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Abstract

Recent advances in image editing techniques have posed
serious challenges to the trustworthiness of multimedia
data, which drives the research of image tampering detec-
tion. In this paper, we propose ObjectFormer to detect and
localize image manipulations. To capture subtle manipula-
tion traces that are no longer visible in the RGB domain, we
extract high-frequency features of the images and combine
them with RGB features as multimodal patch embeddings.
Additionally, we use a set of learnable object prototypes
as mid-level representations to model the object-level con-
sistencies among different regions, which are further used
to refine patch embeddings to capture the patch-level con-
sistencies. We conduct extensive experiments on various
datasets and the results verify the effectiveness of the pro-
posed method, outperforming state-of-the-art tampering de-
tection and localization methods.

1. Introduction
With the rapid development of deep generative models

like GANs [13, 25, 47] and VAEs [18, 33], a multitude of
image editing applications have become widely accessible
to the public [10,20,29,38]. These editing tools make it easy
and effective to produce photo-realistic images and videos
that could be used for entertainment, interactive design,
etc., which otherwise requires professional skills. However,
there are growing concerns on the abuse of editing tech-
niques to manipulate image and video content for malicious
purposes. Therefore, it is crucial to develop effective image
manipulation detection methods to examine whether images
have been modified or not and identify regions in images
that have been modified.

Image manipulation techniques can be generally classi-
fied into three types: (1) splicing methods which copy re-
gions from one image and paste to other images, (2) copy-
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Figure 1. Tampering images usually contain manipulated objects.
Thus, exploiting object-level consistency is crucial for manipula-
tion detection.

move which shifts the spatial locations of objects within im-
ages, and (3) removal methods which erase regions from
images and inpaint missing regions with visually plausible
contents. As shown in Figure 1, to produce semantically
meaningful and perceptually convincing images, these ap-
proaches oftentimes manipulate images at the object-level,
i.e., adding/removing objects in images. While there are
some recent studies focusing on image manipulation detec-
tion [16, 43, 46], they typically use CNNs to directly map
input images to binary labels (i.e., authentic/manipulated)
without explicitly modeling object-level representations.
In contrast, we posit that image manipulation detection
should not only examine whether certain pixels are out
of distribution, but also consider whether objects are
consistent with each other. In addition, visual artifacts
brought by image editing that are no longer perceptible in
the RGB domain are oftentimes noticeable in the frequency
domain [6, 31, 39]. This demands a multimodal approach
that jointly models the RGB domain and the frequency do-
main to discover subtle manipulation traces.

In this paper, we introduce ObjectFormer, a multimodal
transformer framework for image manipulation detection
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and localization. ObjectFormer builds upon transformers
due to their impressive performance on a variety of vision
tasks like image classification [12, 15, 24], object detec-
tion [5,49], video classification [4,23,40,41], etc. More im-
portantly, transformers are natural choices to model whether
patches/pixels are consistent in images, given that they ex-
plore the correlations between different spatial locations us-
ing self-attention. Inspired by object queries that are au-
tomatically learned [1, 49], we use a set of learnable pa-
rameters as object prototypes (serving as mid-level object
representations) to discover the object-level consistencies,
which are further leveraged to refine the patch embeddings
for patch-level consistencies modeling.

With this in mind, ObjectFormer first converts an im-
age from the RGB domain to the frequency domain using
Discrete Cosine Transform and then extracts multimodal
patch embeddings with a few convolutional layers. The
RGB patch embeddings and the frequency patch embed-
dings are further concatenated to complement each other.
Further, we use a set of learnable embeddings as object
queries/prototypes, interacting with the derived patch em-
beddings to learn consistencies among different objects. We
refine patch embeddings with these object prototypes with
cross-attention. By iteratively doing so, ObjectFormer de-
rives global feature representations that explicitly encode
mid-level object features, which can be readily used to de-
tect manipulation artifacts. Finally, the global features are
used to predict whether images have been modified and the
corresponding manipulation mask in a multi-task fashion.
The framework can be trained in an end-to-end manner.
We conduct experiments on commonly used image tamper-
ing datasets, including CASIA [11], Columbia [35], Cov-
erage [42], NIST16 [27], and IMD20 [28]. The results
demonstrate that ObjectFormer outperforms state-of-the-art
tampering detection and localization methods. In summary,
our work makes the following key contributions:

• We introduce ObjectFormer, an end-to-end multi-
modal framework for image manipulation detection
and localization, combining RGB features and fre-
quency features to identify the tampering artifacts.

