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Abstract

We consider the problem of omni-supervised object de-
tection, which can use unlabeled, fully labeled and weakly
labeled annotations, such as image tags, counts, points,
etc., for object detection. This is enabled by a unified
architecture, Omni-DETR, based on the recent progress
on student-teacher framework and end-to-end transformer
based object detection. Under this unified architecture, dif-
ferent types of weak labels can be leveraged to generate ac-
curate pseudo labels, by a bipartite matching based filter-
ing mechanism, for the model to learn. In the experiments,
Omni-DETR has achieved state-of-the-art results on mul-
tiple datasets and settings. And we have found that weak
annotations can help to improve detection performance
and a mixture of them can achieve a better trade-off be-
tween annotation cost and accuracy than the standard com-
plete annotation. These findings could encourage larger
object detection datasets with mixture annotations. The
code is available at https://github.com/amazon-
research/omni-detr.

1. Introduction
Most of the successes of recent object detection are at-

tributed to the large-scale well-established object detection
datasets [11, 12, 25, 28, 38], which have accurate and com-
plete detection annotation (category and bounding box or
segmentation mask) for every object of interest in an image.
In general, complete and accurate detection annotation is
very expensive. For example, complete annotation of a sin-
gle image of MS-COCO [28] takes about 346 seconds, 76.5
seconds on each category elimination and 269.5 seconds
on accurate bounding box localization, on average [35]1.
Given this expensive cost, it is very difficult to scale up the
data size. For example, OpenImages consisting of 9 million
images [25] used a combination of machine annotation and
human verification to reduce the annotation cost. The ques-

⋆ Work done during internship at Amazon. †Corresponding author.
1Not accurate numbers from [28] but rough estimation from [35].
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Figure 1. The top is the visualization of different forms of weak
annotations, and the bottom is the trade-off comparison (accu-
racy v.s. annotation cost) of supervised/semi-supervised/omni-
supervised detection (see Section 5.5 for more details).

tion is, do we need accurate and complete annotation which
is expensive to achieve strong detection performances?

There are many weaker forms of object annotation as
shown in Figure 1 (top), e.g., points, tags, counts, etc., but
they are not well explored in the literature and the majority
of the object detection frameworks are designed to be used
with complete detection annotations. One of the main rea-
sons for this is that using weaker forms of annotation has not
shown promising results yet. For example, the performance
of weakly supervised object detection (WSOD) [23, 32, 44]
lags in performance compared to standard supervised detec-
tion using complete annotations. In addition, UFO2 [35], as
the first work in omni-supervised object detection (OSOD),
has shown that using additional weak annotations only has
marginal gains. In this paper, however, we will show that,
weak annotation can help to improve detection performance
and achieve better cost-accuracy trade-off.

Towards this, we propose a unified architecture for
OSOD, Omni-DETR, which can work with different types
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of weak annotations, including image tags, object counts,
points, loose bounding boxes without tags, etc., or a mixture
of them. It is built on recent progresses on student-teacher
based semi-supervised object detection (SSOD) [30,41,45]
to better leverage the data even if it is unlabeled, and
the end-to-end detection architecture of [7, 52] with no
heuristic detection procedures, like proposal detection, non-
maximum suppression, thresholding, etc. The weak ground
truth labels are used to filter the teacher predictions to gen-
erate pseudo labels for the student to learn. We formulate
the pseudo-label filtering as a bipartite matching problem
between the sets of predictions and available weak ground
truths, and propose a unified pseudo-label filtering strategy
to accommodate any form of weak annotations.

Omni-DETR provides a unified framework to explore
different weak forms of object annotations. With this frame-
work, we have found that 1) weak annotations can bring ad-
ditional gains even on a strong baseline; and 2) a mixture of
weak and complete annotations can achieve better accuracy-
cost trade-offs than just using complete annotations. As
seen in Figure 1 (bottom), our Omni-DETR achieves bet-
ter results than a standard supervised and a stronger semi-
supervised detection baseline. In addition, some annota-
tion forms are more suited than the others depending on the
dataset characteristics. For example, as shown in Figure 2,
annotating accurate bounding boxes is difficult for Bees [3]
and CrowdHuman [39] datasets, since objects are small and
very crowded. However, it is easier to annotate with points
for these datasets. Similarly, annotating accurate categories
is difficult for Objects365 [38] as there are too many cate-
gories (365), but annotating just the bounding boxes is rel-
atively easy and cheap. Omni-DETR can accommodate all
these different cases and help to reduce the cost of anno-
tating such datasets, encouraging a larger scale of object
detection datasets with mixed annotations.

