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Abstract

Matching cost construction is a key step in light field
(LF) depth estimation, but was rarely studied in the deep
learning era. Recent deep learning-based LF depth es-
timation methods construct matching cost by sequentially
shifting each sub-aperture image (SAI) with a series of pre-
defined offsets, which is complex and time-consuming. In
this paper, we propose a simple and fast cost constructor to
construct matching cost for LF depth estimation. Our cost
constructor is composed by a series of convolutions with
specifically designed dilation rates. By applying our cost
constructor to SAI arrays, pixels under predefined dispari-
ties can be integrated and matching cost can be constructed
without using any shifting operation. More importantly, the
proposed cost constructor is occlusion-aware and can han-
dle occlusions by dynamically modulating pixels from dif-
ferent views. Based on the proposed cost constructor, we
develop a deep network for LF depth estimation. Our net-
work ranks first on the commonly used 4D LF benchmark
in terms of the mean square error (MSE), and achieves a
faster running time than other state-of-the-art methods.

1. Introduction
Light field (LF) cameras can encode 3D scenes into 4D

LF images. By using the abundant spatial and angular infor-
mation in the LF images, the scene depth can be obtained by
performing LF depth estimation. As a fundamental task in
LF image processing, depth estimation benefits many sub-
sequent applications such as refocusing [33], view synthe-
sis [3, 13], 3D reconstruction [14], and virtual reality [37].

With the advances of deep neural networks, many deep
learning-based methods [2, 6, 7, 9, 17, 19, 26, 29] have been
proposed and boosted the performance of LF depth estima-
tion. Recent deep learning-based methods achieve LF depth
estimation in a four-step pipeline including feature extrac-
tion, cost construction, cost aggregation, and depth regres-
sion. To achieve higher accuracy, these methods designed
different modules for feature extraction [29] and cost aggre-
gation [2,9]. However, as a key step in LF depth estimation,
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Figure 1. An illustration of the proposed occlusion-aware cost
constructor (OACC). (a) A toy example of a 3×3 LF, in which
the yellow star is partially occluded by the green triangle. (b) Our
OACC constructs matching cost via convolutions and can handle
occlusions by assigning smaller weights to occluded pixels.

matching cost construction was rarely studied.
To construct matching costs for LF depth estimation, ex-

isting methods [2, 29] shift each sub-aperture image (SAI)
with a series of predefined offsets, and then concatenate the
shifted SAIs to form a cost volume. Although this shift-
and-concat scheme is easy to implement, the large number
of shifting operation1 reduces the efficiency of these meth-
ods. Moreover, during matching cost construction, pixels
at different spatial locations are processed equally, which
cannot handle the spatially-varying occlusions where some
views are less informative and can even deteriorate the esti-
mation results.

To handle the aforementioned challenges, in this paper,
we propose an occlusion-aware cost constructor (OACC)
for LF depth estimation. Our cost constructor is composed
by a series of convolutions with specifically designed di-
lation rates. By applying our OACC to SAI arrays, pixels
under predefined disparities can be integrated without per-
forming shifting operation. More importantly, our OACC
can handle occlusions by dynamically modulating pixels
from different views, as shown in Fig. 1. Based on the
proposed OACC, we develop a deep network for LF depth
estimation. Our network achieves state-of-the-art depth es-
timation accuracy with a significant acceleration.

The contributions of this paper can be summarized as:

1For example, in LFAttNet [29], totally 80 views are shifted by 8 dis-
parity levels, resulting in 640 sequential shifting operations.
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• We propose a cost constructor to replace the shift-and-
concat approach for matching cost construction.

• We make our cost constructor to be occlusion-aware
by modulating pixels from different views in a fine-
grained manner.

• We develope an OACC-Net for LF depth estimation.
Our method achieves top accuracy with significant ac-
celeration as compared to other state-of-the-art meth-
ods on the 4D LF benchmark [8].

2. Related Works
In this section, we review the major works in LF depth

estimation. We classify the existing methods into traditional
methods and deep learning-based methods.

