Segmentation

Our goal is to address the semi-supervised instance seg-
mentation task. Specifically, we have a set of pixel-labeled
images and aim to utilize easily obtained unlabeled data to
boost the performance of instance segmentation.

Our basic framework consists of three steps:

Step 1: Teacher Model Training. We first train a teacher
model with only labeled data as the common supervised
learning. The teacher model will be applied to generate
pixel-level pseudo labels for training the student model in
the later steps. We choose Mask RCNN [19] as our teacher
model but do not restrict to it.

Step 2: Pseudo Label Generation. With the pre-trained
teacher model, we perform inference on unlabeled images
to produce instance segmentation masks. Data augmenta-
tion as scaling and horizontal flipping is conducted to im-
prove the mask quality and reduce the miscalibration of
neural networks [1]. We refer to this as weak augmentation.

To acquire pseudo labels, the raw inference masks need
to be processed by two kinds of thresholds: the box-level

and the pixel-level ones. At the box level, a large number
of bounding boxes are predicted to guarantee a high recall.
We thus need to filter low-quality boxes with a confidence
threshold. At the pixel level, instance segmentation meth-
ods usually calculate foreground probability with sigmoid.
A probability threshold is required to separate foreground
and background pixels for creating masks.

Existing methods usually set the thresholds in a straight-
forward way. The box-level threshold is usually fixed to 0.7
or 0.9 [47, 38, 48], and the pixel-level threshold is gener-
ally taken as 0.5. However, this setting way is inappropri-
ate. For the detection branch, current models with softmax
for category probability are prone to be biased and predict
the dominant classes. For the mask branch, the imbalance
between foreground and background pixels also affects the
prediction. In such a situation, a single threshold is easy to
amplify the imbalance problem in pseudo labels.

To tackle this issue, we set the thresholds to match the
distribution between labeled and unlabeled images. At the
box level, we follow [43] and apply a per-category thresh-
old. For each category, the principle is to keep the aver-
age number of instances per image matched for the labeled
and unlabeled dataset. Similarly, after filtering low-quality
boxes, we set the pixel-level threshold to keep the ratio of
foreground to background pixels equivalent. Since mask
prediction is acted for Rols, we only count pixels in the
bounding boxes. Also, this threshold is class-agnostic since
mask and class prediction is usually decoupled. Note that in
the test phase, we still adopt the 0.5 threshold, as we cannot
access the distribution of test datasets.

Step 3: Student Model Training. With thresholding at
the box-level and pixel-level, we obtain pseudo labels with
mask annotations (pseudo masks). They are treated as the
ground-truth labels for training the student model. Accord-
ing to previous works on semi-supervised learning, the di-
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Figure 3: Illustration of pixel-level noise in instance seg-
mentation. (a): the mean accuracy of pixels v.s. their rel-
ative distance to the boundary. (b): the mean IoU between
pseudo mask labels and their ground-truth ones v.s. their
sizes. Pixels that are closer to the boundary are more likely
to be noisy, and reducing size can suppress noise.

versity of the student model is crucial [49] and data aug-
mentation is important [46, 47, 38]. We thus conduct data
augmentation for images when training the student model,
mainly including color transformation and cutout. We call
this strong augmentation, to differ from that in the pseudo
label generation step. Note that we do not adopt any aug-
mentation strategy in the test phase for a fair comparison.

3.2. Noise-tolerant Mask Head

The above framework enables us to train a semi-
supervised instance segmentation model. However, noise
inherently exists in pseudo masks, which impedes the per-
formance. We need a noise-resistant learning to combat it.

When training the student model, each proposal gener-
ated by RPN [44] will be assigned a mask from pseudo la-
bels. After Rol-Align and a mask head, the mask predic-
tion is generated. The assigned mask supervises this learn-
ing process. In the pseudo mask circumstance, assigned la-
bels are not always accurate. The incorrect labels mislead
the learning and deteriorate the performance. We design a
noise-tolerant mask head (NTM) to help our model better
resist noise in pseudo labels.