• We explicitly leverage learnable object prototypes as
mid-level representations to model object-level consis-
tencies and refined patch embeddings to capture patch-
level consistencies.

• We conduct extensive experiments on multiple bench-
marks and demonstrate that our method achieves state-
of-the-art detection and localization performance.

2. Related Work
Image Manipulation Detection / Localization Most early
studies focus on detecting a specific type of manipula-

tion, e.g., splicing [8, 17, 19], copy-move [7, 32], and re-
moval [48]. However, in real-world scenarios, the exact ma-
nipulation type is unknown, which motivates a line of work
focusing on general manipulation detection [3, 16, 43]. In
addition, RGB-N [46] introduces a two-stream network for
manipulation localization, where one stream extracts RGB
features to capture visual artifacts, and the other stream
leverages noise features to model the inconsistencies be-
tween tampered and untouched regions. SPAN [16] models
the relationships of pixels within image patches on multi-
ple scales through a pyramid structure of local self-attention
blocks. PSCCNet [22] extracts hierarchical features with a
top-down path and detects whether input image has been
manipulated using a bottom-up path. In this work, we de-
tect the manipulation artifacts by explicitly adopting a set of
learnable embeddings as object prototypes for object-level
consistency modeling and the refined patch embeddings for
patch-level consistency modeling.

Visual Transformer The remarkable success of Transform-
ers [37] and their variants in natural language processing
has motivated a plethora of work exploring transformers
for a variety of computer vision tasks due to their capabil-
ities in modeling long-range dependencies. More specifi-
cally, ViT [12] reshapes an image into a sequence of flat-
tened patches and inputs them to the transformer encoders
for image classification. T2T [45] incorporates a Token-to-
Token module to progressively aggregate local information
before using self-attention layers. There are also some stud-
ies combining the self-attention blocks with classical con-
volutional neural networks. For instance, DETR [5] uses the
pretrained CNN for extracting low-level features, which are
then fed into a transformer-based encoder-decoder architec-
ture for object detection. In contrast, we introduce the fre-
quency information to facilitate the capture of subtle forgery
traces, which are further combined with RGB modality fea-
tures through a multi-modal transformer for image tamper-
ing detection.

3. Method

Our goal is to detect manipulated objects within images
by modeling visual consistencies among mid-level repre-
sentations, which are automatically derived by attending to
multimodal inputs. In this section, we introduce Object-
Former, which consists of a High-frequency Feature Extrac-
tion Module (Section 3.1), an object encoder (Section 3.2)
that uses learnable object queries to learn whether mid-level
representations in images are coherent, and a patch decoder
(Section 3.3) that produces refined global representations
for manipulation detection and localization. Figure 2 gives
an overview of the framework.

More formally, we denote an input image as X ∈
RH×W×3, where H and W are the height and width of the
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Figure 2. An overview of ObjectFormer. The input is a suspicious image (H ×W × 3), and the output includes a tampering localization
result and a predicted mask (H ×W × 1), which localizes the manipulation regions.

image, respectively. We first extract the feature map Gr

∈ RHs×Ws×Cs and generate patch embeddings using a few
convolutional layers, parameterized by g, for faster conver-
gence as in [44].

3.1. High-frequency Feature Extraction

As manipulated images are generally post-processed to
hide tampering artifacts, it is difficult to capture subtle
forgery traces in the RGB space. Therefore, we extract fea-
tures from the frequency domain to provide complementary
clues for manipulation detection.