2.1. Traditional Methods

Early works on LF depth estimation follow the tradi-
tional paradigm and use different approaches to measure
the consistency among different views. Tao et al. [27]
proposed to combine the correspondence cue and the de-
focus cue for LF depth estimation. Subsequently, Tao et
al. [28] introduced a shading-based refinement approach to
improve the depth estimation accuracy. Jeon et al. [11] pro-
posed a phase-based multi-view stereo matching method
and achieved depth estimation in the Fourier domain. Wang
et al. [31] considered occlusions in LF depth estimation and
proposed an occlusion-aware algorithm based on the partial
angular consistency. Williem et al. [36] proposed angular
entropy cost and adaptive defocus cost to handle the noise
and occlusion issues for depth estimation. More recently,
Han et al. [4] proposed an occlusion-aware vote cost to pre-
serve edges in depth maps.

Since an epipolar plane image (EPI) contains patterns of
oriented lines and the slope of these lines is related to the
depth values, many methods achieve depth estimation by
analyzing the slope of each line on EPIs. Wanner et al. [34]
proposed a structure tensor to estimate the slope of lines in
horizontal and vertical EPIs, and refined the initial results
by global optimization. Zhang et al. [38] proposed a spin-
ning parallelogram operator (SPO) to estimate the slopes
for depth estimation. Sheng et al. [25] proposed to estimate
slopes using multi-orientation EPIs and achieved improved
results over SPO. Schilling et al. [24] proposed an inline oc-
clusion handling scheme operated on EPIs to achieve state-
of-the-art depth estimation performance among traditional
methods.

2.2. Deep Learning-based Methods

Recently, deep networks have been widely used for depth
estimation and achieved significant performance gain over
traditional methods. Heber et al. [6] proposed the first end-
to-end network to learn the mapping between a 4D LF and

its corresponding depths. Subsequently, Heber et al. [7]
proposed a U-shaped network with 3D convolutions to ex-
tract geometric information from LFs for depth estimation.
Shin et al. [26] proposed a multi-stream network and a se-
ries of data augmentation approaches for fast and accurate
LF depth estimation. Tsai et al. [29] proposed an attention-
based view selection network to adaptively incorporate all
angular views for depth estimation. Peng et al. [21] pro-
posed an unsupervised LF depth estimation method that can
be trained without using the ground-truth depth maps. Sub-
sequently, Peng et al. [22] proposed a zero-shot learning-
based method that can perform unsupervised depth estima-
tion without using external datasets. More recently, Chen et
al. [2] proposed an attention-based multi-level fusion net-
work to handle the occlusion problem for depth estimation.
Huang et al. [9] proposed a multi-disparity-scale cost aggre-
gation approach to achieve fast LF depth estimation.

Different from existing methods which focus on design-
ing advanced modules for feature extraction [29] or cost ag-
gregation [2,9], in this paper, we study the cost construction
stage and propose a simple and efficient module to achieve
occlusion-aware cost construction.

3. Method
In this section, we first describe the LF structure and

analyze the influence of occlusions to angular consistency.
Then, we introduce the proposed occlusion-aware cost con-
structor. Finally, we introduce our network for LF depth
estimation.

3.1. LF Structure and Occlusion Analysis

We use the two-plane model [18] to parameterize LFs.
As shown in Fig. 2, a light ray originated from point P can
be uniquely determined by its intersections across the cam-
era plane Ω = {(u, v)} and the image plane Π = {(h,w)}.
Consequently, an LF can be formulated as a 4D tensor ac-
cording to the mapping function L(u, v, h, w) : Ω×Π �→ R.
In this paper, we denote the 4D LF as L ∈ RU×V×H×W ,
where U and V represent the angular dimensions, and H
and W represent the spatial dimensions.

Note that, a scene point (e.g., point P in Fig. 2) will be
projected to different locations on the images captured by
different cameras. As shown in Fig. 2(b), there is a disparity
(denoted as d) between projections P1 and P2, and the depth
value of P can be calculated according to γ = fB/d, where
B and f represent the baseline length and the focal length
of the LF camera. Consequently, depth estimation can be
achieved by estimating the per-pixel disparities of the LF
images. In this paper, we follow [2,9,26,29] to estimate the
disparity map of the center view.

Since the projections of a scene point on different views
should have identical intensity under Lambertian and non-
occlusion assumptions, depth estimation can be achieved by
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(a) Two-plane model (b) Images captured by C1 and C2

Figure 2. An illustration of the two-plane model.

choosing the disparity candidate with highest angular con-
sistency. To compare the angular consistency under differ-
ent disparities, we construct angular patches according to

Ap
d(u, v) = L (u, v, h+ (uc − u)d, w + (vc − v)d) , (1)

where Ap
d is the angular patch at pixel p(h,w) with disparity

d, and uc and vc represent the angular coordinates of the
center view.