To resist noise in the learning process, we need to investi-
gate which pixels are more likely to be noisy. The answer is:
pixels that are closer to the boundaries. Boundary-relevant
regions are noisier because they usually correspond with the
decision boundary, where category features are not salient.
Also, they contain detailed information that is difficult to
learn. To further verify this, we conduct an empirical study
on the Cityscapes dataset [16] and plot it in Fig. 3a. The
mean accuracy of pixels is high, more than 90%. How-
ever, for pixels that are extremely close to the boundaries,
the mean accuracy is significantly lower. Therefore, to re-
sist noise in pseudo masks, the key lies in boundary-related
regions. Their details and features are only visible when
the mask resolution is high enough. In Mask RCNN [19],
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Figure 4: The structure of our noise-tolerant mask head.
We add a branch for predicting results with low resolution.
The low resolution mask better resists noise thus makes
the network more noise-tolerant. Arrows, unless otherwise
specified, denote conv or deconv layers. The conv kernel
sizes are all the same as that in Mask RCNN. C denotes the
number of categories.

the mask ground-truth is usually downsized to 28 x 28. If
the size turns smaller and the resolution is lowered, the im-
age details can be implicit, where noise mainly lies. This
is demonstrated in numerical analysis from Fig. 3b. As the
mask size decreases, the overall mask IoU between pseudo
labels and their corresponding ground-truth labels increases
a bit, and the boundary IoU [14] improves significantly.
We conclude that downsizing masks benefits the quality of
pseudo labels, especially for regions near boundaries.

Motivated by the above analysis, we propose our noise-
tolerant mask head. We add a branch for the low-resolution
mask prediction, and the structure is illustrated in Fig 4.
This branch is supervised by a smaller size mask (we adopt
14 in practice). With a small size and low resolution, its fea-
tures are cleaner and more noise-resistant. Consequently,
this branch is able to utilize more accurate information,
which contributes to learning in the semi-supervised set-
ting. However, since the resolution is low, the predicted
segmentation results are coarse and hard to reserve details.
Therefore, the original high-resolution mask head is still
retained. Specifically, the original high-resolution branch
aims to learn fine-grained information, which is more likely
to be affected by noise, while the low-resolution branch tar-
gets at learning coarse but clean information. Features from
the low-resolution branch are fused into the high-resolution
branch to pass clean messages. With this structure, we
achieve more noise-tolerant learning. In the test phase, we
only apply the high-resolution branch.

3.3. Boundary-preserving Map

With the noise-tolerant mask head, our model better re-
sists noise from boundary-related regions. However, bound-
aries are also essential for instance segmentation, since de-
tailed information within them is necessary for the quality
of the predicted masks. In this subsection, we propose a
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Figure 5: Performance of existing boundary-preserving
models on fully-supervised and semi-supervised tasks.
These methods improve the performance significantly for
the fully-supervised task, but is limited in the semi-
supervised setting because of the noise in boundary regions.

boundary-preserving map (BPM) to assist boundary learn-
ing in the semi-supervised task.

Facilitating boundary learning has been discussed in re-
cent works such as PointRend [28], BMask RCNN [15]
and RefineMask [58]. These methods are effective for
fully-supervised learning but limited to the semi-supervised
task. To corroborate this, we perform experiments on the
Cityscapes dataset with 40% randomly selected images as
labeled ones, and plot the acquired mask AP in Fig. 5. It
is observed that these methods improve more than 2% com-
pared to the Mask RCNN baseline in the fully-supervised
task, but less than 1% for semi-supervised learning. The
reason lies in noisy boundaries. In the semi-supervised
task, traditional methods promote boundary learning at the
cost of increasing the adverse effects of boundary-aware
noise. Consequently, these methods are not suitable for
semi-supervised segmentation.