Our contributions are summarized as: 1) a unified frame-
work, Omni-DETR, that can accommodate various forms of
object annotations or a mixture of them. 2) a novel and uni-
fied pseudo label filtering strategy, based on bipartite match-
ing; 3) experimental findings that show weak annotations
can provide additional gains and achieve better accuracy-
cost trade-off than the standard full detection annotations;
4) the empirical exploration of optimal annotation mixtures
for a fixed annotation budget, showing that the optimal mix-
ture depends on the dataset.

2. Related Work
Supervised Object Detection is a fundamental problem

in computer vision [6,15,16,27,29,33,34,47]. Most detec-
tion frameworks can be categorized into two groups: two-
stage [6,15,16,27,34] v.s. single-stage detectors [29,33,47].
These detectors usually have some heuristic steps, e.g., pro-
posal detection, thresholding, non-maximum suppression,
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Figure 2. The potentially most suited annotation formats vary from
dataset to dataset.

etc. More recently, [7] proposed the DETR framework
based on transformer [48] for end-to-end detection. It for-
mulates detection as a set-to-set prediction problem, elimi-
nating some of the previous heuristics and enabling a sim-
pler detection pipeline. The subsequent Deformable DETR
[52] improved on the slow training convergence of DETR
and achieved better detection performances. Our Omni-
DETR is also based on this end-to-end framework, which
is now extended to support various forms of annotations.

Semi-Supervised Object Detection (SSOD) tries to im-
prove detection performances by using additional unlabeled
data [22,30,37,41,45,50,51]. A prevalent SSOD paradigm
is to use a multi-stage self-training pipeline [37, 41, 49]:
1) train model on labeled data; 2) generate pseudo labels
on unlabeled data; 3) retrain model on both labeled and
pseudo-labeled data; 4) repeat this process if needed. Some
recent works [22, 30, 45] have shown great progress by re-
sorting to an online pipeline. [22] leverages the consistency
regularization between two different augmented views of a
single image. [30, 45] rely on a mean-teacher framework
[46], where the teacher generates online pseudo labels for
the student to learn. Omni-DETR is also based on this
mean-teacher framework, but uses different weak annota-
tions to generate accurate pseudo labels.

Weakly-Supervised Object Detection (WSOD) aims to
reduce detection annotation efforts by leveraging cheaper
weakly labeled data. Most works only use a single type of
weak annotations, e.g. image-level tags [4, 17, 23, 42, 44]
or instance-level points [8, 19, 32], and usually formulate
WSOD as a multiple instance learning (MIL) problem.
This, however, has very limited success so far. Some recent
works study weakly semi-supervised object detection (WS-
SOD) [9,13,14], using a small amount of fully labeled data
and a large amount of additional weakly labeled data. This
has shown more promising results than WSOD. In general,
different types of weak annotations require specific detec-
tion algorithms, e.g., [13, 14] for WSSOD with tags and [9]
for WSSOD with points. The proposed Omni-DETR is
closely related to WSSOD but can accommodate various
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weak annotations instead of a single one.
Omni-Supervised Object Detection (OSOD) combines

different forms of annotations to improve detection. It was
first proposed in UFO2 [35], which is based on the Faster
R-CNN [34] framework and formulates OSOD as a mul-
titask learning problem. However, UFO2 has only shown
very marginal improvements for the addition of weak an-
notations, and suggested that, for a fixed annotation budget,
the best choice is still full annotation. However, our ex-
periments of Omni-DETR have the opposite observations:
weak annotations are helpful and a mixture of annotations
is a better solution than full annotation given a fixed anno-
tation budget. Table 1 summarizes the related works of ob-
ject detection using different types of annotations, and our
Omni-DETR is a more universal framework on annotation
formats than the previous works.

Object Detection Data Annotation is known to be an
expensive and tedious task [11, 12, 18, 25, 28, 38], that re-
quires annotators to choose the right category and local-
ize the accurate bounding box for each object. For exam-
ple, [43] reports an average annotation time of 35 seconds
for a high-quality bounding box. The total estimated time
with associated categories per COCO image is 346 sec-
onds [35]. This high annotation cost prevents the detection
dataset from being scaled up, in terms of the number of im-
ages, classes and objects. Several strategies have been used
to reduce the cost. For example, Caltech Pedestrian [11]
interpolates annotations between two video frames, Open-
Images [25] uses machine prediction first and then human
verification next, LVIS [18] only annotates a few posi-
tive/negative classes for an image instead of complete cate-
gory annotation, etc. Other approaches try to relax the ac-
curate bounding box annotation, by proposing to use rela-
tively loose bounding boxes [31] or near-center points [32].
In this work, using Omni-DETR, we empirically find that
accurate and complete detection annotation is not the most
economical, and a mixture of annotations can achieve a bet-
ter trade-off between accuracy and cost.

3. Omni-DETR
We at first introduce the overall framework of Omni-

DETR in this section and then the unified pseudo-label fil-
tering for various weak annotations in the next section.