Taking the image X as input, ObjectFormer first trans-
forms it from the RGB domain to the frequency domain us-
ing Discrete Cosine Transform (DCT):

Xq = D(X), (1)

where Xq ∈ RH×W×1 is the frequency domain repre-
sentation and D denotes DCT. Then we obtain the high-
frequency component through a high pass filter, and trans-
form it back to RGB domain to preserve the shift invariance
and local consistency of natural images:

Xh = D−1(F(Xq, α)), (2)

where F denotes the high pass filter and α is the manually-
designed threshold which controls the low frequency com-
ponent to be filtered out. After that, we input Xh to several
convolutional layers to extract frequency features Gf , the
size of which is the same with Gr.

We then generate spatial patches of the same sizes using
Gr and Gf and further flatten them to a sequence of C-d
vectors with the length of L. We concatenate the two se-
quences to obtain a multimodal patch vector p ∈ R2L×C .
Sinusoidal positional embeddings [5] are added to p to pro-
vide positional information.

3.2. Object Encoder

The object encoder aims to learn a group of mid-level
representations automatically that attend to specific regions

in Gr/Gf and identify whether these regions are consis-
tent with each other. To this end, we use a set of learn-
able parameters o ∈ RN×C as object prototypes, which are
learned to represent objects that may appear in images. N
is a manually designed constant value indicating the maxi-
mum number of objects, which we empirically set to 16 in
this paper.

Specifically, given the object representations oi from the
i-th layer, we first normalize it with Layer Normalization
(LN) and use it as the query of the attention block. The
patch embeddings pi after the normalization serve as the
key and value. Note that we set p0 = p, o0 = o, respec-
tively. Then we calculate the object-patch affinity matrix
Ai ∈ RN×L with matrix multiplication and a softmax
function:

Ai = softmax

(
oiWeq · (piWek)

T

√
C

)
, (3)

where Weq and Wek are learnable parameters of two linear
projection layers. After that, we use another linear layer
to project pi into value embedding, and further compute
its weighted average with Ai to obtain the attention ma-
trix. Finally, the object representations are updated through
a residual connection with the attention matrix to obtain
ôi ∈ RN×C :

ôi = oi +Ai · piWev, (4)

where Wev is the learnable parameter for the value embed-
ding layer. With this, each object representation can be in-
jected with global contextual information from all locations.
Then we further enable the interaction among different ob-
jects using a single linear projection:

õi = ôi + (ôTi Wc)
T , (5)

where Wc ∈ RN×N is a learnable weight matrix. This es-
sentially learns how different object prototypes interact with
one another to discover object-level visual inconsistencies.

Since the number of objects within an image varies, we
additionally use linear projection layers and an activation
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function GELU [14] to enhance the object features. This
process can be formulated as:

oi+1 = õi + δ(õiWact1)Wact2 , (6)

where Wact1 and Wact2 are learnable parameters, δ is the
GELU function, oi+1 is the updated object representation.

3.3. Patch Decoder

The object encoder allows different objects within the
images to interact with each other to model whether mid-
level representations are visually coherent and attend to im-
portant patches. In addition to this, we use the updated ob-
ject representations from the object encoder to further re-
fine the patch embeddings. More specifically, we use pi as
query, oi+1 as key and value, and enhance the patch features
following classic attention paradigm. With this, each patch
embedding can further absorb useful information from the
derived object prototypes.

More specifically, we first adopt Layer Normalization to
normalize both pi and oi+1, and then feed them into an at-
tention block for patch embeddings refinement. The com-
plete process can be formulated as:

p̂i = pi + softmax

(
piWdq · (oi+1Wdk)

T

√
C

)
· oi+1Wdv,

pi = p̂i + MLP(p̂i),
(7)

where Wdq , Wdk, and Wdv are the learnable parameters
of three embedding layers, and MLP denotes a Multi-Layer
Perceptron that has two linear mappings.