Here, we use an example for illustration. As shown in
Fig. 3(a), we select two pixels from scene sideboard [8],
and construct angular patches under different disparities.
The angular patches of pixel A are shown in Fig. 3(c), from
which we can see that the color of the pixels in the angular
patch is more consistent near groundtruth disparity value
(i.e., d = 1.13). We further calculate the standard deviation
of these angular patches to evaluate their consistency. As
shown in Fig. 3(e), the curve reaches its minimum at the
groundtruth disparity. That is, the intensity of pixels in an
angular patch is most consistent under correct disparities.

However, this theory does not hold in occluded regions.
As shown in Fig. 3(d), we construct angular patches of pixel
B under different disparities. It can be observed that pix-
els on the top-left corner of the angular patch have different
color from other pixels even under the groundtruth disparity
(i.e., d = 0.31). That is because, the corresponding pixels
in the top-left views are occluded by the foreground basket-
ball. Consequently, occlusions can deteriorate the angular
consistency under correct disparities, making the standard
deviation curve (the red curve in Fig. 3(f)) not reach its
minimum at the groundtruth disparity.

It is interesting that when we mask the top-left pixels
in each angular patch of pixel B and calculate the stan-
dard deviation of the remaining pixels, the modified curve
(the pink curve in Fig. 3(f)) reaches its minimum near the
groundtruth disparity. It demonstrates that the intensity of
non-occluded pixels in an angular patch are most consistent
at correct disparities. Motivated by this observation, we de-
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Figure 3. Comparison of the angular consistency in occluded and
non-occluded regions. Standard deviation is used to evaluate the
consistency of pixels in an angular patch. For the occluded region,
an occlusion mask is needed to make the standard deviation reach
its minimum at the correct disparity.

sign an occlusion-aware cost constructor to handle the oc-
clusion issue for matching cost construction.

3.2. Occlusion-Aware Cost Constructor

Given a 5D LF feature L ∈ RU×V×H×W×C and a
candidate disparity d ∈ {dmin, · · · , dmax}, existing meth-
ods construct matching costs using the shift-and-concat ap-
proach. Specifically, they shift the feature of each view ac-
cording to its angular coordinate (u, v) and the given dis-
parity d, then concatenate all the shifted features to generate
the cost tensor. That is,

Fd
u,v(h,w, :) = Fu,v (h+ (uc–u)d, w + (vc–v)d, :) , (2)

Cd = Concat
(
Fd

0,0, · · · ,Fd
U,V

)
, (3)

where Fd
u,v ∈ RH×W×C denotes the shifted feature of

view (u, v) under disparity d, and Cd ∈ RH×W×UV C de-
notes the cost tensor under disparity d. Finally, the cost
volume is generated by stacking all the cost tensors (i.e.,
Cdmin , · · · , Cdmax ) along the disparity dimension.

Instead of using the shift-and-concat approach, in this
paper, we propose an occlusion-aware cost constructor for
matching cost construction. The main ideas of our OACC
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(a) an SAI array of a 3×3 LF (b) cost construction via convolutions
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Figure 4. An illustration of our cost construction process.

are: 1) using convolutions to integrate pixels of each view
under specific disparities; 2) modulating the input pixels to
handle occlusions during cost construction.

3.2.1 Cost Construction via Convolutions

To construct matching cost, pixels in the angular patch un-
der each candidate disparity should be integrated respec-
tively. However, how to efficiently find the corresponding
pixels to form an angular patch remains challenging. Since
LF images have a regular spatial-angular structure [32], cost
construction can be achieved by performing convolutions
on the SAI array.