3.1. Omni-labels

Omni-DETR is a unified framework to combine fully
and weakly labeled data. It assumes the availability of a
fully labeled and a weakly labeled dataset. The fully la-
beled dataset Dl = {(xl

i,y
l
i)}N

l

i=1, where xl
i is the i-th im-

age and yl
i = {(bi,j , ci,j) ∈ R4×{1, 2, ..., C}}Bi

j=1 the cor-
responding label, composed by Bi pairs of 1) four coordi-
nate bounding boxes bi,j and 2) corresponding classes ci,j ,
assigns class label ci,j to the object localized by bounding
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SSOD [30, 45] ✓
WSOD with tags [4, 23, 44] ✓
WSOD with points [19, 32] ✓
WSSOD with tags [13] ✓
WSSOD with points [9] ✓
UFO2 [35] ✓ ✓ ✓ ✓
Our Omni-DETR ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Summary of related works of object detection using dif-
ferent weak annotations.

box bi,j . The weakly labeled data,Do = {(xo
i ,y

o
i )}N

o

i=1, yo
i

can consist of any of the annotations introduced in the fol-
lowing. We omit the image index i in subsquent notations,
for notational simplicity, and term the fully labeled dataset
as labeled and the weakly labeled dataset as omni-labeled.

Omni-DETR supports any of the blow annotation forms
y, or a mixture of them, as weak annotations for image x.
None (None) y = ∅. No annotation for image x.
Tags (TagsU) y = {cj}Mj=1, which is a list of image-level
classes2. M is the number of tags. In the examples of Figure
1 (top), M = 2, c1 is “horses” and c2 is “sheep”.
Tags with counts (TagsK), y = {(cj , nj)}Mj=1, where nj

is the count number of objects of class cj . In Figure 1 (top),
c1 is “horses” and n1 = 1, while c2 is “sheep” and n2 = 3.
Points without tags (PointsU), y = {pj ∈ R2}Pj=1, where
pj is a point annotation for an object, e.g., the geometric
center of the object or a random point inside the region of
support of the object in the image, and P the number of
points. In Figure 1 (top), four point annotations identify
four objects without class information.
Points with tags (PointsK), y = {(pj , cj) ∈ R2 ×
{1, 2, ..., C}}Pj=1. In addition to PointsU, the label of each
point is also known. In Figure 1 (top), the points and labels
for three sheeps and a horse are annotated.
Boxes without tags (BoxesU), y = {bj ∈ R4}Bj=1. The
standard bounding box annotation but removing the class
information. B is the number of boxes.
Extreme Clicking Box (BoxesEC), y = {bj ∈ R4}Bj=1,
where bj is a box derived from the annotation of extreme
points of the object. This was introduced in [31] and has
much less annotation cost (5×) but only slightly worse qual-
ity than BoxesU annotation.

3.2. Unified Framework

Figure 3 gives an overview of the Omni-DETR frame-
work. Motivated by the recent successes of student-teacher
frameworks for semi-supervised learning [40] and SSOD
[30,45], our Omni-DETR is also composed of a student de-
tection network Fs(x; θs) and a teacher detection network

2We will also use “tag” to refer “class” interchangeably.
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F t(x; θt). For the omni-labeled data (xo,yo) ∈ Do, two
views of the image xo are generated by a strong and a weak
augmentation, xo,s and xo,w, respectively. The weakly aug-
mented view xo,w is forwarded through the teacher to pro-
duce the detection prediction ŷt = F t(xo,w; θt), consist-
ing of class prediction ŷcls and bounding box prediction
ŷbox. The predictions ŷt are then passed to a pseudo label
filter T together with the available omni-labels yo. The fil-
ter generates the pseudo-labels ỹt = T (ŷt;yo), which are
used to supervise the learning of the student on the strong
augmentation xo,s. The pseudo-label filtering details will
be discussed in Section 4. Here the weak/strong augmen-
tation is only applied to teacher/student because the weak
annotation can induce more accurate pseudo-labels for the
teacher and the strong augmentation can make the learn-
ing of the student more challenging. For the labeled data
(xl,yl) ∈ Dl, strong and weak augmentations are also
generated, (xl,s,yl,s) and (xl,w,yl,w), and both are feed-
forwarded to the student network for learning only.