After aggregating the mid-level object features into each
patch within the images, we further apply a boundary-
sensitive contextual incoherence modeling (BCIM) module
to detect pixel-level inconsistency for fine-grained feature
modeling. In particular, we first reshape pi ∈ R2N×C to
a 2D feature map P̃i with the size RHs×Ws×2Cs . We then
calculate the similarity between each pixel and surrounding
pixels within a local window:

Sij =
1

k × k

∑
j∈κ

Sim(P̃ij , P̃ik), (8)

where κ denotes a small k × k window in the feature map
P̃i, P̃ij is the central feature vector of the window, and
P̃ik is its neighboring feature vector within κ. The sim-
ilarity measurement function Sim that we use is cosine
similarity. Then we compute the element-wise summation
between Si ∈ RHs×Ws×1 and P̃i to obtain a boundary-
sensitive feature map with the size of RHs×Ws×2Cs to ob-
tain a boundary-sensitive feature map, and finally serialize
it to patch embeddings pi+1 ∈ R2N×C .

Note that we use stacked object encoders and image de-
coders in a sequential order for I times (which we set to
8 in this paper) to alternately update the object representa-
tions and patch features. Finally, we obtain pout ∈ R2N×C

which contains visual consistency information at both the
object-level and the patch-level. After that, we reshape it to
a 2D feature map Gout, which is then used for manipulation
detection and localization.

3.4. Loss Functions

For manipulation detection, we apply global average
pooling on Gout, and calculate the final binary prediction
ŷ using a fully connected layer. While for manipulation lo-
calization, we progressively upsample Gout by alternating
convolutional layers and linear interpolation operations to
obtain a predicted mask M̂ . Given the ground-truth label
y and mask M , we train ObjectFormer with the following
objective function:

L = Lcls(y, ŷ) + λLseg(M, M̂), (9)

where both Lcls and Lseg are binary cross-entropy loss,
and λseg is a balancing hyperparameter. By default, we set
λseg = 1.

4. Experiments
We evaluate our models on two closely related tasks: ma-

nipulation localization and detection. In the former task, our
goal is to localize the manipulated regions within the im-
ages. In the latter task, the goal is to classify images as be-
ing manipulated or authentic. Below, we introduce the ex-
perimental setup in Sec. 4.1, and present results in Sec. 4.2 -
Sec. 4.4, and finally we perform an ablation study to justify
the effectiveness of different components in Sec. 4.5, and
show the visualization results in Sec. 4.6.

4.1. Experimental Settings

Synthesized Pre-training Data We synthesize a large-
scale image tampering dataset and pre-train our model on
it. The synthesized dataset includes three subsets: 1) Fake-
COCO, which is built on MS COCO [21]. Inspired by [46],
we use the annotations provided by MS COCO to randomly
copy and paste an object within the same image, or slice
an object from one image to another. We also apply the
Poisson Blending algorithm between source and target im-
ages to erase the slicing boundaries. 2) FakeParis, which
is built on Paris StreetView [30] dataset. We erase a re-
gion from an authentic image, and adopt a state-of-the-art
inpainting method Edgeconnnect [26] to restore visual con-
tents within it. 3) Pristine images, i.e., the original images
from the above datasets. We randomly add Gaussian noise
or apply the JPEG compression algorithm to the generated
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data to resemble the visual quality of images in realistic sce-
narios.

Testing Datasets We follow PSCCNet [22] to evaluate our
model on CASIA [11] dataset, Columbia [35] dataset, Car-
valho [42], Nist Nimble 2016 (NIST16) dataset [27], and
IMD20 [28] dataset.

• CASIA [11] provides spliced and copy-moved images of
various objects. The tampered regions are carefully se-
lected and some post-processing techniques like filtering
and blurring are also applied. Ground-truth masks are ob-
tained by binarizing the difference between tampered and
original images.

• Columbia [35] dataset focuses on splicing based on un-
compressed images. Ground-truth masks are provided.

• Coverage [42] dataset contains 100 images generated by
copy-move techniques, the ground-truth masks are also
available.

• NIST16 [27] is a challenging dataset which contains all
three tampering techniques. The manipulations in this
dataset are post-processed to conceal visible traces. They
provide ground-truth tampering mask for evaluation.

• IMD20 [28], which collects 35,000 real images captured
by different camera models and generates the same num-
ber of forged images using a large variety of Inpainting
methods.

To fine-tune ObjectFormer, we use the same training/testing
splits as [16, 22] for fair comparisons.

