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Abstract

Many recent self-supervised frameworks for visual rep-
resentation learning are based on certain forms of Siamese
networks. Such networks are conceptually symmetric with
two parallel encoders, but often practically asymmetric as
numerous mechanisms are devised to break the symmetry.
In this work, we conduct a formal study on the importance
of asymmetry by explicitly distinguishing the two encoders
within the network – one produces source encodings and the
other targets. Our key insight is keeping a relatively lower
variance in target than source generally benefits learning.
This is empirically justified by our results from five case
studies covering different variance-oriented designs, and
is aligned with our preliminary theoretical analysis on the
baseline. Moreover, we find the improvements from asym-
metric designs generalize well to longer training schedules,
multiple other frameworks and newer backbones. Finally,
the combined effect of several asymmetric designs achieves
a state-of-the-art accuracy on ImageNet linear probing and
competitive results on downstream transfer. We hope our
exploration will inspire more research in exploiting asym-
metry for Siamese representation learning.

1. Introduction

Despite different motivations and formulations, many re-
cent un-/self-supervised methods for visual representation
learning [1, 6–8, 18, 19, 44] are based on certain forms of
Siamese networks [4]. Siamese networks are inherently
symmetric, as the two encoders within such networks share
many aspects in design. For example, their model architec-
tures (e.g., ResNet [20]) are usually the same; their network
weights are often copied over; their input distributions –
typically compositions of multiple data augmentations [8] –
are by default identical; and their outputs are encouraged to
be similar for the same image. Such a symmetric structure
not only enables straightforward adaptation from off-the-
shelf, supervised learning architectures to self-supervised
learning, but also introduces a minimal inductive bias to
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Figure 1. Asymmetry for Siamese representation learning. For
the two encoders in a Siamese network, we treat one as a source
encoder, and the other as a target encoder. We find it generally
beneficial to have relatively lower variance in target than source.

learn representations invariant w.r.t. various transformations
in computer vision [10].

However, symmetry is not the only theme in these frame-
works. In fact, numerous mechanisms were proposed to
break the conceptual symmetry. For example, BYOL [18]
and SimSiam [10] place a special predictor head on one
of the encoders, so architecture-wise they are no longer
symmetric; MoCo [19] introduces momentum encoder, in
which the weights are computed with moving-averages in-
stead of directly copied; SwAV [6] and DINO [7] addition-
ally adopt a multi-crop [27] strategy to enhance the augmen-
tation on one side, shifting the data distribution asymmetric
between encoders; even the InfoNCE loss [28] treats out-
puts from two encoders differently – one is positive-only
and the other also involves negatives. Among them, some
specific asymmetric designs are crucial and well-studied
(e.g., stop-gradient to prevent collapse [10]), but the gen-
eral role of asymmetry for Siamese representation learning
is yet to be better understood.

In this paper, we conduct a more formal study on the
importance of asymmetry for Siamese learning. Deviat-
ing from the original meaning of ‘Siamese’, we explic-
itly mark the two encoders within the network function-
ally different: a source encoder and a target encoder.1 The

1Depending on the context, source has also been referred as query/on-
line/student; and target as key/teacher in the literature [18, 19, 32].
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source encoder generates source encodings, and updates its
weights via normal gradient-based optimization like in su-
pervised learning. The target encoder updates its weights
only with their source counterparts, and outputs target en-
codings which in turn judge the quality of sources. This
asymmetric encoder formulation also covers symmetric en-
coders (e.g., in SimCLR [8]), where the target weights can
be simply viewed as source duplicates.

With this distinction, our key insight is that keeping a rel-
atively lower variance in target encodings than source can
help representation learning (illustrated in Fig. 1). We sys-
tematically study this phenomenon with our MoCo v2 [9]
variant beyond existing – but scattered – evidence in the
literature [5, 6, 19, 24, 37]. Specifically, given a variance-
oriented design, we first quantify its encoding variance with
our baseline model, and then apply it to source or target (or
both) encoders and examine the influence on learned repre-
sentations. In total, we have conducted five case studies to
explore various design spaces, ranging from encoder inputs,
to intermediate layers and all the way to network outputs.
The results are well-aligned with our insight: designs that
increase encoding variance generally help when applied to
source encoders, whereas ones that decrease variance favor
target. We additionally provide a preliminary theoretical
analysis taking MoCo pre-training objective as an example,
aimed at revealing the underlying cause.