Only the student Fs is optimized by standard SGD with
the overall loss,

Ls =
∑
i

L(xl,s
i ,yl,s

i ) + L(xl,w
i ,yl,w

i ) +
∑
i

L(xo,s
i , ỹt

i),

(1)
where L = αLcls + βLbox (2)

is the weighted sum of classification loss Lcls and bounding
box regression loss Lbox, and α and β are the correspond-
ing weights. The teacher F t is updated by the exponential
moving average (EMA) from the student [46],

θt ← kθt + (1− k)θs, (3)

where k is empirically set to a number close to 1, e.g.,
0.9996. This EMA updated teacher can be seen as a tempo-
ral ensemble of student models along the training trajec-
tories, which makes it more robust and able to generate
more accurate pseudo-labels [1, 5, 21]. Note that this re-
duces to the Unbiased Teacher (UT) framework [30] pro-
posed for SSOD when no omni-labels are available, and
only unlabeled data is used. It follows that UT is a base-
line for Omni-DETR and the addition of any weak anno-
tations should improve the accuracy of this SSOD base-
line. This establishes a much stronger baseline than any
previous weakly supervised object detection (WSOD) and
weakly semi-supervised object detection (WSSOD) work
[13, 23, 32, 44].

3.3. Detection Architecture

Although there is no constraint on which detector to use,
DETR is chosen here because it has removed many heuristic
procedures in the traditional detection frameworks [27, 29,
33, 34]. This is necessary for Omni-DETR since it needs to
accommodate many different kinds of annotations.

Figure 3. The framework of Omni-DETR, which is based on
the student-teacher framework. The omni-label is used to filter the
predictions of the teacher network, by a unified pseudo-label filter,
to generate pseudo-labels for the student network to learn. The
omni-label can be any annotation introduced in Section 3.1.

DETR [7] is a transformer [48] based end-to-end object
detection framework. In DETR, a standard CNN backbone
is at first applied to a given image, and the output features
are flattened and followed by an encoder transformer. In
order to detect objects, the decoder transformer is applied
by taking the object queries as input and cross-attending
the encoded vision features, to generate the final object pre-
dictions with class and bounding box predictions ŷcls and
ŷbox. Then a set-to-set alignment is enabled by using Hun-
garian matching [24] between the object predictions and
the ground truth objects. After matching each hypothesis
and ground truth, standard learning is used to optimize the
classification task (with multi-class cross-entropy loss) and
bounding box regression task (with generalized IoU and L1
loss). Due to the slow convergence of original DETR, we
use Deformable DETR [52] for faster convergence speeds.

3.4. Training

The overall model is trained with two stages: 1) burn-in
training of the student network alone on the labeled data; 2)
student-teacher training on both labeled and omni-labeled
data where the teacher model is initialized by duplicating
the burn-in student model.

4. Pseudo-label Filtering
As shown in Figure 3, the pseudo-label filter is a key

component to leverage weak annotations in our Omni-
DETR. It takes in both detection predictions and available
omni-labels of an omni-labeled image, and then generates
the pseudo-labels to supervise the learning of the student.

4.1. Simple Pseudo-label Filtering

At first, we present some simple pseudo-label filtering
approaches for different weak annotations. Object detectors
usually output a vector of confidence scores sj ∈ [0, 1]C per
detected bounding box bj . A popular approach to generate
pseudo-labels is to simply threshold these scores. If only
tag supervision (TagsU) is available, pseudo-labels can be
generated by thresholding the confidence s

cj
j of the ground

truth class cj . For a ground truth class if there is no pre-
diction greater than the confidence threshold, the top-1 pre-
diction is retrieved as the pseudo-label for that class. When
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count supervision is available (TagsK), with nj counts for
each ground truth class cj , this can be extended to selecting
the top nj predictions for class cj . When point supervision
is available (PointsU), a similar strategy is to choose the pre-
dicted bounding boxes that contain the ground truth points.
If additional tag supervision is available (PointsK), this can
be extended to choosing candidates whose class prediction
matches the point tag [35]. However, these empirical filter-
ing rules are specific to each type of weak supervision and
do not provide a unified pseudo-labeling solution.

4.2. Unified Pseudo-label Filtering

Next, we introduce the proposed unified approach3. For-
mally, the filter is applied to ỹ = T (ŷ;yo) where ŷ =
{ŷcls, ŷbox} is the prediction of the teacher network, with
ŷcls and ŷbox being the class and box predictions, respec-
tively. Here, we define ŷcls = [z1, ..., zK ]T ∈ RK×C and
ŷbox = [b̂1, ..., b̂K ]T ∈ RK×4, where zk is a vector of
logits (the network output vector before the softmax), b̂k

the associated bounding box prediction, and K the number
of object queries. yo is the omni-label of section 3.1.

4.2.1 No Annotation

When no annotation is available (None), pseudo-labels are
derived from confidence scores, as used in SSOD [30].
Specifically, ŷcls is fed into a softmax layer, to produce
[p1, ...,pK ]T ∈ RK×C , where pk is the probabilities over
C class for query k. The predicted class of the k-th pre-
diction is defined as ĉk = argmaxc p

c
k and the confidence

score as the associated probability sk = pĉkk . The threshold
τ is used to filter low-confidence predictions, by collect-
ing the prediction index set I = {k|sk > τ, k ∈ [1,K]}.
With the bounding box predictions ŷbox = [b̂1, ..., b̂K ]T ∈
RK×4, the pseudo-labels are then defined as {(b̂k, ĉk)|k ∈
I} where b̂k is a pseudo box and ĉk its pseudo class.