In semi-supervised learning, the importance is thus to
preserve boundaries but not to amplify noise. To promote
boundary learning, the model should focus more on pixels
that are closer to the boundaries. To reduce noise, pixels
that are most likely to be noisy should be suppressed dur-
ing training. Fig. 3a indicates that noise is excessive for
those pixels whose distances to boundaries are extremely
small. So we need to repress these pixels. Based on the
above analysis, we present our boundary-preserving map.
In BPM, the value of a pixel is negatively correlated with
its distance to the boundaries. The only exception is pixels
that are extremely close to boundaries, whose values should
be small to suppress noise. Distance calculation for all pix-
els is effective but computationally complex, significantly
decreasing the training speed. Denote the mask probability
output by sigmoid function as p = [p;;]. We find that the
laplace operation of the probability map, V2p, well meets
the above requirement and is computationally efficient. As
a result, we adopt V2p as our BPM. We directly use our
BPM to re-weight mask loss for different pixels, which is a
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Figure 6: Illustration for our boundary-preserving re-
weighting. (a): illustrative examples, (b): V?p v.s. the dis-
tance of the pixel to the boundary, (c): the mean of accuracy
of pixels v.s. their values of V2p.

simple but effective strategy.

We show illustrative examples of our BPM in Fig. 6. For
pixels that belong to boundary-relevant regions but do not
lie in the narrow band along the boundaries, their values are
the highest. These pixels usually contain detailed informa-
tion and are relatively clean, thus should be paid attention
to. Also, because of this design, our BPM is somewhat irrel-
evant to noise. With this property, our BPM benefits bound-
ary learning and does not increase the effect of noise. This
makes it appropriate for the semi-supervised task.

4. Experiments

We evaluate our proposed method on Cityscapes [16],
MS COCO [36] and BDD10OK [56]. Cityscapes provides
2,975 images for the training set. Besides, it consists of
20,000 images with coarse annotations. COCO includes
118,287 images. It also provides 123,403 unlabeled im-
ages. BDDI10OK is a diverse dataset about visual driving
scenes. Only a subset of BDD10OK is pixel-level anno-
tated: about 7k images with mask annotations and 70k im-
ages with box annotations. Among them, 67k images have
box-level annotations but no pixel-level labels. Our method
is implemented with Pytorch [42] and MMDetection [10].
Unless otherwise specified, we use Mask RCNN [19] with
ResNet50 [20] and FPN [34].

4.1. Experiments on Cityscapes

Experiments with a varying percentage of labeled im-
ages. We evaluate our method on the Cityscapes validation
set. We randomly select a certain percentage of images from
the training set as labeled images and treat the rest as unla-
beled ones. Since semi-supervised instance segmentation
is a new task, we extend methods about the two most rele-
vant tasks - semi-supervised object detection and semantic
segmentation for comparison. Results from Tab. | suggest
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Table 1: Experimental Results on Cityscapes with a
varying percentage of labeled images. { denotes adopting
the same data augmentation in the semi-supervised training.
§ denotes using focal loss for the detection branch.
Method 5% 10% 20% 30% 40%
supervised 11.8 168 223 263 27.7
supervised | 11.3 164 22.6 266 28.3

semi-supervised object detection methods

DD [43] 137 192 246 274 295
STAC [47] 119 182 229 29.0 2938
CSD [25] 141 179 246 275 289

Ubteacher [38] 16.0 200 27.1 28.0 29.6
semi-supervised semantic segmentation methods

CCT [41] 152 18.6 247 265 284

Dual-branch [39] | 139 189 24.0 289 289

semi-supervised instance segmentation methods

baseline 15.7 202 255 283 295
ours 171 221 29.0 324 33.0
ours 212 237 308 332 34.1

that these methods are strong baselines. The pseudo label
method without data augmentation, NTM and BPM, is our
semi-supervised instance segmentation baseline.

The results are listed in Tab. 1. Our approach behaves
consistently better under different degrees of supervised
data. Compared to unbiased teacher [38], the state-of-the-
art detector in semi-supervised object detection, our method
outperforms it by a large margin under various settings.
When the labeled ratio is 30% and 40%, the AP improve-
ment reaches 4.4% and 3.4%. For CCT [41], one recent
effective semi-supervised semantic segmentation method,
our approach surpasses it by almost 6% in the 30% setting.
Compared with the semi-supervised instance segmentation
baseline, our method basically enhances the mask AP by
3%. When the labeled ratio is moderate, the increase is
more: 3.5% and 4.1% for the 20% and 30% labeled ratio
respectively. This demonstrates that our method learns bet-
ter from noisy boundaries. Compared with the supervised
counterpart, we achieve a more than 6% improvement. The
importance of unlabeled images and the necessity of semi-
supervised instance segmentation is validated.