Evaluation Metrics We evaluate the performance of the
proposed method on both image manipulation detection
task and localization task. For detection results, we use
image-level Area Under Curve (AUC) and F1 score as our
evaluation metric, while for localization, the pixel-level
AUC and F1 score on manipulation masks are adopted.
Since binary masks and detection scores are required to
compute F1 scores, we adopt the Equal Error Rate (EER)
threshold to binarize them.

Implementation Details All images are resized to 256 ×
256. For our backbone network, we use EfficientNet-
b4 [36] pretrained on ImageNet [9]. We use Adam for opti-
mization with a learning rate of 0.0001. We train the com-
plete model for 90 epochs with a batch size of 24, and the
learning rate is decayed by 10 times every 30 epochs.

Baseline Models We compare our method with various
baseline models as described below:

• J-LSTM [2], which employs a hybrid CNN-LSTM ar-
chitecture to capture the discriminative features between
manipulated and non-manipulated regions within a tam-
pered image.

• H-LSTM [3], which segments the resampling features
extracted by a CNN encoder into patches and adopts an
LSTM network to model the transition between different
patches for tampering localization.

• RGB-N [46], which adopts an RGB stream and a noise
stream in parallel to separately discover tampering fea-
tures and noise inconsistency within an image.

• ManTraNet [43], which uses a feature extractor to cap-
ture the manipulation traces and a local anomaly detection
network to localize the manipulated regions.

• SPAN [16], which leverages a pyramid architecture and
models the dependency of image patches through self-
attention blocks.

• PSCCNet [22], which employs features at different
scales progressively for image tampering localization in
a coarse-to-fine manner.

4.2. Image Manipulation Localization

Compared with binary tampering detection task, ma-
nipulation localization is more challenging because it re-
quires the models to capture more refined forgery features.
Following SPAN [16] and PSCCNet [22], we compare
our model with other state-of-the-art tampering localiza-
tion methods under two settings: 1). training on the syn-
thetic dataset and evaluating on the full test datasets. 2)
fine-tuning the pre-trained model on the training split of test
datasets and evaluating on their test split.

Pre-trained Model For pre-trained model evaluation, we
compare ObjectFormer with MantraNet [43], SPAN [16],
and PSCCNet [22]. We report the AUC scores (%) in Ta-
ble 1, from which we can observe ObjectFormer achieves
the best localization performance on most datasets. Es-
pecially, ObjectFormer achieves 82.1% on the real-world
dataset IMD20, and outperforms PSCCNet by 1.9%. This
suggests our method owns the superior ability to capture
tampering features, and can generalize well to high-quality
manipulated images datasets. On Columbia dataset, we sur-
pass SPAN and MaTraNet by 2.0% and 15.9%, but are 2.7%
behind PSCCNet. We argue that the reason might be their
synthesized training data closely resemble the distribution
of the Columbia dataset. This can be further verified by
the results in Table 2, which demonstrates ObjectFormer
outperforms PSCCNet in both AUC and F1 scores if the
model is fine-tuned on Columbia dataset. Moreover, it is
worth pointing out ObjectFormer achieves decent results us-
ing less pre-training data compared with other methods.

Fine-tuned Model To compensate for the difference in vi-
sual quality between the synthesized datasets and standard
datasets, we further fine-tune the pre-trained models on spe-
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Method #Data Colombia Coverage CASIA NIST16 IMD20

ManTraNet 64K 82.4 81.9 81.7 79.5 74.8

SPAN 96K 93.6 92.2 79.7 84.0 75.0

PSCCNet 100K 98.2 84.7 82.9 85.5 80.6

Ours 62K 95.5 92.8 84.3 87.2 82.1

Table 1. Comparisons of manipulation localization AUC (%) scores of dif-
ferent pre-trained models.