4.2.2 Weak Annotations

Motivated by DETR [7], we formulate the pseudo-label fil-
tering problem as a bipartite matching problem, between
the K teacher predictions and the available G ground truth
omni-labels {gi}Gi=1 (G < K). Specifically, we search for
a permutation σ̂ ∈ ℘K of K elements such that

σ̂ = argmin
σ∈℘K

K∑
i

Lmatch(gi, ŷσ(i)), (4)

where Lmatch(gi, ŷσ(i)) is an annotation-specific pair-wise
matching cost between ground truth omni-label gi and

3Although specific design is still needed for each weak annotation, here
we use “unified” because the filtering of different weak annotations can be
interpreted by a unified bipartite matching mechanism.

teacher prediction ŷ of index σ(i). The optimal assign-
ment is enabled with Hungarian matching [7, 24], assign-
ing pseudo-labels {(b∗

i , c
∗
i )}Gi=1. Here, b∗

i ∈ R4 is the
pseudo bounding box and c∗i the pseudo class, depending
on the weak annotation type. Next, we present the specific
Lmatch(gi, ŷσ(i)) and (b∗

i , c
∗
i ) for different annotations.

TagsU When the image-level ground truth tags are avail-
able, yo = {cj}Mj=1, where M is the number of tags and cj
is the j-th class, but the exact number of objects per class
is not known, the matching of (4) is not directly applica-
ble. To address this problem, the count nj of tag cj , is first
predicted with,

nj = max(1, |{k|pcjk > τ, k ∈ [1,K]}|), (5)

where pcjk is the probability of assigning the k-th prediction
to class cj , and | · | is the set cardinality. The predicted
count is the number of predictions that pass the confidence
threshold, if any, and set to one otherwise. This is because
there is at least one object per ground truth tag. In order
to accommodate the matching of (4) regarding G ground
truth, we re-write the ground truth set as {gi} = {ci}Gi=1

with G =
∑M

j nj and nj repetitions of each tag cj . Note
that, for different i, ci could be the same if there are multiple
objects per class. Lmatch(gi, ŷσ(i)) in (4) is defined as

Lt
match(gi, ŷσ(i)) = 1− pciσ(i). (6)

After bipartite matching of (6), the pseudo-labels are
{(b̂σ̂(i), ci)}Gi=1, where σ̂(i) ∈ {1, ...,K} is the matched
index to the i-th ground truth omni-label. b̂σ̂(i) is the pre-
dicted box and ci is the available ground truth class.

TagsK When the tags and their counts are known, yo =
{(cj , nj)}Mj=1, where nj is the number of objects of class
cj . There is no need to predict the counts anymore. The
optimal matching can be computed with (6), to obtain the
pseudo-labels {(b̂σ̂(i), ci)}Gi=1.

PointsU When points of objects are known, yo = {gi} =
{pi ∈ R2}Gi=1, where pi is a point and G points in total.
The matching cost is defined as

Lp
match(gi, ŷσ(i)) = (di,σ(i) + ei,σ(i)) ∗ ηi,σ(i), (7)

where di,σ(i) is the L2 normalized distance, between the
center of the predicted box and ground truth point, normal-
ized to [0, 1] across K × G distances by min-max normal-
ization, and ei,σ(i) = 1−sσ(i), where sσ(i) is the confidence
score of σ(i)-th prediction. Finally, ηi,σ(i) is an indicator:
ηi,σ(i) = 1 if the i-th ground truth point is inside the σ(i)-
th predicted box, otherwise +∞. This cost encourages the
selected predicted box to cover the ground truth point with
small geometric distance and high confidence. The pseudo-
labels {(b̂σ̂(i), ĉi)}Gi=1 are obtained by optimizing (7) via
Hungarian matching.
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PointsK When both the point and tag of an object are
known, the ground truth is yo = {gi} = {(pi, ci) ∈
R2 × {1, 2, ..., C}}Gi=1. We combine (6) and (7) linearly
as the overall matching cost,

Lmatch(gi, ŷσ(i)) = γLt
match + (1− γ)Lp

match, (8)

where γ is the trade-off coefficient, to obtain the pseudo-
labels {(b̂σ̂(i), ci)}Gi=1.

Boxes When the bounding boxes are known but without
classes, yo = {gi} = {bi ∈ R4}Gi=1, we follow the bound-
ing box cost definition of [7],

Lb
match(gi, ŷσ(i)) = λiouLiou(gi, b̂σ(i))+λL1||gi−b̂σ(i)||1,

(9)
where Liou is the generalized IoU loss [36], to obtain the
pseudo-labels {(bi, ĉσ̂(i))}Gi=1. Although BoxesEC and
BoxesU have different box qualities, they are not differenti-
ated by their matching costs here.