Here, we use a toy example for illustration. As shown
in Fig. 4(a), a 3×3 LF is organized in an array of SAIs. In
this scenario, the yellow star is in the background with zero
disparity, and the green triangle is in the foreground and has
a positive disparity2. The bottom-left vertex of the yellow
star and the top vertex of the green triangle are marked by
a red box and a purple box, respectively. It can be observed
that both red and purple boxes are evenly distributed in a
square region, which can be easily integrated via convolu-
tions. Consequently, we design our cost constructor as a
series of convolutions with a kernel size of U×V and dif-
ferent dilation rates to integrate angular patches under dif-
ferent disparities. The dilation rate is closely related to the
preset disparity d and can be calculated according to

dila(d) = [H − d,W − d] , (4)

where H and W denote the height and width of each SAI,
respectively. From Eq. 4, we can conclude that object with
a larger disparity value (e.g., the purple box) has a smaller
dilation rate, which is consistent with the toy example in
Fig. 4. Using our proposed cost constructor, angular patches
under different disparities can be integrated without per-
forming any shifting operation, and the matching cost can
be efficiently constructed by convolving all the pixels in the
angular patch, as shown in Fig. 4(b).

2Under a positive disparity, object in the left/upper views locates at
right/lower positions.

In our implementation, zero-padding is performed on
each SAI to avoid aliasing among different views at bound-
aries. Moreover, the boundary of the resulting features are
cropped to ensure the output features have a spatial resolu-
tion of H×W . Details of padding and cropping strategies
can be referred to the supplemental material.

3.2.2 Occlusion Handling via Pixel Modulation

As analyzed in Section 3.1, occlusions can deteriorate the
angular consistency and should be masked out during cost
construction. Inspired by Deformable ConvNet V2 [40],
we introduce a modulation mechanism to dynamically ad-
just the amplitude of pixels from different views for oc-
clusion handling. Specifically, given an angular patch3

Ap
d ∈ RU×V at spatial location p=(h,w) under disparity

d, the modulated convolution can be formulated as

y(p, d) =

∑UV
k=1 ωk · Ap

d(k) ·∆mp
k∑UV

k=1 ∆mp
k

, (5)

where y(p) denotes the resulting matching cost at spatial
location p under disparity d, ωk denotes the weight of our
cost constructor at the kth sampling point, and ∆mp

k ∈ [0, 1]
is the modulation scalar. Note that, the weights of our cost
constructor are shared across different spatial locations and
disparity values, while the modulation scalar is spatially
varying and only shared among different disparity values.

With the modulation mechanism, our cost constructor
can adjust the contributions of each view at each location
to achieve occlusion-aware cost construction. For example,
if a scene point is occluded in some views, our OACC will
assign small modulation scalars to the occluded pixels to re-
duce their impact on the matching cost. It is demonstrated
in Sec. 4.2 that the modulation mechanism is crucial for ac-
curate depth estimation.

3.2.3 Occlusion Mask Generation

To achieve occlusion-aware cost construction, the occlusion
mask of each view need to be calculated to generate reason-
able modulation scalars in Eq. 5. However, accurate occlu-
sion estimation is a non-trivial task. Inspired by the unsu-
pervised LF depth estimation methods [12, 21, 22, 39], in
this paper, we propose a parameter-free approach to deduce
occlusion mask of each view. Specifically, for regions with
occlusions, a scene point that is available in the center view
can be unavailable in the surrounding views, and the oc-
cluded pixels in these surrounding views cannot find their
corresponding pixels in the center view. Consequently, the

3Our modulated convolution is applied to the SAI arrays as in Fig. 4.
For simplicity, we use the angular patch to denote the pixels from each
view under a specific disparity, and ignore the dilation rates while per-
forming our modulated convolution.
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Figure 5. Visualization of the generated occlusion masks on scene
sideboard. Lower values represent heavier occlusions.

fine-grained occlusion mask can be calculated based on the
photometric consistency prior.

Denote the disparity map of the center view as Dc, the
surrounding views are firstly warped to the center view, i.e.,

Ik→c = WDc

k→c (Ik) , k = 1, 2, · · · , UV, (6)

where WDc

k→c denotes the warping operation that projects
the kth view Ik to the center view Ic. Assume that the dis-
parity map Dc is accurate, the projected view Ik→c should
have identical values to the center view Ic at non-occluded
regions. Therefore, we use the absolute residuals between
Ik→c and Ic to measure the photometric consistency, i.e.,

Ires
k→c = |Ik→c − Ic| . (7)

Finally, the occlusion mask of the kth view is obtained
by re-mapping Ires

k→c to [0, 1], i.e.,

Mk = |1− Ires
k→c|

q
, (8)

where q is a scalar that controls the decaying rate. A larger
q can enhance the sensitivity to occlusions but degrade the
robustness to noise (see Sec 4.2). In our implementation,
we empirically set q=2 to achieve a good trade-off between
occlusion awareness and noise robustness.