Our observation generalizes well. First, we show the
improvements from asymmetry – lower variance in target
than source – can hold with longer pre-training schedules,
suggesting they are not simply an outcome of faster con-
vergence. Second, directly applying proper asymmetric
designs from MoCo v2 to a variety of other frameworks
(e.g., BYOL [18], Barlow Twins [44]) also works well,
despite notable changes in objective function (contrastive
or non-contrastive), model optimization (large-batch train-
ing [43] or not), etc. Third, using MoCo v3 [11], we
also experimented a more recent backbone – Vision Trans-
former (ViT) [14] – and find the generalization still holds
well. Finally, several asymmetric designs are fairly com-
positional: their combined effect enables single-node pre-
trained MoCo v2 to reach a top-1 linear probing accuracy
of 75.6% on ImageNet, a state-of-the-art with ResNet-50
backbone. This model also demonstrates good transferring
ability to other downstream classification tasks [8, 15, 18].

In summary, our study reveals an intriguing correlation
between the relative source-target variance and the learned
representation quality. We have to note that such correla-
tion has limitations, especially as self-supervised learning
follows a staged evaluation paradigm and the final result is
inevitably influenced by many other factors. Nonetheless,
we hope our exploration will raise the awareness of the im-
portant role played by asymmetry for Siamese representa-
tion learning, and inspire more research in this direction.

2. Related Work
Siamese networks are weight-sharing networks [4] that
process multiple inputs and produce multiple outputs in par-
allel. It has been widely used in computer vision [3,4,31,38]
and has recently caught attention in self-supervised learn-
ing [8, 10]. This can be explained by the design of Siamese
networks, which can conveniently learn invariance in a
data-driven fashion – a widely acknowledged property for
useful visual representations [10]. While a naı̈ve applica-
tion of Siamese network can incur collapse, various formu-
lations and mechanisms (e.g., contrastive learning [8, 19],
online balanced clustering [6, 7], extra predictor [10, 18],
variance reduction loss [1,44]) – many of them asymmetric
– have been proposed to maintain healthy learning dynam-
ics. Our focus is not on collapse prevention. Instead, we
study generic designs that change encoding variance, ana-
lyze their effect on the output representations, and show that
an asymmetry between source and target helps learning.

Symmetry for Siamese learning. While the theme of the
paper is asymmetry, symmetry is also a powerful concept
in Siamese learning. One advantage of symmetry is in re-
ducing the computation cost when source and target en-
coders share the same backbone weights. In such frame-
works [8,10], source features can be reused for targets, sav-
ing the extra need to compute with a second encoder. Re-
cently, symmetric designs alone are also shown to yield the
same level of performance as asymmetric methods [1, 44].

Interestingly, there is often an attempt to symmetrize the
loss by forwarding image views once as source and once
as target [11, 18], even when the encoder weights are not
shared (e.g., in case of a momentum encoder [19]). Com-
pared to using a single asymmetric loss but training for 2×
as long, this practice has the same number of forward/back-
ward passes and we empirically verify it generates similar
results across frameworks (see Sec. 6.2) [10]. Therefore, we
believe loss symmetrization is not essential beyond plausi-
ble better performance at the ‘same’ training epochs.

Asymmetric source-target variance. Asymmetry in vari-
ance is already serving self-supervised learning in implicit
ways. MoCo [19] itself is a successful example: by smooth-
ing its target encoder, the memory bank stores consistent
keys with smaller variance across training iterations. Mo-
mentum update has been extended to normalization statis-
tics to further reduce variance [5, 24], again applied on tar-
gets. State-of-the-art on ImageNet [37, 41, 47] is held by
using high-variance, strong augmentations on source views.

Siamese networks are also popular in semi-supervised
learning, where some examples are unlabeled. To create
more reliable pseudo labels, the common practice is to aver-
age predicted labels over augmented views [2,30,36], which
effectively reduces variance on target. Such evidences are
scattered in the literature, and we analyze it systematically.
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(a) MultiCrop (Sec. 4.1) (b) ScaleMix (Sec. 4.2) (c) AsymAug (Sec. 4.3) (d) SyncBN (Sec. 4.4) (e) MeanEnc (Sec. 4.5)

Figure 2. We present five case studies exploring different variance-oriented designs for source and target encoders. For each column, we
show the specific design on the top, and its influence on the encoding variance (both the cumulative distribution function and the mean on
the validation set as our empirical reference) at the bottom. Each design is then applied to either the source, the target, or both encoders.
The resulting representation is evaluated by linear probing on ImageNet. Best viewed on a screen and zoomed in. See Sec. 4 for details.

3. Methodology Overview
In this section we give an overview for our methodology

to systematically study variance-oriented encoder designs.
First, we specify our variance of interest. While exactly
quantifying such variance during training is hard, we pro-
vide an approximate reference for such variance using our
baseline model. Now, for each design we can then compute
its variance reference and quantify the relative change in
comparison to a vanilla encoder. Regardless of the change
(higher or lower), we plug-in the design to either the source,
the target, or both encoders and see its influence on result-
ing representations after pre-training. The influence is mea-
sured by linear probing on ImageNet [13]. For a particular
design, if applying it to both (or neither) encoders is bet-
ter, then it implies maintaining symmetry is important; if it
prefers either source or target, then it means asymmetry is
beneficial. In such cases, we also check whether the change
in variance is correlated with the encoder preference.