The discussion above unifies pseudo-label filtering for
all weak annotations as a bipartite matching problem, per-
formed by global optimization on a set-to-set matching
problem. This will be shown, in experiments, to outperform
the heuristic choice of Section 4.1.

5. Experiments
Omni-DETR is extensively evaluated on different

datasets and settings.

5.1. Experimental Settings

Datasets: MS-COCO [28], PASCAL VOC [12], Bees [3],
CrowdHuman [39] and Objects365 [38] are used for eval-
uation. To evaluate and compare Omni-DETR to methods
addressing different problems, we use the multiple exper-
imental settings of [13, 30, 35]. (I) COCO-standard: we
randomly sample {1, 2, 5, 10, 20, 30}% of data from COCO
train2017 as the fully labeled training data and use the rest
as the omni-labeled training data. (II) COCO-35to80: we
use the COCO-35 (a.k.a. valminusminival), a subset of
35K images of COCO train2017 as the fully labeled data
and COCO-80, the COCO train2014 of 80K images, as the
omni-labeled data. (III) VOC-07to12: we use the VOC07
trainval as the fully labeled set and the VOC12 trainval
as the omni-labeled set. On COCO, model performance is
evaluated on the COCO val2017, and VOC07 test on VOC.
Implementation details: For fair comparison, ResNet-50
pretrained on ImageNet [10, 20] is used as the backbone.
The confidence threshold τ = 0.7. For strong augmenta-
tion, following [30, 52], we apply random horizontal flip-
ping, random resizing, random size cropping, color jitter-
ing, grayscale, Gaussian blur, and cutout patches. For weak
augmentation, only random horizontal flipping is used. To
mimic point annotations, we follow [9, 35] and randomly

mAP AP50 AP75

10% supervision 28.0 44.3 29.5
+ 90% None 32.4 49.3 34.5
+ 90% TagsU 34.7 52.4 37.2
+ 90% TagsK 35.2 53.5 37.7
+ 90% PointsU 34.1 51.9 36.2
+ 90% PointsK 35.7 54.2 38.6
+ 90% BoxesEC 36.4 54.6 39.3
+ 90% BoxesU 36.8 54.8 39.4

Table 2. The effects of different weak annotations on the baseline
of 10% COCO-standard fully labeled data.

sample a point from the instance mask if the dataset has
instance segmentation, otherwise, we randomly sample a
point inside each bounding box. For Extreme Clicking
boxes, since [31] only has partial annotations on VOC, we
simulate similar annotations on other datasets by adding
noise to their ground truth bounding box annotations, so
that the resulting boxes have close distribution to that of
Extreme Clicking on VOC. More details can be found in
the supplementary. The detection performance is evaluated
with the teacher model for all experiments. We use AP50:95,
denoted as mAP, as the evaluation metric unless otherwise
noted. The minimum size of image height and width is set
to 600-pixels for faster experiments, except in experiments
involving comparisons with other methods that use the stan-
dard 800-pixel size.

5.2. Evaluation on Single Annotation

Under the setting of COCO-standard-10%, we first eval-
uate Omni-DETR for individual weak annotations in Table
2, to study the effect of each weak annotation. The baseline
is the standard supervised learning on 10% labeled data. A
few observations are available. First, the additional 90%
unlabeled data improves the baseline by 4.4% when using
semi-supervised learning. Annotating extra weak labels al-
ways enhances the performances by 1.7 − 4.4%. Second,
among all annotation formats, PointsU has the smallest ben-
efit and BoxesU the largest. Third, Extreme Clicking boxes
(BoxesEC) is economical: only 0.3% worse than the high-
quality boxes of BoxesU but 5 times less costly. Fourth,
count annotation provides a gain of 0.5% over tag annota-
tion (TagsU v.s. TagsK). Fifth, adding tag information to
points (PointsU v.s. PointsK), leads to 1.6% improvement.

5.3. Comparison with the State-of-the-art

Omni-DETR is compared with previous works under
different settings. In this section, “Supervised” is the super-
vised Deformable DETR baseline trained on the available
fully-labeled data only.
SSOD When no annotation is available, the Omni-DETR
becomes a standard semi-supervised detector, which is
compared to other SSOD methods in Table 3. We im-
plemented the supervised Faster R-CNN and Deformable
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1% 2% 5% 10% VOC
Faster R-CNN [30, 34] 9.1 12.7 18.5 23.9 42.1
Faster R-CNN∗ 11.7 14.9 20.7 25.6 42.6
Deformable DETR∗ 11.0 14.7 23.7 29.2 46.2
STAC [41] 14.0 18.3 24.4 28.6 44.6
Unbiased Teacher [30] 20.8 24.3 28.3 31.5 48.7
Humble Teacher [45] 17.0 21.7 27.7 31.6 53.0
Omni-DETR 18.6 23.2 30.2 34.1 53.4

Table 3. SSOD result comparison on COCO-standard and VOC-
07to12. ∗ indicates our implementation.