Using the aforementioned approach, the occlusion mask
(i.e., the modulation scalars in Eq. 5) of each view can
be obtained. As shown in Fig. 5, the generated occlusion
masks are reasonable and consistent to the real case.

3.3. Network Design

Based on the proposed OACC, we develop a deep net-
work called OACC-Net for LF depth estimation. As shown
in Fig. 6, our network takes a U×V LF as its input and
sequentially performs feature extraction, OACC-based cost
construction, cost aggregation, and depth regression.

3.3.1 Feature Extraction

As shown in Fig. 6(b), in our feature extraction module,
a 3×3 convolution is first used to extract initial features.
Then, eight residual blocks [5] are cascaded for deep feature
extraction. These residual blocks are built in a “Conv-BN-
LeakyReLU-Conv-BN” structure with skip connections for
local residual learning. Features generated by the last resid-
ual block are further fed to three cascaded 3×3 convolu-
tions to generate features for cost construction. Note that,
the weights of all the convolutions in our feature extraction
module are shared among different views.

3.3.2 Cost Construction

We use the proposed OACC for matching cost construc-
tion. As described in Sec. 3.2.1, features generated by the
feature extraction module are organized into SAI arrays to
form the input of our OACC. Besides, the occlusion mask
of each view is generated for occlusion-aware pixel mod-
ulation. However, there is a “chicken-and-egg” problem
between occlusion mask generation and depth estimation.
That is, occlusion mask generation requires a disparity map
as its input, but the disparity information is unavailable at
this stage.

Here, we propose an iterative scheme to solve this prob-
lem. In the testing phase, we generate an initial occlusion
mask by setting all its elements to one (i.e., non-occlusion
assumption), and use this initial mask for depth estimation.
After obtaining the initial disparity map, we update the oc-
clusion mask and use the updated mask to generate more
accurate disparity maps. It is demonstrated in Sec. 4.2 that
the proposed iterative scheme works well and can make oc-
clusion prediction and depth estimation mutually boost. In
the training stage, we directly use the groundtruth disparity
map to generate occlusion masks to avoid training collapse.

3.3.3 Cost Aggregation and Regression

Given the cost volume generated by our OACC, we first
use a 1×1 convolution to reduce its channel depth from
512 to 160. Then we cascade eight 3D convolutions with
a kernel size of 3×3×3 for cost aggregation. The third to
the sixth 3D convolutions are organized into two residual
blocks, and channel attention layers are adopted after each
residual block to highlight contributive channels. Finally, a
3D tensor Ffinal ∈ RD×H×W is generated by the last 3D
convolution, and the disparity is regressed according to

D̂c =

dmax∑
dk=dmin

dk × Softmax(Ffinal), (9)

where D̂c denotes the estimated center-view disparity,
Softmax(·) denotes the softmax normalization which is per-
formed along the disparity axis of Ffinal.
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Figure 6. An overview of our OACC-Net. Here, a 3×3 LF is used as an example for illustration.

4. Experiments

In this section, we first introduce the datasets and imple-
mentation details, then conduct experiments to investigate
our models. Finally, we compare our OACC-Net to several
state-of-the-art LF depth estimation methods.

4.1. Datasets and Implementation Details

We used the 4D LF benchmark [8] to validate the effec-
tiveness of our method. All LFs in this benchmark have
an angular resolution of 9×9 and a spatial resolution of
512×512. All the 9×9 views are used by our method for
depth estimation. We followed [2,9,26,29] to use 16 scenes
in the “Additional” category for training, 8 scenes in the
“Stratified” and “Training” categories for validation, and 4
scenes in the “Test” category for test. We also used other LF
datasets [16, 23, 30, 35] to test the generalization capability
of our method (see Fig. 10 and the supplemental material).

During the training phase, we randomly cropped SAIs
into patches of size 48×48, and converted them into gray-
scale images. We performed a large variety of data aug-
mentation, including random flipping and rotation, bright-
ness and contrast adjustment, noise injection, refocusing,
and downsampling. Our OACC-Net was trained in a super-
vised manner with an L1 loss, and was optimized using the
Adam method [15] with β1=0.9, β2=0.999. The batch size
was set to 16 and the learning rate was set to 1×10−3. The
training was stopped after 3×105 iterations and takes about
7 days. Our model was implemented in PyTorch and trained
on a PC with two Nvidia RTX 2080Ti GPUs.