In total, we have conducted five case studies exploring
various design spaces, ranging from encoder inputs (i.e.,
data augmentations), to intermediate layers (i.e., different
batch sizes for Batch Normalization [21]) all the way to net-
work outputs (i.e., averaging multiple encodings to reduce
variance). Fig. 2 shows these designs and their variance
plots in conjunction with our baseline. We detail our base-
line and each case study in Sec. 4, and first motivate our
variance of interest and its reference in the following.

Variance of interest. As each encoding is the encoder out-
put of an augmented view from an image, the total variance
in encodings mainly comes from three types: i) changes
to the encoder, ii) changes across images, and iii) changes
within a single image. For type i), MoCo [19] with its mo-
mentum encoder is already a major, well-studied asymmet-

ric design that intuitively reduces the target variance across
training iterations. For type ii), as Siamese representation
learning encourages uniformity [10, 35], the cross-image
variance quickly converges to a constant dependent only on
encoding dimensions (evidenced in Appendix A).2 There-
fore, we focus on type iii), i.e., intra-image variance as the
main subject of our study. Note that it does not restrict us
to design input augmentations as the only means to adjust
variance, as will be discussed in Secs. 4.4 and 4.5.

Variance reference. Exactly quantifying intra-image vari-
ance requires sampling all possible augmentations of all im-
ages and forward all of them to obtain encodings for all
training steps. Even if possible, this process is highly ex-
pensive and also probably unnecessary. Therefore, we re-
sort to an approximation with the goal of keeping a refer-
ence to characterize the encoding variance when changed.

To this end, we simply augment each image in the val-
idation set r times and feed them to a pre-trained baseline
encoder. The output encodings are then used to compute
the per-image, intra-sample variance, which jointly form a
distribution. All variances across the entire set are then av-
eraged to a single value v, the reference variance used to
measure different designs. More details are listed in Sec. 7.

4. Case Studies for Source-Target Variance

In this section, we introduce our baseline and perform
five empirical case studies exploring the impact of differ-
ent designs. For each one of them, we record its corre-
sponding variance reference v, and linear-probing accura-
cies when placed on encoders with different configurations

2If encodings are uniformly distributed on the unit hypersphere (due to
`2 normalization), their variance is 1/dwhere d is the encoding dimension.
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without preset bias. Since our goal is to analyze the behav-
ior, all models in this section are pre-trained for 100 epochs,
with the generalization toward longer schedules deferred
to Sec. 6.1 after we draw the connection between variance
change and encoder preference in Sec. 4.6.

Baseline. Our baseline is an improved variant of MoCo
v2 [9], which itself is an improved baseline over origi-
nal MoCo [19]. It consists of a gradient-updated source
encoder fs, a momentum-updated target encoder ft, and
an encoding-updated memory bank [40]. Inspired by
SimCLR [8], each MoCo v2 encoder further uses a pro-
jection head (projector), which is a 2-layer MLP without
Batch Normalization (BN) [21] in-between. Our baseline
adds an additional fully connected layer (2048-d, with BN)
before the 2-layer MLP. Inherited from MoCo v1, all BNs
in fs are performed per GPU device, and all BNs in ft are
shuffled [19]. All the output encodings z are `2 normalized
to unit-length vectors before InfoNCE loss [28]. We do not
employ any loss symmetrization [6,18] in this baseline, thus
one source/target pair only contributes to the loss once.

Compared to vanilla MoCo v2 [9], our baseline is gen-
erally better in linear probing on ImageNet [13] (detailed
in Sec. 7). The table below summarizes the top-1 accuracy
(%) using ResNet-50 [20] and the same evaluation protocol:

100 ep 200 ep 400 ep 800 ep
MoCo v2 [9] 64.7 67.9 69.6 70.7
MoCo v2, ours 65.8 69.0 70.5 71.9

The improvement (∼1 percent) is consistent across different
number of training epochs. We also notice no degradation
in object detection transfer on VOC [16] – e.g., achieving
57.4 mAP at 800 pre-training epochs, same as original [9].
The variance reference for our baseline v0 is 8.5 (×10−4).

4.1. Study 1: MultiCrop Augmentation

We begin our study with an existing design in the litera-
ture – multi-crop augmentation (or ‘MultiCrop’) [6, 7, 27].
Besides the two basic views needed for Siamese learning,
MultiCrop takes additional views from each image per iter-
ation. To alleviate the added computation cost, a common
strategy is to have m low-resolution crops (e.g., 96×96 [6])
instead of standard-resolution crops (224×224) as added
views (illustrated in Fig. 2a top for m=4). As a side effect,
inputting small crops can potentially increase the variance
for an encoder due to the size and crop-distribution changes.
This is confirmed in Fig. 2a bottom, where we compare
the variance distribution of MultiCrop to our baseline on
the ImageNet val set. We show the cumulative distribution
function in solid lines with increasing per-image variances
from left to right, and the mean variances v and v0 in dotted
vertical lines. MultiCrop has significantly higher variance
than our baseline: v=38.0 vs. 8.5 (×10−4).