Supervised +TagsU +PointsK
UFO2 [35] 29.1 29.4 (+0.3) 30.1 (+1.0)
Omni-DETR 34.3 39.4 (+5.1) 40.2 (+5.9)

Table 4. WSSOD comparison with UFO2 on COCO-35to80. The
numbers in parentheses are gains over the supervised baseline
(Faster R-CNN for UFO2 but Deformable DETR for ours).

1% 5% 10% 20%

Supervised 11.0 23.7 29.2 33.6
Fang et al. [13] 18.4 27.4 31.3 35.0
Omni-DETR (ours) 20.1 31.7 35.9 38.1

Table 5. WSSOD with tags result comparison on COCO-standard.

DETR trained only on the labeled data as the baselines.
Omni-DETR achieves the best results on 5% and 10% of
COCO, and VOC, and comparable results with the state-
of-the-art on 1% and 2% of COCO4. Note that our Omni-
DETR is not designed specifically for SSOD, but it still
achieves competitive results.
WSSOD with tags When additional tag annotation is avail-
able, SSOD becomes WSSOD with tags. We compare
with the state-of-the-art methods, UFO2 [35] and Fang et
al. [13], on their settings. The results are reported in Ta-
ble 4 and 5, showing that our model consistently outper-
forms [13,35]. It is worth noting, in Table 5, that our model
trained on 5% (10%) labeled data achieves 31.7 (35.9) mAP,
which is higher than [13] trained on 10% (20%) labeled
data. In Table 4, we improve the supervised baseline by
5.1% by using tags, whereas the improvement is 0.3% for
UFO2. Our absolute improvement over UFO2 is 10%.
WSSOD with points When additional point with tag an-
notation is available for SSOD, the problem becomes WS-
SOD with points [9]. Omni-DETR is compared with Point
DETR and UFO2, in Table 6 and 4 respectively. It can
be observed in Table 6 that we outperform Point DETR
by a significant margin (5 − 7%). In Table 4, when using
points, Omni-DETR improves over the supervised baseline
by 5.9% where UFO2 improves by 1%, and our absolute
gain over UFO2 is 10.1%.
OSOD In addition to Table 4, we also compare with UFO2

on the X%B settings of [35], where X%B are different
annotation policies using 10K images of COCO. Under a
fixed budget, X% budget is spent on fully labeled annota-

4 [26] mentioned Unbiased Teacher is weaker for smaller batch size.

5% 10% 20% 30%

Supervised 23.7 29.2 33.6 35.2
Point DETR [9] 26.2 30.4 33.3 34.8
Omni-DETR (ours) 32.5 37.1 39.0 40.1

Table 6. WSSOD with points comparison on COCO-standard.

80%B 50%B 20%B
UFO2 [35] 14.1 11.1 4.5
Omni-DETR 21.5 19.5 9.1

Table 7. OSOD result comparison with UFO2 on COCO.

Simple Filtering Unified Filtering
TagsU TagsK PointsU PoinsK TagsU TagsK PointsU PointsK
33.3 33.8 32.4 34.6 34.7 35.2 34.1 35.7

Table 8. Comparison with simple filters on COCO-standard-10%.

0.5 0.6 0.7 0.8 0.9
None 28.9 31.5 32.4 31.4 29.9
TagsU 31.1 34.1 34.7 33.9 33.1

Table 9. Effect of τ on COCO-standard-10%

0.00 0.25 0.5 0.75 1.00
PointsK 34.1 35.3 35.7 35.5 35.2

Table 10. Effect of γ on COCO-standard-10%.

tions, and the rest on PointsK. As shown in Table 7, Omni-
DETR still has consistently significant gains over UFO2.

5.4. Ablation Study

We ablate some key components of our Omni-DETR on
COCO-standard-10% setting.
Comparison with simple filters We compare the proposed
unified pseudo-label filter with the simple filter of Section
4.1. Table 8 shows that the proposed unified filter is better
than the simple and heuristic filter under various settings.
This is because the matching in the unified filter is a global
solution by Hungarian algorithm, instead of a heuristic one
as in the simple filter.
Confidence threshold The confidence threshold τ used in
Section 4.2.1 and (5) determines the trade-off between the
quality and quantity of the pseudo-labels. A larger τ leads
to fewer examples passing the threshold but with high qual-
ity, but a smaller τ allows more examples passing but more
likely false positives. The results of different values of τ
(0.5 to 0.9) are reported in Table 9. τ = 0.7 is the best.
The effect of γ The hyperparameter γ of (8) balances the
importance of positions and tag labels during the matching
for point annotation. Its effect is evaluated in Table 10, and
γ = 0.5 is the best.
Pseudo bounding box In Unbiased Teacher [30], pseudo
bounding boxes are not used for learning from unlabeled
data since the class confidence score does not reflect the
goodness of the bounding box. However, we found that
pseudo bounding boxes are useful and provide consistent
improvement of 0.5− 1% in our experiments. One possible
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Figure 4. Accuracy (mAP) and annotation cost trade-off. Grey lines are the SSOD baseline references. Green dots represent the
WSSOD results with different weak labels. Red, blue and purple lines are the OSOD results for different mixture annotation choices.