We used the mean square error (MSE) and bad pixel ratio
(BadPix(ε)) as quantitative metrics for performance evalua-
tion. BadPix(ε) measures the percentage of incorrectly esti-
mated pixels whose absolute errors exceeding a predefined
threshold (e.g., ε =0.07, 0.03, 0.01).

1

-1

0

OACC-Net

OACC-Net

OACC-Net

OACC-Net

w/o-PM

w/o-PM

w/o-PM

w/o-PM

(a) Boxes (b) Dino

Figure 7. Visual comparisons of our method on scenes (a) boxes
and (b) dino with/without using pixel modulation mechanism.
Top-row figures show the estimated disparity D̂ while the bottom-
row figures show the corresponding error maps (D̂ − Dgt).

4.2. Model Analyses

We first conduct experiment to validate the effectiveness
of our pixel modulation mechanism. Then, we test the per-
formance of our method with different number of iterations
and decaying rates. Finally, we demonstrate the efficiency
of our OACC.

Pixel modulation mechanism. We replaced the modu-
lated convolution with a vanilla convolution and retrained
this variant from scratch. As shown in Table 1, compared
to our OACC-Net (i.e., “iter 2”), model “w/o-PM” suffers a
1.513 and 0.336 increase in BadPix0.07 and MSE, respec-
tively. That is because, without using the pixel modulation
mechanism, pixels from each view and at each spatial loca-
tion are processed equally thus the occlusion issue cannot
be handled. The qualitative results in Fig. 7 also demon-
strate that the disparities predicted by our OACC-Net are
more accurate at regions with heavy occlusions.

Number of iterations. We compare the performance
of our method with different number of iterations (see Sec
3.3.2). As shown in Table 1, directly using an all-one ten-
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Table 1. BadPix0.07 (BP07) and mean square error (MSE) achieved by different variants of our OACC-Net on the 4D LF benchmark [8].
“w/o-PM” denotes the model trained without using the pixel modulation mechanism, “iter k” denotes the model performing k iterations in
the inference stage, and “gt-mask” denotes the model using occlusion masks generated by the groundtruth disparities. The main model of
our OACC-Net (i.e., iter 2) is highlighted. The best results are in red and the second best results are in blue.

Models Backgammon Dots Pyramids Stripes Boxes Cotton Dino Sideboard Average
BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE

w/o-PM 7.142 5.097 2.419 1.382 0.269 0.008 5.909 1.084 14.17 4.023 0.550 0.174 1.649 0.133 3.846 0.674 4.494 1.572
iter 1 4.128 4.059 1.762 1.395 0.156 0.005 3.444 0.879 10.84 3.182 0.352 0.172 1.099 0.091 3.366 0.562 3.143 1.293
iter 2 3.931 3.938 1.510 1.418 0.157 0.004 2.920 0.845 10.70 2.892 0.312 0.162 0.967 0.083 3.350 0.542 2.981 1.236
iter 3 3.928 3.858 1.578 1.421 0.158 0.005 2.920 0.847 10.56 2.968 0.319 0.161 0.989 0.082 3.314 0.581 2.970 1.240
iter 4 3.918 3.824 1.572 1.424 0.158 0.005 2.909 0.846 10.60 2.966 0.310 0.159 0.999 0.082 3.337 0.591 2.975 1.237

gt-mask 3.910 3.593 1.515 1.297 0.156 0.005 2.876 0.840 10.01 2.278 0.300 0.118 0.909 0.072 3.057 0.502 2.842 1.088

q = 5q = 1q = 1 q = 5
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Figure 8. Results achieved by our method on scenes (a) boxes
and (b) dots with different decaying rates q. Top figures show the
MSE w.r.t. different decaying rates, and the bottom figures show
the disparity maps with q=1 and q=5.

sor as an occlusion mask (i.e., “iter 1”) achieves 3.143 and
1.293 in terms of average BadPixel0.07 and average MSE,
respectively. It demonstrates the importance of occlusion
mask generation in our method. When using the initial esti-
mated disparity to generate occlusion masks, the average
BadPixel0.07 and MSE values are reduced to 2.981 and
1.236, respectively, which demonstrates the effectiveness
of our iterative scheme. Note that, performing more iter-
ations (i.e., “iter 3” and “iter 4”) cannot introduce signif-
icant improvements. Therefore, we set the iteration num-
ber to 2 in our OACC-Net for a good trade-off between
accuracy and efficiency. Moreover, we explore the upper
bound of our method by using the occlusion mask gener-
ated by groundtruth disparity. As shown in Table 1, by
using “groundtruth” masks, occlusions can be well located
and the accuracy is improved. It demonstrates that accurate
occlusion masks are important for LF depth estimation.