We plug-in MultiCrop to either the source, the target, or
both encoders (detailed in Appendix D). The table below

summarizes the corresponding top-1 accuracy and change
(∆) to the baseline in linear probing:

+MultiCrop ( ↑ ) neither source target both

accuracy (%) 65.8 69.9 57.1 61.7
∆ (%) / +4.1 -8.7 -4.1

As a design that increases variance (indicated by ‘ ↑ ’
in table), MultiCrop improves the accuracy substantially
(+4.1%) when applied to the source encoder, and hurts
when applied to the target. When applied to both, the per-
formance also degenerates significantly (-4.1%), even with
more crops processed per training iteration than to source
alone. These results indicate that the source encoder is the
preferred place of applying MultiCrop (column shaded in
gray ) – which also matches the common protocols in the

literature when multi-crop augmentation is used [6, 7, 27].

4.2. Study 2: ScaleMix Augmentation

Next, we introduce and study a different type of augmen-
tation called ‘ScaleMix’, illustrated in Fig. 2b top (more
details are found in Appendix B). As the name suggests,
it generates new views of an image by mixing two views
of potentially different scales together via binary masking.
The masking strategy follows CutMix [29], where an entire
region – denoted by a box with randomly sampled coordi-
nates – is cropped and pasted. Unlike CutMix, ScaleMix
only operates on views from the same image, and the out-
put is a single view of standard size (224×224). This single
view can be regarded as an efficient approximation of mul-
tiple crops in MultiCrop, without the need to process small
crops separately. Like MultiCrop, ScaleMix also introduces
extra variance to the encoding space (as shown in Fig. 2b
bottom), with a mean variance of v=29.5 (×10−4).

Again, we apply ScaleMix augmentation to the source,
the target, or both encoders without preset preference. The
results for linear probing are summarized in the table below:

+ScaleMix ( ↑ ) neither source target both

accuracy (%) 65.8 67.3 52.8 64.8
∆ (%) / +1.5 -13.0 -1.0

We observe a similar trend as the MultiCrop case: ScaleMix
benefits source encoders, harms target encoders, and the ef-
fect neutralizes when applied to both. This suggests source
encoder is again the preferred choice for ScaleMix.

4.3. Study 3: General Asymmetric Augmentations

MultiCrop and ScaleMix are mostly on geometric trans-
formations of images. Next, we study the behavior by vary-
ing other ingredients in the MoCo v2 augmentation recipe.

The original v2 recipe is symmetric: the same set of
augmentations (e.g., random resized cropping, color jitter-
ing [40], blurring [8]) is used for both source and target.
In this case study, we add or remove augmentations (be-
yond geometric ones), and present two more recipes: one
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deemed stronger (‘StrongerAug’), and the other weaker
(‘WeakerAug’) compared to the original one (detailed in
Appendix D). Together, they can form general asymmet-
ric augmentation recipes for source and target. Comply-
ing with the intuition, we find StrongerAug has higher vari-
ance 19.7 (×10−4), and WeakerAug has lower variance 6.9
(×10−4) w.r.t. to the baseline v0 (shown in Fig. 2c bottom).

The results are split into three tables for clarity. The in-
fluence of WeakerAug is summarized first:

+WeakerAug ( ↓ ) neither source target both

accuracy (%) 65.8 51.0 67.2 46.8
∆ (%) / -14.8 +1.4 -19.0

Interestingly, the effect of WeakerAug on source/target en-
coder is opposite compared to the previous studies: it
hurts source but helps target (referred as ‘AsymAug’). A
symmetric WeakerAug on both does not work, suggesting
the heavy reliance of Siamese learning on augmentation
recipes [8, 18]. On the StrongerAug side:

+StrongerAug ( ↑ ) neither source target both

accuracy (%) 65.8 66.7 62.2 66.2
∆ (%) / +0.9 -3.6 +0.4

It helps most when used only on source, but harms accu-
racy when used only on target. For completeness, we also
experimented changing augmentation strength in opposite
directions for source and target:

Stronger & Weaker source ↑ target ↓ source ↓ target ↑
accuracy (%) 67.2 44.3
∆ (%) +1.4 -21.5

Compared to having WeakerAug on target alone (67.2%),
further adding StrongerAug on source does not bring ex-
tra gains. In contrast, stronger augmentations on target and
weaker augmentations on source results in the worst perfor-
mance in all the cases we have studied.