Our method aims to learn from noisy boundaries for
semi-supervised instance segmentation, thus targeting at the
mask prediction branch. Focal loss [35] has been proved
beneficial to semi-supervised object detection. We apply
focal loss for the detection branch and the segmentation ac-
curacy can be further improved. In particular, when the la-
beled percentage is 40%, the mask AP is 34.1%, which
is higher than the fully-supervised method where all im-
ages are pixel-annotated (33.8%). When labeled images are
30%, the 33.2% AP is also comparable. This substantiates
the great potential of semi-supervised learning.

Experiments with coarse-annotated images. We also

Table 2: Experimental Results on Cityscapes with
coarse-annotated images. 1 denotes adopting the same
data augmentation in the semi-supervised training. ¥ de-
notes using focal loss for the detection branch.

Method AP AP5O AP75
supervised 338 61.8 314
supervised { 347 61.8 337
coarse GT 233 494 18.3

coarse finetune 342 599 32.3
fine — coarse — fine | 35.8 62.9 353
ours 39.3 65.6 38.9

ours 41.1 68.2 42.1

conduct experiments with all images from the training set
and utilize the extra coarse-annotated images as unlabeled
ones. We design the following experiments for compari-
son. Coarse GT: directly using the given coarse annota-
tions; coarse finetune: firstly training with coarse-annotated
images, then finetuning with fine-annotated images; fine —
coarse — fine: firstly training the model with fine-annotated
images, then learning with coarse-annotated images, finally
finetuning with fine-annotated images, just as [57].

From Tab. 2, we notice that with the 20,000 images,
our method achieves the 39.3% AP, which exceeds super-
vised learning by 5.5%. This demonstrates that our semi-
supervised method helps the model get rid of the limita-
tion of the dataset scale. Our method behaves better than
designed approaches using human-labeled coarse annota-
tions - more than 3.5% higher than them. Utilizing unla-
beled images obtain even better performance than using
human-labeled images! This proves the high effectiveness
of our method to exploit unlabeled information. With focal
loss, we obtain a 41.1% AP. This remarkable performance
corroborates the capability of semi-supervised instance seg-
mentation for practical application.

4.2. Ablation Study

We perform ablation study on Cityscapes using 30% per-
cent of images as labeled ones. The results are in Tab. 3.
We adopt the general mask AP and the boundary AP [14]
to evaluate the quality of masks and boundaries separately.

Data augmentation. We first evaluate the effect of data
augmentation in the student model training step. Data aug-
mentation increases the diversity of input samples, hence
helping improve the performance. However, it is limited
in fully-supervised learning, only bringing a 0.3% improve-
ment. Even when images are all labeled, the AP increase
is still less than 1%. In comparison, for semi-supervised
learning, data augmentation increases the segmentation AP
from 28.3% to 30.2%. The improvement is more signifi-
cant, almost 2%. This corresponds with the conclusion in
previous works [46, 47, 38] that data augmentation is cru-
cial for the student model in semi-supervised learning.
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Figure 7: Illustrative results on Cityscapes to show the effectiveness of our NTM and BPM. NTM helps more correct
detected instances (zoomed in green boxes) and BPM helps more precise boundary (zoomed in yellow boxes).

Table 3: Ablation study on Cityscapes. DA: data augmen-
tation,, NTM: noise-tolerant mask head, BPM: boundary-
preserving map. We evaluate the mask AP and boundary
AP, abbreviated as AP,.

annotations DA NTM BPM | AP APy,
26.3 8.2
30% labeled v 266 73

283 10.0

30% labeled i v g(l)% }83
70% unlabeled : :

v v 31.0 11.6

v v v 324  11.6

338 127

100% labeled v 347 129

Noise-tolerant mask head. Results in Tab. 3 show that
our NTM helps improve the mask AP by 0.9%, while the
boundary AP improvement is not salient. This indicates
that NTM helps semi-supervised learning mainly because
it benefits the overall segmentation performance, like more
correct detected instances or the holistic masks. Since noise
in pseudo labels misleads the network learning, the over-
all discrimination ability of the network is hurt. Our NTM
alleviates this problem, thus contributing to the mask AP.