Effect of decaying rate. We compare our method with
different decaying rates in Eq. 8. As shown in Fig. 8,
larger decaying rates can make our method perform better
on scenes with heavy occlusions (see Fig. 8(a)) but reduce
the robustness to large noise (see Fig. 8(b)). That is be-
cause, under large noise, the photometric consistency can
be broken and some pixels can be mis-classified as occluded
pixels with large decaying rates. Consequently, we set
q=2 in our method for a good trade-off between occlusion-

Table 2. Model size and running time of our OACC-Net at differ-
ent stages. Here, a 9×9 LF with a spatial resolution of 512×512 is
used as input. The proposed OACC achieves a very fast inference
speed and significantly accelerates our OACC-Net.

Stages Shift-and-Concat OACC-Net (ours)

feature extraction 0.04 M / 0.004 s 0.04 M / 0.004 s
cost construction 0 M / 2.741 s 0.04 M / 0.004 s

aggregation & regression 4.93 M / 0.003 s 4.93 M / 0.003 s
mask generation - 0 M / 0.015 s
cost construction - shared / 0.004 s

aggregation & regression - shared / 0.004 s
Total 4.97 M / 2.748 s 5.01 M / 0.034 s

awareness and noise-robustness.
Efficiency. We investigate the efficiency of our method

by listing the model size and running time of our OACC-
Net at each stage. Here, we introduce a variant by using
the shift-and-concat approach for cost construction, where
80 views are shifted by 8 disparity levels. As shown in Ta-
ble 2, the shift-and-concat approach spends 2.741 seconds
on cost construction while our OACC spends only 4 mil-
liseconds. Since our OACC can directly convolve pixels
under specific disparities and avoids the repetitive shifting
operation, the inference speed of our OACC-Net is signifi-
cantly accelerated at the cost of a 0.04 M increase in model
size.

4.3. Comparison to the State-of-the-art Methods

We compare our method to 13 state-of-the-art methods,
including 7 traditional methods [4,10,24,25,31,36,38] and
6 deep learning-based methods [9, 17, 19, 20, 26, 29].

1) Quantitative Results: Table 3 shows the MSE and
average running time achieved by different methods. It can
be observed that our method achieves the lowest MSE (i.e.,
highest accuracy) on 9 scenes and the second lowest MSE
on 2 scenes. We submitted our results to the 4D LF bench-
mark [8] for a comprehensive evaluation. Among all the 84
submissions, our method achieves the first and the second
place in terms of average MSE and average BadPix0.07,
respectively. Readers can refer to our supplemental ma-
terial for additional results. Note that, our method only
spends 0.034 seconds on each scene, which is faster than
FastLFnet [9] by an order of magnitude. The high accuracy
and efficiency demonstrate the superiority of our OACC.
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Table 3. Mean square error (MSE) and average running time achieved by different methods on the 4D LF benchmark [8]. The best results
are in red and the second best results are in blue.

Method Backgm Dots Pyramids Strips Boxes Cotton Dino Sideboard Bedroom Bicycle Herbs Origami Average Time (s)