reason for the improvement is the higher quality of Omni-
DETR pseudo bounding boxes.

5.5. Budget-Aware Omni-Supervised Detection

We also empirically study the trade-off between annota-
tion cost5 and accuracy of several annotation policies. Here,
annotation policy refers to the strategy for mixing differ-
ent annotation formats. Five diverse datasets with differ-
ent characteristics are tested. The annotation cost, in sec-
onds per image, for each type of annotation is shown in
Table 11, following [2, 31, 35, 43]. For each dataset, we
attempt to identify the best annotation policy, given differ-
ent budgets. SSOD is used as the baseline because, when
the entire budget is used on standard full object annotation
(bounding boxes and tags), the remaining data is considered
unlabeled, which is the standard SSOD setup and widely
adopted in practice. Next, we consider different weakly
semi-supervised settings with 10% data fully labeled and
the remaining 90% labeled with different weak annotations.
Finally, two choices of mixture annotation are tested under
three budgets per dataset, to show the omni-supervised re-
sults. We only tested the combination of weak annotations
that are better than the SSOD baseline, and the combination
ratio was decided manually so that the mixture and full an-
notations had similar costs, for a fair comparison. Please
see more details in the supplementary.

The results are summarized in Figure 4. The grey lines
and green dots are the SSOD and WSSOD results, respec-
tively, whereas red/blue/purple lines are for OSOD variants.
It can be found that the OSOD results are higher than the
strong SSOD baseline in general. For a target accuracy, the
mixture annotation strategy can help reduce cost, and for a
given cost, SSOD can improve accuracy. For example, on
Bees at the accuracy of 40% mAP, using mixture annota-
tions of TagsK and PointsU can save the cost of about 15
hours from the standard detection annotation (25 hours v.s.
40 hours). On CrowdHuman, for the cost of about 330 hours
OSOD improves the strong SSOD baseline mAP by ∼4%.
These findings support our claim that weak annotations are
useful and can achieve a better cost-accuracy trade-off than
standard detection annotation.

5Only human annotation costs are considered, and other costs are ig-
nored if there is any.

Datasets Ta
gs

U

Ta
gs

K

Po
in

tsU

Po
in

tsK

Bo
xe

sE
C

Bo
xe

sU

Fu
lly

Bees - 6.1 6.4 6.4 50 249.9 249.9
CrowdHuamn - 19.4 20.4 20.4 158.5 792.4 792.4
VOC 20 21 2.2 22.9 16.8 84 102.6
COCO 80 84.2 6.9 88.7 53.9 269.5 346
Objects365 365 375.8 14.2 381.7 110.6 553 913

Table 11. Labeling cost estimation for different annotations (sec-
onds per image).

Some additional interesting observations are also avail-
able in Figure 4. First, the green upside-down trian-
gles, rectangles and red/blue lines are all higher than the
strong SSOD baseline. This suggests that annotating points
(PointsU) and/or Extreme Clicking boxes (BoxesEC) is a
better choice than standard complete annotation. Second,
the green plus is above the reference on Bees and Crowd-
Human, but not for the other three datasets, indicating that
count annotation (TagsK) is useful for datasets with dense
objects. Finally, weak annotations such as TagsU (green
cross), TagsK (green plus) and PointsK (green triangle), are
far below the SSOD baseline on datasets like VOC, COCO
and Objects365. This suggests that tags are not a good an-
notation format for datasets with large number of classes,
where annotating tags is expensive. In general, the opti-
mal annotation choice is quite dataset-specific, depending
on characteristics such as number of categories, number of
objects per image, object size, etc.

6. Conclusion

We have proposed a unified framework for omni-
supervised object detection, which can use different types
of weak annotations. With this unified framework, we have
found weak annotations are helpful and a mixture of them
can achieve a better cost-accuracy trade-off.
Limitations and Potential Negative Social Impact: It is
unclear whether these findings of this paper are still consis-
tent on larger datasets, since we have not explored dataset
size beyond COCO (∼120K images) yet. In addition,
Omni-DETR could potentially increase the risk of improper
use of detection systems, because it makes good detectors
more accessible with fewer annotation efforts.
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