4.4. Study 4: Sync BatchNorm

Although input data augmentation is a major source of
intra-image variance, it is not the only cause of such vari-
ance within output encodings. One notable source lies in
intermediate BN layers [21], a popular normalization tech-
nique in modern vision architectures [20]. During training,
the statistics for BN are computed per-batch, which means
if other images within the batch are replaced, the output will
likely change even if the current image stays the same. As
a result, the magnitude of this variance is largely controlled
by the batch size: a sufficiently large size can provide nearly
stable statistics, whereas for small batches (e.g., below 16)
the estimation is generally less accurate [39]. For MoCo
v2, its effective batch size is 32, because the default BN
performs normalization only on the same device (256 im-
ages/8 GPUs).3 A natural alternative is to employ SyncBN

3MoCo v2 inherits MoCo v1 and uses ‘shuffled BN’ in ft. It shuffles
the input to avoid cheating but the normalization still happens per-device.

that normalizes over all devices, so the batch size is 256 (il-
lustrated in Fig. 2d top for 4 devices). From the zoomed-in
variance plot (Fig. 2d bottom), SyncBN leads to a slight de-
crease in variance from 8.5 to 8.3 (×10−4) in this case –
suggesting 32 is already sufficiently stable in our baseline.

For efficiency and generalizability, we replace the single
BN in our 3-layer projector with SyncBN.4 As before, we
tried different combinations on encoders and the results are:

+SyncBN ( ↓ ) neither source target both

accuracy (%) 65.8 64.7 66.5 66.0
∆ (%) / -0.9 +0.7 +0.2

Despite the seemly minor modification, SyncBN still leads
to a notable improvement when applied to target (referred
as ‘AsymBN’) and degeneration to source. SyncBN on both
encoders is at-par with the baseline per-device BNs.

4.5. Study 5: Mean Encoding

In this last study we focus on the encoder output. Ac-
cording to basic statistics, a direct approach to reduce the
variance of a random variable is to perform i.i.d. sam-
pling multiple times and take the mean as the new variable.
Specifically for v, we can reduce it by a factor of ∼n if the
output encoding z is averaged from n separate encodings
{z1, . . . , zn} (illustrated in Fig. 2e top for n=2).5 These
encodings can be simply generated by running the same en-
coder on n augmented views of the same image (detailed
in Appendix D). For example, we show v is 4.2 (×10−4),
about half of v0 when two encodings are averaged in Fig. 2e
bottom. We name this design ‘MeanEnc’ for an encoder.

As discussed in our Sec. 2 (also shown in [10]), increas-
ing the number of views per training iteration can lead to
better performance by itself. To minimize this effect, we
conduct our main analysis of MeanEnc by fixing the total
number of views to 4 per training iteration. The 4 views are
split between source (ns) and target (nt) encoders, shown
in the first 3 result columns below:

+MeanEnc ( ↓ )
ns =1
nt =3

ns =2
nt =2

ns =3
nt =1

ns =1
nt =2

accuracy (%) 67.9 67.1 59.9 67.5
∆ (%) +2.1 +1.3 -5.9 +1.7

With more views in the target encoder (and simultane-
ously fewer views in source), we observe a trend for better
accuracy. Having 2 views in both encoders still keeps sym-
metry, so its improvement over baseline (65.8%) is an out-
come of more views. For simplicity, we also experimented
MeanEnc with 2 views in the target encoder alone (last col-
umn). The result strikes a better balance between speed and
accuracy, so we pick this setting as default for MeanEnc.

4Replacing all BNs including ones in ResNet also exhibits the same
pattern. Replacing BNs in projector only is noticeably faster, and general-
izes to other BN-free backbones such as ViT [14].

5Here the reduction is approximate because we jointly forward multiple
views which doubles or triples the batch size in BN; and encodings are
further `2 normalized before calculating v.
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MultiCrop
(Sec. 4.1)

ScaleMix
(Sec. 4.2)

WeakerAug
(Sec. 4.3)

StrongerAug
(Sec. 4.3)

SyncBN
(Sec. 4.4)

MeanEnc
(Sec. 4.5)

variance change ↑ ↑ ↓ ↑ ↓ ↓
encoder preference source source target source target target

Table 1. Summary of the 6 designs covered in our case studies. For each design, we list its qualitative change in intra-image variance v,
and its preferred encoder. We see a consistent pattern that higher-variance designs prefer source, whilst lower-variance ones prefer target.

4.6. Summary of Studies

In total, we covered 6 variance-oriented designs in the
5 case studies described above. Interestingly, none of them
achieves best result when designs are symmetrically applied
to both (or neither) encoders. Instead, all of them have a
single preferred encoder in the Siamese network. This phe-
nomenon directly supports the importance of asymmetry for
Siamese representation learning.