LF OCC [31] 22.78 3.185 0.077 7.942 9.593 1.074 0.944 2.073 0.530 7.673 22.96 2.223 6.755 519.9
CAE [36] 6.074 5.082 0.048 3.556 8.424 1.506 0.382 0.876 0.234 5.135 11.67 1.778 3.730 832.1
PS-RF [10] 6.892 8.338 0.043 1.382 9.043 1.161 0.751 1.945 0.288 7.926 15.25 2.393 4.617 1413
SPO [38] 4.587 5.238 0.043 6.955 9.107 1.313 0.310 1.024 0.209 5.570 11.23 2.032 3.968 2115
SPO-MO [25] 4.133 3.763 0.009 1.934 10.37 1.329 0.254 0.932 0.152 5.617 12.05 1.667 3.518 4304
OBER-cross-ANP [24] 4.700 1.757 0.008 1.435 4.750 0.555 0.336 0.941 0.185 4.314 10.44 1.493 2.584 183.0
OAVC [4] 3.835 16.58 0.040 1.316 6.988 0.598 0.267 1.047 0.212 4.886 10.36 1.478 3.968 19.41
EPN+OS+GC [20] 3.699 22.37 0.018 8.731 9.314 1.406 0.565 1.744 1.188 6.411 11.58 10.09 6.426 274.7
Epinet-fcn [26] 3.629 1.635 0.008 0.950 6.240 0.191 0.167 0.827 0.213 4.682 9.700 1.466 2.476 1.976
Epinet-fcn-m [26] 3.705 1.475 0.007 0.932 5.968 0.197 0.157 0.798 0.204 4.603 9.491 1.478 2.418 10.66
Epinet-fcn-9x9 [26] 3.909 1.980 0.007 0.915 6.036 0.223 0.151 0.806 0.231 4.929 9.423 1.646 2.521 2.041
EPI-Shift [17] 12.79 13.15 0.037 1.686 9.790 0.475 0.392 1.261 0.284 6.920 17.01 1.690 5.458 22.57
EPI ORM [19] 3.411 14.48 0.016 1.744 4.189 0.287 0.336 0.778 0.298 3.489 4.468 1.826 2.944 76.61
LFAttNet [29] 3.648 1.425 0.004 0.892 3.996 0.209 0.093 0.530 0.366 3.350 6.605 1.733 1.904 5.862
FastLFnet [9] 3.986 3.407 0.018 0.984 4.395 0.322 0.189 0.747 0.202 4.715 8.285 2.228 2.456 0.624
OACC-Net (ours) 3.938 1.418 0.004 0.845 2.892 0.162 0.083 0.542 0.148 2.907 6.561 0.878 1.698 0.034

Groundtruth CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI-Shift EPI_ORM LFAttNet

Groundtruth CAE PS_RF SPO OBER-cross-ANP EPN+OS+GC Epinet-fcn-m EPI-Shift EPI_ORM LFAttNet

FastLFnet

FastLFnet

Ours

Ours

17.89 18.95 15.89 10.76 15.30 12.34 25.95 13.37 11.04 18.70 10.70

12.40 7.975 16.27 0.974 39.25 2.490 43.92 36.10 1.432 21.17 1.510

Figure 9. Visual comparisons among different LF depth estimation methods on the 4D LF benchmark [8]. For each scene, the bottom row
shows the estimated disparity maps and the top row shows the corresponding BadPix0.07 maps (pixels with absolute error larger than 0.07
are marked in red).

Knights
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Figure 10. Visual results achieved by SPO [38], EPINET [26], and
our method on real LFs.

2) Visual Comparison: Figure 9 shows the estimated
disparities and corresponding BadPix0.07 maps. Since the
proposed OACC can handle occlusions in a fine-grained
manner, our OACC-Net performs well on scenes with heavy
and complex occlusions (e.g., the nested structures in scene
boxes). Besides, our method is also robust to noise and out-
performs many state-of-the-art methods [9, 17, 19, 26] on

scenes with large noise (e.g., the bottom dots in scene dots).
3) Performance on real LFs. We test the performance

of our OACC-Net on real LFs captured by a moving cam-
era [30] and a Lytro camera [1]. Since groundtruth depths
are unavailable, we used the model trained on the synthetic
LFs [8] for inference and compare the visual performance
of our method to SPO [38] and EPINET [26]. As shown
in Fig. 10, the depth maps produced by our method are
more reasonable with fewer artifacts. It demonstrates that
our OACC-Net can well generalize to real LFs. Please refer
to our supplemental material for additional comparisons.

5. Conclusion
In this paper, we proposed an occlusion-aware cost con-

structor for LF depth estimation. Our OACC can efficiently
construct matching cost and handle occlusions by modulat-
ing input pixels. Based on OACC, we developed a deep net-
work called OACC-Net for depth estimation. Our method is
highly efficient and achieves better performance than many
state-of-the-art methods on different scenarios.
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