Method Coverage CASIA NIST16
AUC F1 AUC F1 AUC F1

J-LSTM 61.4 - - - 76.4 -
H-LSTM 71.2 - - - 79.4 -
RGB-N 81.7 43.7 79.5 40.8 93.7 72.2
SPAN 93.7 55.8 83.8 38.2 96.1 58.2
PSCCNet 94.1 72.3 87.5 55.4 99.6 81.9
Ours 95.7 75.8 88.2 57.9 99.6 82.4

Table 2. Comparison of manipulation localization re-
sults using fine-tuned models.

cific datasets, and compare with other methods in Table 2.
We can observe significant performance gains, which illus-
trates that ObjectFormer could capture subtle tampering ar-
tifacts through the object-level and patch-level consistency
modeling and the multimodal design.

4.3. Image Manipulation Detection

Since most previous studies do not consider tampering
detection task, we evaluate our model on CASIA-D intro-
duced by [22]. Table 3 shows the AUC and F1 scores (%)
for detecting manipulated images. The results demonstrate
that our model achieves state-of-the-art performance, i.e.,
99.70% in terms of AUC and 97.34% in F1, which demon-
strates the effectiveness of our method to capture manipula-
tion artifacts.

Method AUC F1

MantraNet 59.94 56.69
SPAN 67.33 63.48
PSCCNet 99.65 97.12
Ours 99.70 97.34

Table 3. AUC and F1 scores (%) of tampering detection results on
CASIA-D dataset [22]. The best results are marked in bold.

4.4. Robustness Evaluation

Following PSCCNet [22], we apply different image dis-
tortion methods on raw images from NIST16 dataset and
evaluate the robustness of our ObjectFormer. The distor-
tion types include: 1) image scaling with different scales,
2) Gaussian blurring with a kernel size k, 3) Gaussian
noise with a standard deviation σ, and 4) JPEG compres-
sion with a quality factor q. We compare the manipu-
lation localization performance (AUC scores) of our pre-
trained models with SPAN [16] and PSCCNet [22] on these
corrupted data, and report the results in Table 4. Object-
Former demonstrates better robustness against various dis-
tortion techniques, especially on compressed images (1.1%
higher than PSCCNet when the quality factor is 100, and
1.0% higher when the quality factor is 50).

Distortion SPAN PSCCNet Ours

no distortion 83.95 85.47 87.18

Resize (0.78×) 83.24 85.29 87.17 ↓0.01
Resize (0.25×) 80.32 85.01 86.33 ↓0.85

GaussianBlur (k=3) 83.10 85.38 85.97 ↓1.21
GaussianBlur (k=15) 79.15 79.93 80.26 ↓6.92

GaussianNoise (σ=3) 75.17 78.42 79.58 ↓7.60
GaussianNoise (σ=15) 67.28 76.65 78.15 ↓9.03

JPEGCompress (q=100) 83.59 85.40 86.37 ↓0.81
JPEGCompress (q=50) 80.68 85.37 86.24 ↓0.94

Table 4. Localization performance on NIST16 dataset under vari-
ous distortions. AUC scores are reported (in %).

4.5. Ablation Analysis

The High-frequency Feature Extraction (HFE) module
of our method is designed to extract the abnormal forgery
features in the frequency domain, while the Boundary-
sensitivity Contextual Incoherence Modeling (BCIM) mod-
ule is utilized to improve the sharpness of the predicted tam-
pering masks. To evaluate the effectiveness of HFE and
BCIM, we remove them separately from ObjectFormer and
evaluate the tampering localization performance on CASIA
and NIST16 dataset.

The quantitative results are listed in Table 5. We can ob-
serve that without HFE, the AUC scores decrease by 14.6%
on CASIA and 11.0% on NIST16, while without BCIM,
the AUC scores decrease by 6.2% on CASIA and 2.4%
on NIST16. The performance degradation validates that
the use of HFE and BCIM effectively improves the perfor-
mance of our model. Moreover, to illustrate the effective-
ness of representations learned by ObjectFormer, we dis-
card the object representations and replace the stacked ob-
ject encoders and image decoders with vanilla self-attention
blocks. We can observe a significant performance degrada-
tion in the third row of Table 5, i.e., 5% in terms of AUC
and 12.5% in terms of F1 on NIST16 dataset.