Moreover, we observe a consistent pattern: designs that
introduce higher encoding variance generally help when
placed on source encoders, whereas designs that decrease
variance favor target encoders. We summarize the relation
between: i) change of variance and ii) encoder preference
in Tab. 1. This is well-aligned with our insight: the specific
asymmetry of a relatively lower variance in target encod-
ings than source can benefit Siamese representation learn-
ing, and not the other way around.

From the results, we do have to note that such a pattern
holds within a reasonable range of v, and more extreme
asymmetry does not always lead to better performance (e.g.,
when further increasing source augmentation strength while
having WeakerAug in target). Moreover, asymmetry is usu-
ally not the only factor in play for self-supervised frame-
works; other factors (e.g. the number of views in MeanEnc)
can also influence the final outcome of our pipelines.

5. Theoretical Analysis for Variance
Here we aim to provide a preliminary theoretical analysis

for MoCo following [33, 34] (More details in Appendix C).
Consider the following simplified InfoNCE objective:6

L = − 1

N

N∑
i=1

log
exp(Sii′/τ)∑
j 6=i exp(Sij′/τ)

, (1)

where N is batch size, τ is temperature, Sii′=z>i z
′
i and

Sij′=z>i z
′
j are pairwise similarities between source encod-

ings zi and targets z′i (target weights and encodings all
come with prime ′). For MoCo, gradients are only back-
propagated through the source zi, but not z′i or z′j .

Now, let’s take the last linear layer immediately before z
as an example for analysis. Let f be the input features of this
layer, W be its weight matrix (so z=W f ), and denotes co-
efficients αij′= exp(Sij′/τ)/

∑
k 6=i exp(Sik′/τ), we can

6We make two simplifications to InfoNCE [28] by ignoring `2 normal-
ization and the positive term exp(Sii′/τ) in the denominator [42].

write the gradient flow of W as:

dL
dW

= W ′
1

τN

N∑
i=1

∑
j 6=i

αij′(f
′
j − f ′i)f

>
i . (2)

To study the behavior of gradients especially w.r.t. our
variance of interest, we can model intra-image variance as
an additive noise in f (and f ′) that affects training. Specif-
ically, let f̃ be the feature corresponding to the original im-
age, we can assume:

• Source features fi=f̃i+ei, with E[ei]=ē and V[ei]=Σ;

• Target side f ′i=f̃i+e′i, with E[e′i]=ē′ and V[e′i]=Σ′.

E[·] computes expectation and V[·] outputs variance.
Note that f̃i and f̃j are from different images, while ei, e′i
and e′j model intra-sample variance that comes from mul-
tiple sources, e.g., input augmentations, BNs with different
batch sizes (Sec. 4.4), etc. Due to the independent augmen-
tation process, these noises are modeled as independent of
each other.

Under such setting, we can arrive at the following result
(detailed derivations in Appendix C) to better understand
our observation from a theoretical perspective:

Higher variance on the target side is not necessary and
can be less stable. With higher variance on the target side
(i.e., Σ′ has larger eigenvalues), the variance of the gradi-
ent w.r.t.W , V[dL/dW ], will become larger without affect-
ing its expectation E[dL/dW ]. Intuitively, this asymmetry
comes from an asymmetric structure in Eq. (2): there is a
subtraction term (f ′j−f ′i ) on the target side, but not on the
source side (fi). To make the training dynamics more sta-
ble, maintaining a relative lower variance on the target side
than source is preferred.

6. Generalization Studies and Results
The keyword of this section is generalization, for which

we study our insight for Siamese learning under various
conditions. Specifically for MoCo v2, we study the behav-
ior of asymmetric designs by training with longer sched-
ules, and by composing multiple designs together. As a by-
product, our final model achieves state-of-the-art on Ima-
geNet, and performs well beyond when transferred to other
datasets. Besides MoCo v2, we seek generalizations across
more frameworks and backbones and find it also holds well.
Unless otherwise specified, all the evaluations are top-1 lin-
ear probing accuracy on ImageNet [13].
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Figure 3. Generalization to longer pre-training. Here y-axis is accuracy (%) and x-axis is number of epochs (log-scale). Asymmetric
designs consistently outperform the baseline. MultiCrop as the single strongest one reaches 73.7% at 800-ep without loss symmetrization.