Ilustrative results in Fig. 7 also confirm our analysis. In the
first and the third images, the missed bicycles are segmented
because of the NTM. In the second image, the middle car is
detected. The visualized results correspond with the numer-
ical results and our analysis above.

Boundary-preserving map. From Tab. 3, we observe
that the mask AP is boosted by 0.8% with the help of our
BPM. Different from NTM, BPM also improves the bound-
ary AP significantly, from 10.9% to 11.6%. This indicates
that BPM helps the performance mainly because it assists
in the quality of boundaries. Such fact is strongly related to
the function of BPM: it helps the model focus on boundary
regions and learn more detailed information. This is also
confirmed by illustrative results in Fig. 7. In the first image,
with BPM, the contour of the person, especially at the head
part, is more realistic. The same thing also occurs at the top
part of the car in the second image and the front wheel of
the motor in the third image. This demonstrates the effec-
tiveness of our BPM to boundary learning.

4.3. Experiments on COCO

We also perform experiments on the challenging COCO
dataset. Similarly, we randomly select a certain ratio of im-
ages from the COCO 2017 training set as labeled data, and
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Figure 8: Instance segmentation results of our method on COCO (the first row) and BDD100K (the second row).

Table 4: Results on COCO with a varying percentage

of labeled images. 1 denotes data augmentation. We use
COCO 120k unlabeled images for the 100% experiment.
Method 1% 2% 5% 10% 30% 100%
supervised | 3.5 94 173 220 289 345
supervisedt | 3.5 9.5 174 219 290 37.1
DD [43] 38 11.8 204 242 305 357
ours 7.7 163 249 292 328 38.6

Table 5: Experimental Results on BDD100K.

annotations Method AP
7k w/ masks Mask RCNN 21.6
Mask RCNN 24.5

7k w/ masks Grabcut Mask RCNN [27] 21.0
67k w/ boxes Progressive Mask RCNN [59] 24.8
Mask RCNN w/ ShapeProp [59] | 26.2

7k w/ masks semi baseline 24.4
67k w/o labels ours 26.3

the rest of them are unlabeled ones. For the 30% setting,
we simply use the 35k subset of the COCO 2014 validation
set as labeled images. For the 100% setting, we use all im-
ages from the COCO 2017 training set as labeled ones and
120k COCO unlabeled images as unlabeled ones. We list
the mask AP in Tab. 4. Our method continues to be better
than the supervised baseline. When the labeled images are
5% and 10%, our semi-supervised learning boosts the su-
pervised learning by more than 7%, which is quite promi-
nent. For the 100% experiment, where all pixel-annotated
images are adopted and utilized data are more, our method
achieves a 38.6% AP. The above experiments verify the
value of our semi-supervised instance segmentation.

4.4. Experiments on BDD100K

We further benchmark on the BDD100K dataset. We use
the 7k images with mask annotations as labeled images and

the 67k images with only box-level annotations as unlabeled
ones. Their box annotations do not participate in training.
We compare our results with methods in [59], where box
annotations for the 67k images are utilized for the partially-
supervised learning. As Tab. 5 shows, our method obtains
a26.3% AP, which outperforms its supervised baseline by
4.7%. Our method performs better than Mask RCNN w/
ShapeProp [59], where box annotations are utilized. This
further indicates that our method utilizes the information
within unlabeled images quite sufficiently, so that utiliz-
ing unlabeled images outperform previous approaches that
adopt box-level annotated images.

5. Conclusion

Considering the huge expense of labeling mask annota-
tions, we propose the semi-supervised instance segmenta-
tion task. It enables the model to fully excavate available
information and explore more extensive resources. With
pseudo labels, unlabeled images participate in training and
help improve the performance. By further learning from
noisy boundaries, we alleviate the negative effects brought
by noisy pseudo labels and exploit more valuable informa-
tion within boundary-relevant regions. The extraordinary
performance on benchmark datasets demonstrates the great
ability of our method. Semi-supervised instance segmenta-
tion is a challenging but interesting problem. We hope that
our simple and effective framework will stimulate future re-
search along this direction.
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