The object prototypes are deployed to represent the vi-
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Variants
CASIA NIST16

AUC F1 AUC F1

Baseline (EfficientNet-b4) 70.3 37.2 77.4 51.9

w/o HFE 75.3 51.5 88.6 63.9

w/o BCIM 82.7 40.1 97.2 74.5

vanilla self-attention 84.8 47.6 94.5 72.1

Ours 88.2 57.9 99.6 82.4 4 8 12 16 20 24 28 32
Number of prototypes

75.0

80.0

85.0

90.0

95.0

100.0

A
U

C

CASIA
Columbia
IMD20

Table 5. Ablation results on CASIA and NIST16 dataset using different
variants of ObjectFormer. Both AUC and F1 scores (%) are reported.

Figure 3. AUC scores (%) of ObjectFormer with differ-
ent numbers of object prototypes.

Figure 4. Visualization of the affinity matrix Ai in the first object encoder. From left to right, we display the forged images, two prototypes
corresponding to two foreground objects, and two prototypes related to background objects.

sual elements that may appear in an image, which facili-
tates ObjectFormer to learn the mid-level semantic features
for object-level consistencies modeling. We further conduct
experiments to investigate the effect of the number of pro-
totypes (N ) on model performance. As shown in Figure 3,
there is an overall incremental trend in the tampering lo-
cation performance as the number of prototypes increases,
and the best are achieved on Columbia and CASIA dataset
when N is set to 16.

4.6. Visualization Results

Visualization of object encoder. We further investigate the
behavior of ObjectFormer qualitatively. Specifically, we
average all heads of the affinity matrix Ai (Eqn. 3) in the
first object encoder, and then normalize it to [0, 255]. For
each image, we visualize the pristine image (column 1), and
regions that are attended to by different object prototypes,
e.g., column 2 and 3 are two prototypes correspond to two
foreground objects while column 4 and 5 relate to back-

ground objects. The results in Figure 4 suggest that through
iterative updates, the object representations correspond to
meaningful regions in the images, thus contributing to ob-
ject consistency modeling.

Qualitative results. We provide predicted manipulation
masks of different methods in Figure 5. Since the source
code of PSCCNet [22] is not available, their predictions
are not available. The results demonstrate that our method
could not only locate the tampering regions more accu-
rately, but also develop more sharp boundaries, which bene-
fits from the inconsistency modeling ability and boundaries
sensitivity of ObjectFormer.

Visualization of high-frequency features. To verify the
usefulness of frequency features for tampering detection,
we visualize the high-frequency components and HFE fea-
tures using GradCAM [34] (Sec. 3.1) in Figure 6. The re-
sults demonstrate that although the forged images are vi-
sually natural, the manipulated regions are distinguishable
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Figure 5. Visualization of the predicted manipulation mask by different methods. From top to bottom, we show forged images, GT masks,
predictions of ManTraNet, SPAN, and ours.

Forged Mask High-freq GradCAM Prediction

Figure 6. Visualization of the frequency features. From left to
right, we display the forged images, masks, the high-frequency
components, GradCAM of the feature maps after conv layer, and
ObjectFormer predictions.

from the untouched areas in frequency domain.

4.7. Limitation

ObjectFormer faces one potential limitation: when us-
ing the pre-trained model to evaluate the performance of
tampering localization on Columbia, ObjectFormer is 2.7%
lower than PSCCNet [22] in terms of AUC score. The
possible reason might be that the pre-training data they
use closely resemble the data distribution in the Columbia
dataset. Therefore, we believe this problem can be resolved

by using more pre-training data.

5. Conclusion

We introduced ObjectFormer, an end-to-end multimodal
framework for image tampering detection and localization.
To detect subtle manipulation artifacts that are no longer
visible in RGB domain, ObjectFormer extracts forgery fea-
tures in the frequency domain as complementary informa-
tion, which are further combined with the RGB features
to generate multimodal patch embeddings. Additionally,
ObjectFormer leverages learnable object prototypes as mid-
level representations, and alternately updates the object pro-
totypes and patch embeddings with stacked object encoders
and patch decoders to model the object-level and patch-level
visual consistencies within the images. Extensive experi-
ments on different datasets demonstrate the effectiveness of
the proposed method.
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