(%) baseline ScaleMix AsymBN MeanEnc
MoCo v3 [11] 69.9 70.7 70.1 70.6
asym., 2× / ∆ 69.7 +1.0 +0.4 +0.9
SimCLR [8] 65.0 66.3 65.8 66.4
asym., 2× / ∆ 65.0 +1.3 +0.8 +1.4
BYOL [18] 69.5 70.4 69.9 69.7
asym., 2× / ∆ 69.0 +1.4 +0.9 +0.7
SimSiam [10] 67.8 68.7 68.0 68.0
asym., 2× / ∆ 67.4 +1.3 +0.6 +0.6
Barlow Twins [44] 66.8 67.3 66.6 67.1
asym. / ∆ 66.4 +0.9 +0.2 +0.7

Table 2. Generalization to more frameworks. We cover 5 of them
and convert each to and asymmetric one first. In the second col-
umn, we show similar results using our asymmetric versions com-
pared to the original ones at 100-ep (in gray), optionally with 2×
training schedules.7 On top of these, we find asymmetric designs
help learning across the board: third to fifth columns list accura-
cies and improvements over the asymmetric baseline.

6.1. Longer Training

The first generalization is to longer training schedules.
Most Siamese learning frameworks [6, 8, 18], including
our baseline MoCo v2, produce substantially better results
in linear probing with more training epochs. Meanwhile,
lower variance in target – in the extreme a fixed target per
image, could result in faster convergence closer to super-
vised learning where longer training is not as helpful [20].
We run our baseline with the five asymmetric setups studied
in Sec. 4 for 200, 400 and 800 epochs to check the behav-
iors, and put the trends in Fig. 3. Overall, all the asymmetric
models outperform the baseline across different epoch num-
bers. The maintained gap suggests the gain from asymmetry
cannot be simply explained away by faster convergence.

6.2. More Frameworks

Next we examine the generalization to other frameworks.
Roughly ranked by its similarity to our baseline MoCo v2
from closest to furthest, they are: i) MoCo v3 [11], where
the memory bank is replaced by large batch sizes [43];
ii) SimCLR [8], where no momentum encoder is needed;
iii) BYOL [18], where the contrastive formulation is chal-
lenged by learning only on comparing positive pairs; iv)
SimSiam [10], where neither momentum encoder nor nega-
tive pairs are required; and v) Barlow Twins [44], where a
fully symmetric pipeline for Siamese learning is discovered.
Note that we only outlined major differences above and
more subtleties (including detailed setup for each frame-
work in this paper) are found in Appendix D.

(%) baseline ScaleMix AsymBN MeanEnc
MoCo v3, ViT [11] 69.1 69.1 69.4 69.4
asym., 2× / ∆ 68.7 +0.4 +0.7 +0.7

Table 3. Generalization to ViT [14], a new architecture gaining
popularity in vision and is recently studied in MoCo v3 [11]. The
procedure and table format follow Tab. 2.

For ease of applying asymmetric designs to these frame-
works, we first convert their symmetrized components to an
asymmetric form following our source-target formulation.
A popular one is loss symmetrization, used by all except
Barlow Twins. We remove it by only forwarding a pair of
views through the network once (instead of twice) per it-
eration. Intuitively, training 2× as long can roughly com-
pensate for the symmetrized loss with fair amount of com-
pute, as discussed in Sec. 2 and analyzed in [10]. More-
over, methods without momentum encoders [8,10,44] reuse
source encoders for targets. In such cases, we explic-
itly maintain a target encoder by using an online clone of
the source one, and stopping gradients from flowing into
the branch – a choice deviated from SimCLR and Barlow
Twins [8, 44]. We show in Tab. 2 (second column) that our
asymmetric versions work similarly in accuracy compared
to the original ones, despite the above modifications.7

We pick ScaleMix, AsymBN and MeanEnc as three rep-
resentative designs which range from encoder inputs to
outputs. MultiCrop is relatively well studied in the liter-
ature [6, 7] and we find it non-trivial to train MultiCrop
with large batch sizes [8, 11, 18, 44]. More recent frame-
works [11,18,44] already employ stronger asymmetric aug-
mentation recipes [18] like AsymAug. Thus we did not in-
clude them in our comparisons listed in Tab. 2 (last three
columns). Our asymmetric source-target designs generalize
well beyond MoCo v2, showing consistent improvements
across the board with same number of pre-training epochs.

6.3. ViT Backbone

With MoCo v3, we also benchmarked a newly proposed
backbone: ViT [14]. We follow the same procedure by first
building an asymmetric baseline and then applying different
designs (detailed in Appendix D). Again, we find asymme-
try works well (Tab. 3). The only notable difference is the
reduced gap for ScaleMix, which is likely related to patches
fed for ViT not aligned with ScaleMix masks [22].

7We keep all the optimization hyper-parameters the same when running
the asymmetric version. The results can be further improved when e.g.
learning rate is adjusted following the batch size change [17].
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Food-101 CIFAR-10 CIFAR-100 Birdsnap SUN-397 Cars Aircraft VOC-07 DTD Pets Caltech-101 Flowers
Supervised 72.3 93.6 78.3 53.7 61.9 66.7 61.0 87.5 74.9 91.5 94.5 94.7
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 85.5 74.5 83.6 90.3 91.2
BYOL [18] 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
NNCLR [15] 76.7 93.7 79.0 61.4 62.5 67.1 64.1 83.0 75.5 91.8 91.3 95.1
Ours, 1600-ep 79.4 92.8 77.8 58.5 67.8 69.7 59.3 93.8 80.2 87.2 93.1 92.5

Table 4. Generalization by transferring our model to 12 different downstream datasets with linear probing. We follow the protocol
of [15, 18] and report results on the test set. For VOC-07, we cite the improved numbers from [44] for fair comparisons. Our 1600-ep
model achieves best results on 5 out of 12, while being less competitive on tasks with iconic images (such as CIFAR [23] and Aircraft [26]).

6.4. Design Compositions

As another aspect for generalization, we compose mul-
tiple asymmetric designs together and check their joint ef-
fect on representation quality. To this end, we fall back to
our MoCo v2 baseline (100-ep) and start from our strongest
single asymmetric design, MultiCrop. When pairing it with
other two input designs (ScaleMix an AsymAug), we find
their added value has mostly diminished so we did not in-
clude them. On the target side, we first enabled SyncBN,
and then enabled MeanEnc (nt =2) to reduce variance, and
both designs further improved performance:

compositions
none +MultiCrop +MultiCrop

+AsymBN
+MultiCrop
+AsymBN
+MeanEnc

accuracy (%) 65.8 69.9 70.4 71.3
∆ (%) - +4.1 +4.6 +5.5

While our exploration on this front is preliminary and im-
provement is not guaranteed (as discussed in Sec. 4.6), it in-
dicates different asymmetric designs can be compositional.

Finally, we pre-train our best composition (shaded col-
umn above) for 1600 epochs to check its limit. We arrive at
75.6% on ImageNet linear probing (more details in Sec. 7).
This puts us in the state-of-the-art cohort [37, 41, 47] with
single-node training and no other bells or whistles.

6.5. Transfer Learning

In Tab. 4, we show transfer learning results of our final
ImageNet 1600-ep model to 12 standard downstream classi-
fication tasks for linear probing [8,15,18]. For each dataset,
we search the learning rate on the validation set and report
results on the test set, following the protocol of [15,18] (see
Appendix D). Our model performs competitively against
the most recent NNCLR [15]), achieving best on 5 tasks but
lags behind on ones with iconic images. We hypothesis it’s
due to MultiCrop which used local small crops. We further
transferred to Places-205 [46], which focuses on scene-level
understanding. We find our model indeed achieves state-of-
the-art (56.8%), slightly better than SwAV [6] which also
used MultiCrop. These results verify our learned represen-
tation is effective beyond ImageNet.

7. Implementation Details
We list the most important implementation details for our

paper below. Other subtleties are found in Appendix D.

Variance reference. We use ImageNet val set (50k images
in total), r=32 views, and the 800-ep pre-trained baseline
source encoder for variance calculation.8 Encodings are
`2 normalized. To fully mimic the pre-training setting, we
use online per-batch statistics for BN, not recorded moving-
average ones from the training set.

Pre-training. By default, we adopt the same MoCo v2
setup (e.g., augmentation recipe, SGD optimizer etc.) for
experiments on our baseline. A half-cycle cosine learning
rate decay schedule [25] is used given the number of pre-
training epochs. Mixed-precision is enabled for efficiency.

Linear probing. Linear probing freezes backbone after
pre-training, and only trains a linear classifier on top of
the global image features to test the representation qual-
ity. By default on ImageNet, we use LARS [43] opti-
mizer with batch size 4096, initial learning rate lr=1.6 (lin-
early scaled [17]), weight decay 0 and train the classifier
for 90 epochs with a half-cycle cosine schedule following
SimSiam [10]. We choose LARS over SGD as the former
shows better adaptation for explorations, without the need
to search hyper-parameters (e.g. lr) extensively for good
performance. For our final model, we switched back to
SGD optimizer following MoCo [20], with an initial learn-
ing rate of 120 and batch size of 256.

8. Conclusion
Through systematic studies, we have revealed an inter-

esting correlation between the asymmetry of source-target
variance and the representation quality for Siamese learn-
ing methods. While such a correlation is conditioned on
other factors and certainly not universal, we find as guide-
line it is generally applicable to various training sched-
ules, frameworks and backbones. Composing asymmet-
ric designs helps us achieve state-of-the-art with MoCo v2,
and the learned representation transfers well to other down-
stream classification tasks. We hope our work will inspire
more research exploiting the importance of asymmetry for
Siamese learning, e.g. for object detection transfer [19] or
speeding up model convergence for carbon neutral training.

8A potential concern is the variance reference being biased by out-of-
distribution views, since the baseline model has not seen certain data (e.g.,
small crops) during training. To address this, we also experimented with a
model pre-trained with all the asymmetric designs. The trends still hold.
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